u-boot-brain/board/xilinx/zynqmp/zynqmp.c
Michal Simek 47359a0394 ARM64: zynqmp: Fix secondary bootmode enabling
Do not setup use_alt bit which copy alternative boot mode to
boot mode. The reason is that this bit is cleared after POR
but not after any software reset which will cause
that after SW reset bootrom will look for different boot image.

This patch setups alternative boot mode selection (purely SW
handling) and extends code to read this alternative boot mode first and
use it if it is setup.

Signed-off-by: Michal Simek <michal.simek@xilinx.com>
2016-11-15 15:28:05 +01:00

451 lines
9.3 KiB
C

/*
* (C) Copyright 2014 - 2015 Xilinx, Inc.
* Michal Simek <michal.simek@xilinx.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <sata.h>
#include <ahci.h>
#include <scsi.h>
#include <malloc.h>
#include <asm/arch/clk.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>
#include <asm/io.h>
#include <usb.h>
#include <dwc3-uboot.h>
#include <zynqmppl.h>
#include <i2c.h>
#include <g_dnl.h>
DECLARE_GLOBAL_DATA_PTR;
#if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_ZYNQMPPL) && \
!defined(CONFIG_SPL_BUILD)
static xilinx_desc zynqmppl = XILINX_ZYNQMP_DESC;
static const struct {
uint32_t id;
char *name;
} zynqmp_devices[] = {
{
.id = 0x10,
.name = "3eg",
},
{
.id = 0x11,
.name = "2eg",
},
{
.id = 0x20,
.name = "5ev",
},
{
.id = 0x21,
.name = "4ev",
},
{
.id = 0x30,
.name = "7ev",
},
{
.id = 0x38,
.name = "9eg",
},
{
.id = 0x39,
.name = "6eg",
},
{
.id = 0x40,
.name = "11eg",
},
{
.id = 0x50,
.name = "15eg",
},
{
.id = 0x58,
.name = "19eg",
},
{
.id = 0x59,
.name = "17eg",
},
};
static int chip_id(void)
{
struct pt_regs regs;
regs.regs[0] = ZYNQMP_SIP_SVC_CSU_DMA_CHIPID;
regs.regs[1] = 0;
regs.regs[2] = 0;
regs.regs[3] = 0;
smc_call(&regs);
/*
* SMC returns:
* regs[0][31:0] = status of the operation
* regs[0][63:32] = CSU.IDCODE register
* regs[1][31:0] = CSU.version register
*/
regs.regs[0] = upper_32_bits(regs.regs[0]);
regs.regs[0] &= ZYNQMP_CSU_IDCODE_DEVICE_CODE_MASK |
ZYNQMP_CSU_IDCODE_SVD_MASK;
regs.regs[0] >>= ZYNQMP_CSU_IDCODE_SVD_SHIFT;
return regs.regs[0];
}
static char *zynqmp_get_silicon_idcode_name(void)
{
uint32_t i, id;
id = chip_id();
for (i = 0; i < ARRAY_SIZE(zynqmp_devices); i++) {
if (zynqmp_devices[i].id == id)
return zynqmp_devices[i].name;
}
return "unknown";
}
#endif
#define ZYNQMP_VERSION_SIZE 9
int board_init(void)
{
printf("EL Level:\tEL%d\n", current_el());
#if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_ZYNQMPPL) && \
!defined(CONFIG_SPL_BUILD) || (defined(CONFIG_SPL_FPGA_SUPPORT) && \
defined(CONFIG_SPL_BUILD))
if (current_el() != 3) {
static char version[ZYNQMP_VERSION_SIZE];
strncat(version, "xczu", ZYNQMP_VERSION_SIZE);
zynqmppl.name = strncat(version,
zynqmp_get_silicon_idcode_name(),
ZYNQMP_VERSION_SIZE);
printf("Chip ID:\t%s\n", zynqmppl.name);
fpga_init();
fpga_add(fpga_xilinx, &zynqmppl);
}
#endif
return 0;
}
int board_early_init_r(void)
{
u32 val;
if (current_el() == 3) {
val = readl(&crlapb_base->timestamp_ref_ctrl);
val |= ZYNQMP_CRL_APB_TIMESTAMP_REF_CTRL_CLKACT;
writel(val, &crlapb_base->timestamp_ref_ctrl);
/* Program freq register in System counter */
