u-boot-brain/common/hash.c
Ruchika Gupta 46fe2c0444 hash: Add function to find hash_algo struct with progressive hash
The hash_algo structure has some implementations in which progressive hash
API's are not defined. These are basically the hardware based implementations
of SHA. An API is added to find the algo which has progressive hash API's
defined. This can then be integrated with RSA checksum library which uses
Progressive Hash API's.

Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
CC: Simon Glass <sjg@chromium.org>
Acked-by: Simon Glass <sjg@chromium.org>
2015-01-29 17:09:59 -07:00

442 lines
9.8 KiB
C

/*
* Copyright (c) 2012 The Chromium OS Authors.
*
* (C) Copyright 2011
* Joe Hershberger, National Instruments, joe.hershberger@ni.com
*
* (C) Copyright 2000
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <hw_sha.h>
#include <hash.h>
#include <u-boot/sha1.h>
#include <u-boot/sha256.h>
#include <asm/io.h>
#include <asm/errno.h>
#ifdef CONFIG_SHA1
static int hash_init_sha1(struct hash_algo *algo, void **ctxp)
{
sha1_context *ctx = malloc(sizeof(sha1_context));
sha1_starts(ctx);
*ctxp = ctx;
return 0;
}
static int hash_update_sha1(struct hash_algo *algo, void *ctx, const void *buf,
unsigned int size, int is_last)
{
sha1_update((sha1_context *)ctx, buf, size);
return 0;
}
static int hash_finish_sha1(struct hash_algo *algo, void *ctx, void *dest_buf,
int size)
{
if (size < algo->digest_size)
return -1;
sha1_finish((sha1_context *)ctx, dest_buf);
free(ctx);
return 0;
}
#endif
#ifdef CONFIG_SHA256
static int hash_init_sha256(struct hash_algo *algo, void **ctxp)
{
sha256_context *ctx = malloc(sizeof(sha256_context));
sha256_starts(ctx);
*ctxp = ctx;
return 0;
}
static int hash_update_sha256(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size, int is_last)
{
sha256_update((sha256_context *)ctx, buf, size);
return 0;
}
static int hash_finish_sha256(struct hash_algo *algo, void *ctx, void
*dest_buf, int size)
{
if (size < algo->digest_size)
return -1;
sha256_finish((sha256_context *)ctx, dest_buf);
free(ctx);
return 0;
}
#endif
static int hash_init_crc32(struct hash_algo *algo, void **ctxp)
{
uint32_t *ctx = malloc(sizeof(uint32_t));
*ctx = 0;
*ctxp = ctx;
return 0;
}
static int hash_update_crc32(struct hash_algo *algo, void *ctx,
const void *buf, unsigned int size, int is_last)
{
*((uint32_t *)ctx) = crc32(*((uint32_t *)ctx), buf, size);
return 0;
}
static int hash_finish_crc32(struct hash_algo *algo, void *ctx, void *dest_buf,
int size)
{
if (size < algo->digest_size)
return -1;
*((uint32_t *)dest_buf) = *((uint32_t *)ctx);
free(ctx);
return 0;
}
/*
* These are the hash algorithms we support. Chips which support accelerated
* crypto could perhaps add named version of these algorithms here. Note that
* algorithm names must be in lower case.
*/
static struct hash_algo hash_algo[] = {
/*
* CONFIG_SHA_HW_ACCEL is defined if hardware acceleration is
* available.
