u-boot-brain/arch/mips/mach-octeon/include/mach/cvmx-regs.h

442 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (C) 2020 Stefan Roese <sr@denx.de>
*/
#ifndef __CVMX_REGS_H__
#define __CVMX_REGS_H__
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <mach/cvmx-address.h>
/* General defines */
#define CVMX_MAX_CORES 48
/* Maximum # of bits to define core in node */
#define CVMX_NODE_NO_SHIFT 7
#define CVMX_NODE_BITS 2 /* Number of bits to define a node */
#define CVMX_MAX_NODES (1 << CVMX_NODE_BITS)
#define CVMX_NODE_MASK (CVMX_MAX_NODES - 1)
#define CVMX_NODE_IO_SHIFT 36
#define CVMX_NODE_MEM_SHIFT 40
#define CVMX_NODE_IO_MASK ((u64)CVMX_NODE_MASK << CVMX_NODE_IO_SHIFT)
#define CVMX_MIPS_MAX_CORE_BITS 10 /* Maximum # of bits to define cores */
#define CVMX_MIPS_MAX_CORES (1 << CVMX_MIPS_MAX_CORE_BITS)
#define MAX_CORE_TADS 8
#define CASTPTR(type, v) ((type *)(long)(v))
#define CAST64(v) ((long long)(long)(v))
/* Regs */
#define CVMX_CIU3_NMI 0x0001010000000160ULL
#define CVMX_MIO_BOOT_LOC_CFGX(x) (0x0001180000000080ULL + ((x) & 1) * 8)
#define MIO_BOOT_LOC_CFG_BASE GENMASK_ULL(27, 3)
#define MIO_BOOT_LOC_CFG_EN BIT_ULL(31)
#define CVMX_MIO_BOOT_LOC_ADR 0x0001180000000090ULL
#define MIO_BOOT_LOC_ADR_ADR GENMASK_ULL(7, 3)
#define CVMX_MIO_BOOT_LOC_DAT 0x0001180000000098ULL
#define CVMX_MIO_FUS_DAT2 0x0001180000001410ULL
#define MIO_FUS_DAT2_NOCRYPTO BIT_ULL(26)
#define MIO_FUS_DAT2_NOMUL BIT_ULL(27)
#define MIO_FUS_DAT2_DORM_CRYPTO BIT_ULL(34)
#define CVMX_MIO_FUS_RCMD 0x0001180000001500ULL
#define MIO_FUS_RCMD_ADDR GENMASK_ULL(7, 0)
#define MIO_FUS_RCMD_PEND BIT_ULL(12)
#define MIO_FUS_RCMD_DAT GENMASK_ULL(23, 16)
#define CVMX_RNM_CTL_STATUS 0x0001180040000000ULL
#define RNM_CTL_STATUS_EER_VAL BIT_ULL(9)
#define CVMX_IOBDMA_ORDERED_IO_ADDR 0xffffffffffffa200ull
/* turn the variable name into a string */
#define CVMX_TMP_STR(x) CVMX_TMP_STR2(x)
#define CVMX_TMP_STR2(x) #x
#define CVMX_RDHWR(result, regstr) \
asm volatile("rdhwr %[rt],$" CVMX_TMP_STR(regstr) : [rt] "=d"(result))
#define CVMX_RDHWRNV(result, regstr) \
asm("rdhwr %[rt],$" CVMX_TMP_STR(regstr) : [rt] "=d"(result))
#define CVMX_POP(result, input) \
asm("pop %[rd],%[rs]" : [rd] "=d"(result) : [rs] "d"(input))
#define CVMX_SYNC asm volatile("sync\n" : : : "memory")
#define CVMX_SYNCW asm volatile("syncw\nsyncw\n" : : : "memory")
#define CVMX_SYNCS asm volatile("syncs\n" : : : "memory")
#define CVMX_SYNCWS asm volatile("syncws\n" : : : "memory")
#define CVMX_CACHE_LINE_SIZE 128 // In bytes
#define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) // In bytes
#define CVMX_CACHE_LINE_ALIGNED __aligned(CVMX_CACHE_LINE_SIZE)
#define CVMX_SYNCIOBDMA asm volatile("synciobdma" : : : "memory")
#define CVMX_MF_CHORD(dest) CVMX_RDHWR(dest, 30)
/*
* The macros cvmx_likely and cvmx_unlikely use the
* __builtin_expect GCC operation to control branch
* probabilities for a conditional. For example, an "if"
* statement in the code that will almost always be
* executed should be written as "if (cvmx_likely(...))".