writel(zynqmp_get_system_timer_freq(),
&iou_scntr_secure->base_frequency_id_register);
/* And enable system counter */
writel(ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_EN,
&iou_scntr_secure->counter_control_register);
}
/* Program freq register in System counter and enable system counter */
writel(gd->cpu_clk, &iou_scntr->base_frequency_id_register);
writel(ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_HDBG |
ZYNQMP_IOU_SCNTR_COUNTER_CONTROL_REGISTER_EN,
&iou_scntr->counter_control_register);
return 0;
}
int zynq_board_read_rom_ethaddr(unsigned char *ethaddr)
{
#if defined(CONFIG_ZYNQ_GEM_EEPROM_ADDR) && \
defined(CONFIG_ZYNQ_GEM_I2C_MAC_OFFSET) && \
defined(CONFIG_ZYNQ_EEPROM_BUS)
i2c_set_bus_num(CONFIG_ZYNQ_EEPROM_BUS);
if (eeprom_read(CONFIG_ZYNQ_GEM_EEPROM_ADDR,
CONFIG_ZYNQ_GEM_I2C_MAC_OFFSET,
ethaddr, 6))
printf("I2C EEPROM MAC address read failed\n");
#endif
return 0;
}
#if !defined(CONFIG_SYS_SDRAM_BASE) && !defined(CONFIG_SYS_SDRAM_SIZE)
/*
* fdt_get_reg - Fill buffer by information from DT
*/
static phys_size_t fdt_get_reg(const void *fdt, int nodeoffset, void *buf,
const u32 *cell, int n)
{
int i = 0, b, banks;
int parent_offset = fdt_parent_offset(fdt, nodeoffset);
int address_cells = fdt_address_cells(fdt, parent_offset);
int size_cells = fdt_size_cells(fdt, parent_offset);
char *p = buf;
u64 val;
u64 vals;
debug("%s: addr_cells=%x, size_cell=%x, buf=%p, cell=%p\n",
__func__, address_cells, size_cells, buf, cell);
/* Check memory bank setup */
banks = n % (address_cells + size_cells);
if (banks)
panic("Incorrect memory setup cells=%d, ac=%d, sc=%d\n",
n, address_cells, size_cells);
banks = n / (address_cells + size_cells);
for (b = 0; b < banks; b++) {
debug("%s: Bank #%d:\n", __func__, b);
if (address_cells == 2) {
val = cell[i + 1];
val <<= 32;
val |= cell[i];
val = fdt64_to_cpu(val);
debug("%s: addr64=%llx, ptr=%p, cell=%p\n",
__func__, val, p, &cell[i]);
*(phys_addr_t *)p = val;
} else {
debug("%s: addr32=%x, ptr=%p\n",
__func__, fdt32_to_cpu(cell[i]), p);
*(phys_addr_t *)p = fdt32_to_cpu(cell[i]);
}
p += sizeof(phys_addr_t);
i += address_cells;
debug("%s: pa=%p, i=%x, size=%zu\n", __func__, p, i,
sizeof(phys_addr_t));
if (size_cells == 2) {
vals = cell[i + 1];
vals <<= 32;
vals |= cell[i];
vals = fdt64_to_cpu(vals);
debug("%s: size64=%llx, ptr=%p, cell=%p\n",
__func__, vals, p, &cell[i]);
*(phys_size_t *)p = vals;
} else {
debug("%s: size32=%x, ptr=%p\n",
__func__, fdt32_to_cpu(cell[i]), p);
*(phys_size_t *)p = fdt32_to_cpu(cell[i]);
}
p += sizeof(phys_size_t);
i += size_cells;
debug("%s: ps=%p, i=%x, size=%zu\n",
__func__, p, i, sizeof(phys_size_t));
}
/* Return the first address size */
return *(phys_size_t *)((char *)buf + sizeof(phys_addr_t));
}
#define FDT_REG_SIZE sizeof(u32)
/* Temp location for sharing data for storing */
/* Up to 64-bit address + 64-bit size */
static u8 tmp[CONFIG_NR_DRAM_BANKS * 16];
void dram_init_banksize(void)
{
int bank;
memcpy(&gd->bd->bi_dram[0], &tmp, sizeof(tmp));
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
debug("Bank #%d: start %llx\n", bank,
(unsigned long long)gd->bd->bi_dram[bank].start);
debug("Bank #%d: size %llx\n", bank,