*/
#ifdef CONFIG_SHA_HW_ACCEL
{
"sha1",
SHA1_SUM_LEN,
hw_sha1,
CHUNKSZ_SHA1,
}, {
"sha256",
SHA256_SUM_LEN,
hw_sha256,
CHUNKSZ_SHA256,
},
#endif
#ifdef CONFIG_SHA1
{
"sha1",
SHA1_SUM_LEN,
sha1_csum_wd,
CHUNKSZ_SHA1,
hash_init_sha1,
hash_update_sha1,
hash_finish_sha1,
},
#endif
#ifdef CONFIG_SHA256
{
"sha256",
SHA256_SUM_LEN,
sha256_csum_wd,
CHUNKSZ_SHA256,
hash_init_sha256,
hash_update_sha256,
hash_finish_sha256,
},
#endif
{
"crc32",
4,
crc32_wd_buf,
CHUNKSZ_CRC32,
hash_init_crc32,
hash_update_crc32,
hash_finish_crc32,
},
};
#if defined(CONFIG_SHA256) || defined(CONFIG_CMD_SHA1SUM)
#define MULTI_HASH
#endif
#if defined(CONFIG_HASH_VERIFY) || defined(CONFIG_CMD_HASH)
#define MULTI_HASH
#endif
/* Try to minimize code size for boards that don't want much hashing */
#ifdef MULTI_HASH
#define multi_hash() 1
#else
#define multi_hash() 0
#endif
/**
* store_result: Store the resulting sum to an address or variable
*
* @algo: Hash algorithm being used
* @sum: Hash digest (algo->digest_size bytes)
* @dest: Destination, interpreted as a hex address if it starts
* with * (or allow_env_vars is 0) or otherwise as an
* environment variable.
* @allow_env_vars: non-zero to permit storing the result to an
* variable environment
*/
static void store_result(struct hash_algo *algo, const uint8_t *sum,
const char *dest, int allow_env_vars)
{
unsigned int i;
int env_var = 0;
/*
* If environment variables are allowed, then we assume that 'dest'
* is an environment variable, unless it starts with *, in which
* case we assume it is an address. If not allowed, it is always an
* address. This is to support the crc32 command.
*/
if (allow_env_vars) {
if (*dest == '*')
dest++;
else
env_var = 1;
}
if (env_var) {
char str_output[HASH_MAX_DIGEST_SIZE * 2 + 1];
char *str_ptr = str_output;
for (i = 0; i < algo->digest_size; i++) {
sprintf(str_ptr, "%02x", sum[i]);
str_ptr += 2;
}
*str_ptr = '\0';
setenv(dest, str_output);
} else {
ulong addr;
void *buf;
addr = simple_strtoul(dest, NULL, 16);
buf = map_sysmem(addr, algo->digest_size);
memcpy(buf, sum, algo->digest_size);
unmap_sysmem(buf);
}
}
/**
* parse_verify_sum: Parse a hash verification parameter
*
* @algo: Hash algorithm being used
* @verify_str: Argument to parse. If it starts with * then it is
* interpreted as a hex address containing the hash.
* If the length is exactly the right number of hex digits
* for the digest size, then we assume it is a hex digest.
* Otherwise we assume it is an environment variable, and
* look up its value (it must contain a hex digest).
* @vsum: Returns binary digest value (algo->digest_size bytes)
* @allow_env_vars: non-zero to permit storing the result to an environment
* variable. If 0 then verify_str is assumed to be an
* address, and the * prefix is not expected.
* @return 0 if ok, non-zero on error
*/
static int parse_verify_sum(struct hash_algo *algo, char *verify_str,
uint8_t *vsum, int allow_env_vars)
{
int env_var = 0;
/* See comment above in store_result() */
if (allow_env_vars) {
if (*verify_str == '*')
verify_str++;
else
env_var = 1;
}
if (!env_var) {
ulong addr;
void *buf;
addr = simple_strtoul(verify_str, NULL, 16);
buf = map_sysmem(addr, algo->digest_size);
memcpy(vsum, buf, algo->digest_size);
} else {
unsigned int i;
char *vsum_str;
int digits = algo->digest_size * 2;
/*
* As with the original code from sha1sum.c, we assume that a
* string which matches the digest size exactly is a hex
* string and not an environment variable.