* If the "else" section of an if statement is more
* probable, use "if (cvmx_unlikey(...))".
*/
#define cvmx_likely(x) __builtin_expect(!!(x), 1)
#define cvmx_unlikely(x) __builtin_expect(!!(x), 0)
#define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, to_us) \
({ \
int result; \
do { \
u64 done = get_timer(0); \
type c; \
while (1) { \
c.u64 = csr_rd(address); \
if ((c.s.field)op(value)) { \
result = 0; \
break; \
} else if (get_timer(done) > ((to_us) / 1000)) { \
result = -1; \
break; \
} else \
udelay(100); \
} \
} while (0); \
result; \
})
#define CVMX_WAIT_FOR_FIELD64_NODE(node, address, type, field, op, value, to_us) \
({ \
int result; \
do { \
u64 done = get_timer(0); \
type c; \
while (1) { \
c.u64 = csr_rd(address); \
if ((c.s.field)op(value)) { \
result = 0; \
break; \
} else if (get_timer(done) > ((to_us) / 1000)) { \
result = -1; \
break; \
} else \
udelay(100); \
} \
} while (0); \
result; \
})
/* ToDo: Currently only node = 0 supported */
#define cvmx_get_node_num() 0
static inline u64 csr_rd_node(int node, u64 addr)
{
void __iomem *base;
base = ioremap_nocache(addr, 0x100);
return ioread64(base);
}
static inline u32 csr_rd32_node(int node, u64 addr)
{
void __iomem *base;
base = ioremap_nocache(addr, 0x100);
return ioread32(base);
}
static inline u64 csr_rd(u64 addr)
{
return csr_rd_node(0, addr);
}
static inline u32 csr_rd32(u64 addr)
{
return csr_rd32_node(0, addr);
}
static inline void csr_wr_node(int node, u64 addr, u64 val)
{
void __iomem *base;
base = ioremap_nocache(addr, 0x100);
iowrite64(val, base);
}
static inline void csr_wr32_node(int node, u64 addr, u32 val)
{
void __iomem *base;
base = ioremap_nocache(addr, 0x100);
iowrite32(val, base);
}
static inline void csr_wr(u64 addr, u64 val)
{
csr_wr_node(0, addr, val);
}
static inline void csr_wr32(u64 addr, u32 val)
{
csr_wr32_node(0, addr, val);
}
/*
* We need to use the volatile access here, otherwise the IO accessor
* functions might swap the bytes
*/
static inline u64 cvmx_read64_uint64(u64 addr)
{
return *(volatile u64 *)addr;
}
static inline s64 cvmx_read64_int64(u64 addr)
{
return *(volatile s64 *)addr;
}
static inline void cvmx_write64_uint64(u64 addr, u64 val)
{
*(volatile u64 *)addr = val;
}
static inline void cvmx_write64_int64(u64 addr, s64 val)
{
*(volatile s64 *)addr = val;
}
static inline u32 cvmx_read64_uint32(u64 addr)
{
return *(volatile u32 *)addr;
}
static inline s32 cvmx_read64_int32(u64 addr)
{
return *(volatile s32 *)addr;
}
static inline void cvmx_write64_uint32(u64 addr, u32 val)
{
*(volatile u32 *)addr = val;
}
static inline void cvmx_write64_int32(u64 addr, s32 val)
{
*(volatile s32 *)addr = val;
}
static inline void cvmx_write64_int16(u64 addr, s16 val)
{
*(volatile s16 *)addr = val;
}
static inline void cvmx_write64_uint16(u64 addr, u16 val)
{
*(volatile u16 *)addr = val;
}
static inline void cvmx_write64_int8(u64 addr, int8_t val)
{
*(volatile int8_t *)addr = val;
}
static inline void cvmx_write64_uint8(u64 addr, u8 val)
{
*(volatile u8 *)addr = val;
}
static inline s16 cvmx_read64_int16(u64 addr)
{
return *(volatile s16 *)addr;
}
static inline u16 cvmx_read64_uint16(u64 addr)
{
return *(volatile u16 *)addr;
}
static inline int8_t cvmx_read64_int8(u64 addr)
{
return *(volatile int8_t *)addr;
}
static inline u8 cvmx_read64_uint8(u64 addr)
{
return *(volatile u8 *)addr;
}
static inline void cvmx_send_single(u64 data)
{
cvmx_write64_uint64(CVMX_IOBDMA_ORDERED_IO_ADDR, data);
}
/**
* Perform a 64-bit write to an IO address
*
* @param io_addr I/O address to write to
* @param val 64-bit value to write
*/
static inline void cvmx_write_io(u64 io_addr, u64 val)
{
cvmx_write64_uint64(io_addr, val);
}
/**
* Builds a memory address for I/O based on the Major and Sub DID.