(unsigned long long)gd->bd->bi_dram[bank].size);
}
}
int dram_init(void)
{
int node, len;
const void *blob = gd->fdt_blob;
const u32 *cell;
memset(&tmp, 0, sizeof(tmp));
/* find or create "/memory" node. */
node = fdt_subnode_offset(blob, 0, "memory");
if (node < 0) {
printf("%s: Can't get memory node\n", __func__);
return node;
}
/* Get pointer to cells and lenght of it */
cell = fdt_getprop(blob, node, "reg", &len);
if (!cell) {
printf("%s: Can't get reg property\n", __func__);
return -1;
}
gd->ram_size = fdt_get_reg(blob, node, &tmp, cell, len / FDT_REG_SIZE);
debug("%s: Initial DRAM size %llx\n", __func__, (u64)gd->ram_size);
return 0;
}
#else
int dram_init(void)
{
gd->ram_size = CONFIG_SYS_SDRAM_SIZE;
return 0;
}
#endif
void reset_cpu(ulong addr)
{
}
#ifdef CONFIG_SCSI_AHCI_PLAT
void scsi_init(void)
{
#if defined(CONFIG_SATA_CEVA)
init_sata(0);
#endif
ahci_init((void __iomem *)ZYNQMP_SATA_BASEADDR);
scsi_scan(1);
}
#endif
int board_late_init(void)
{
u32 reg = 0;
u8 bootmode;
const char *mode;
char *new_targets;
if (!(gd->flags & GD_FLG_ENV_DEFAULT)) {
debug("Saved variables - Skipping\n");
return 0;
}
reg = readl(&crlapb_base->boot_mode);
if (reg >> BOOT_MODE_ALT_SHIFT)
reg >>= BOOT_MODE_ALT_SHIFT;
bootmode = reg & BOOT_MODES_MASK;
puts("Bootmode: ");
switch (bootmode) {
case USB_MODE:
puts("USB_MODE\n");
mode = "usb";
break;
case JTAG_MODE:
puts("JTAG_MODE\n");
mode = "pxe dhcp";
break;
case QSPI_MODE_24BIT:
case QSPI_MODE_32BIT:
mode = "qspi0";
puts("QSPI_MODE\n");
break;
case EMMC_MODE:
puts("EMMC_MODE\n");
mode = "mmc0";
break;
case SD_MODE:
puts("SD_MODE\n");
mode = "mmc0";
break;
case SD1_LSHFT_MODE:
puts("LVL_SHFT_");
/* fall through */
case SD_MODE1:
puts("SD_MODE1\n");
#if defined(CONFIG_ZYNQ_SDHCI0) && defined(CONFIG_ZYNQ_SDHCI1)
mode = "mmc1";
#else
mode = "mmc0";
#endif
break;
case NAND_MODE:
puts("NAND_MODE\n");
mode = "nand0";
break;
default:
mode = "";
printf("Invalid Boot Mode:0x%x\n", bootmode);
break;
}
/*
* One terminating char + one byte for space between mode
* and default boot_targets
*/
new_targets = calloc(1, strlen(mode) +
strlen(getenv("boot_targets")) + 2);
sprintf(new_targets, "%s %s", mode, getenv("boot_targets"));
setenv("boot_targets", new_targets);
return 0;
}
int checkboard(void)
{
puts("Board: Xilinx ZynqMP\n");
return 0;
}
#ifdef CONFIG_USB_DWC3
static struct dwc3_device dwc3_device_data0 = {
.maximum_speed = USB_SPEED_HIGH,
.base = ZYNQMP_USB0_XHCI_BASEADDR,
.dr_mode = USB_DR_MODE_PERIPHERAL,
.index = 0,
};
static struct dwc3_device dwc3_device_data1 = {
.maximum_speed = USB_SPEED_HIGH,
.base = ZYNQMP_USB1_XHCI_BASEADDR,
.dr_mode = USB_DR_MODE_PERIPHERAL,
.index = 1,
};
int usb_gadget_handle_interrupts(int index)
{
dwc3_uboot_handle_interrupt(index);
return 0;
}
int board_usb_init(int index, enum usb_init_type init)
{
debug("%s: index %x\n", __func__, index);
#if defined(CONFIG_USB_GADGET_DOWNLOAD)
g_dnl_set_serialnumber(CONFIG_SYS_CONFIG_NAME);
#endif
switch (index) {
case 0:
return dwc3_uboot_init(&dwc3_device_data0);
case 1:
return dwc3_uboot_init(&dwc3_device_data1);
};
return -1;
}
int board_usb_cleanup(int index, enum usb_init_type init)
{
dwc3_uboot_exit(index);
return 0;
}
#endif