*/
if (strlen(verify_str) == digits)
vsum_str = verify_str;
else {
vsum_str = getenv(verify_str);
if (vsum_str == NULL || strlen(vsum_str) != digits) {
printf("Expected %d hex digits in env var\n",
digits);
return 1;
}
}
for (i = 0; i < algo->digest_size; i++) {
char *nullp = vsum_str + (i + 1) * 2;
char end = *nullp;
*nullp = '\0';
vsum[i] = simple_strtoul(vsum_str + (i * 2), NULL, 16);
*nullp = end;
}
}
return 0;
}
int hash_lookup_algo(const char *algo_name, struct hash_algo **algop)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
if (!strcmp(algo_name, hash_algo[i].name)) {
*algop = &hash_algo[i];
return 0;
}
}
debug("Unknown hash algorithm '%s'\n", algo_name);
return -EPROTONOSUPPORT;
}
int hash_progressive_lookup_algo(const char *algo_name,
struct hash_algo **algop)
{
int i;
for (i = 0; i < ARRAY_SIZE(hash_algo); i++) {
if (!strcmp(algo_name, hash_algo[i].name)) {
if (hash_algo[i].hash_init) {
*algop = &hash_algo[i];
return 0;
}
}
}
debug("Unknown hash algorithm '%s'\n", algo_name);
return -EPROTONOSUPPORT;
}
void hash_show(struct hash_algo *algo, ulong addr, ulong len, uint8_t *output)
{
int i;
printf("%s for %08lx ... %08lx ==> ", algo->name, addr, addr + len - 1);
for (i = 0; i < algo->digest_size; i++)
printf("%02x", output[i]);
}
int hash_block(const char *algo_name, const void *data, unsigned int len,
uint8_t *output, int *output_size)
{
struct hash_algo *algo;
int ret;
ret = hash_lookup_algo(algo_name, &algo);
if (ret)
return ret;
if (output_size && *output_size < algo->digest_size) {
debug("Output buffer size %d too small (need %d bytes)",
*output_size, algo->digest_size);
return -ENOSPC;
}
if (output_size)
*output_size = algo->digest_size;
algo->hash_func_ws(data, len, output, algo->chunk_size);
return 0;
}
int hash_command(const char *algo_name, int flags, cmd_tbl_t *cmdtp, int flag,
int argc, char * const argv[])
{
ulong addr, len;
if ((argc < 2) || ((flags & HASH_FLAG_VERIFY) && (argc < 3)))
return CMD_RET_USAGE;
addr = simple_strtoul(*argv++, NULL, 16);
len = simple_strtoul(*argv++, NULL, 16);
if (multi_hash()) {
struct hash_algo *algo;
uint8_t output[HASH_MAX_DIGEST_SIZE];
uint8_t vsum[HASH_MAX_DIGEST_SIZE];
void *buf;
if (hash_lookup_algo(algo_name, &algo)) {
printf("Unknown hash algorithm '%s'\n", algo_name);
return CMD_RET_USAGE;
}
argc -= 2;
if (algo->digest_size > HASH_MAX_DIGEST_SIZE) {
puts("HASH_MAX_DIGEST_SIZE exceeded\n");
return 1;
}
buf = map_sysmem(addr, len);
algo->hash_func_ws(buf, len, output, algo->chunk_size);
unmap_sysmem(buf);
/* Try to avoid code bloat when verify is not needed */
#ifdef CONFIG_HASH_VERIFY
if (flags & HASH_FLAG_VERIFY) {
#else
if (0) {
#endif
if (parse_verify_sum(algo, *argv, vsum,
flags & HASH_FLAG_ENV)) {
printf("ERROR: %s does not contain a valid "
"%s sum\n", *argv, algo->name);
return 1;
}
if (memcmp(output, vsum, algo->digest_size) != 0) {
int i;
hash_show(algo, addr, len, output);
printf(" != ");
for (i = 0; i < algo->digest_size; i++)
printf("%02x", vsum[i]);
puts(" ** ERROR **\n");
return 1;
}
} else {
hash_show(algo, addr, len, output);
printf("\n");
if (argc) {
store_result(algo, output, *argv,
flags & HASH_FLAG_ENV);
}
}
/* Horrible code size hack for boards that just want crc32 */
} else {
ulong crc;
ulong *ptr;
crc = crc32_wd(0, (const uchar *)addr, len, CHUNKSZ_CRC32);
printf("CRC32 for %08lx ... %08lx ==> %08lx\n",
addr, addr + len - 1, crc);
if (argc >= 3) {
ptr = (ulong *)simple_strtoul(argv[0], NULL, 16);
*ptr = crc;
}
}
return 0;
}