*
* @param major_did 5 bit major did
* @param sub_did 3 bit sub did
* @return I/O base address
*/
static inline u64 cvmx_build_io_address(u64 major_did, u64 sub_did)
{
return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
}
/**
* Builds a bit mask given the required size in bits.
*
* @param bits Number of bits in the mask
* @return The mask
*/
static inline u64 cvmx_build_mask(u64 bits)
{
if (bits == 64)
return -1;
return ~((~0x0ull) << bits);
}
/**
* Extract bits out of a number
*
* @param input Number to extract from
* @param lsb Starting bit, least significant (0-63)
* @param width Width in bits (1-64)
*
* @return Extracted number
*/
static inline u64 cvmx_bit_extract(u64 input, int lsb, int width)
{
u64 result = input >> lsb;
result &= cvmx_build_mask(width);
return result;
}
/**
* Perform mask and shift to place the supplied value into
* the supplied bit rage.
*
* Example: cvmx_build_bits(39,24,value)
* <pre>
* 6 5 4 3 3 2 1
* 3 5 7 9 1 3 5 7 0
* +-------+-------+-------+-------+-------+-------+-------+------+
* 000000000000000000000000___________value000000000000000000000000
* </pre>
*
* @param high_bit Highest bit value can occupy (inclusive) 0-63
* @param low_bit Lowest bit value can occupy inclusive 0-high_bit
* @param value Value to use
* @return Value masked and shifted
*/
static inline u64 cvmx_build_bits(u64 high_bit, u64 low_bit, u64 value)
{
return ((value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit);
}
static inline u64 cvmx_mask_to_localaddr(u64 addr)
{
return (addr & 0xffffffffff);
}
static inline u64 cvmx_addr_on_node(u64 node, u64 addr)
{
return (node << 40) | cvmx_mask_to_localaddr(addr);
}
static inline void *cvmx_phys_to_ptr(u64 addr)
{
return (void *)CKSEG0ADDR(addr);
}
static inline u64 cvmx_ptr_to_phys(void *ptr)
{
return virt_to_phys(ptr);
}
/**
* Number of the Core on which the program is currently running.
*
* @return core number
*/
static inline unsigned int cvmx_get_core_num(void)
{
unsigned int core_num;
CVMX_RDHWRNV(core_num, 0);
return core_num;
}
/**
* Node-local number of the core on which the program is currently running.
*
* @return core number on local node
*/
static inline unsigned int cvmx_get_local_core_num(void)
{
unsigned int core_num, core_mask;
CVMX_RDHWRNV(core_num, 0);
/* note that MAX_CORES may not be power of 2 */
core_mask = (1 << CVMX_NODE_NO_SHIFT) - 1;
return core_num & core_mask;
}
/**
* Returns the number of bits set in the provided value.
* Simple wrapper for POP instruction.
*
* @param val 32 bit value to count set bits in
*
* @return Number of bits set
*/
static inline u32 cvmx_pop(u32 val)
{
u32 pop;
CVMX_POP(pop, val);
return pop;
}
#define cvmx_read_csr_node(node, addr) csr_rd(addr)
#define cvmx_write_csr_node(node, addr, val) csr_wr(addr, val)
#define cvmx_printf printf
#define cvmx_vprintf vprintf
#if defined(DEBUG)
void cvmx_warn(const char *format, ...) __printf(1, 2);
#else
void cvmx_warn(const char *format, ...);
#endif
#define cvmx_warn_if(expression, format, ...) \
if (expression) \
cvmx_warn(format, ##__VA_ARGS__)
#endif /* __CVMX_REGS_H__ */