u-boot-brain/drivers/clk/sifive/fu540-prci.c
Simon Glass 65e25bea59 dm: Rename DM_GET_DRIVER() to DM_DRIVER_GET()
In the spirit of using the same base name for all of these related macros,
rename this to have the operation at the end. This is not widely used so
the impact is fairly small.

Signed-off-by: Simon Glass <sjg@chromium.org>
2021-01-05 12:26:35 -07:00

813 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 Western Digital Corporation or its affiliates.
*
* Copyright (C) 2018 SiFive, Inc.
* Wesley Terpstra
* Paul Walmsley
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* The FU540 PRCI implements clock and reset control for the SiFive
* FU540-C000 chip. This driver assumes that it has sole control
* over all PRCI resources.
*
* This driver is based on the PRCI driver written by Wesley Terpstra.
*
* Refer, commit 999529edf517ed75b56659d456d221b2ee56bb60 of:
* https://github.com/riscv/riscv-linux
*
* References:
* - SiFive FU540-C000 manual v1p0, Chapter 7 "Clocking and Reset"
*/
#include <common.h>
#include <clk-uclass.h>
#include <clk.h>
#include <div64.h>
#include <dm.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/uclass.h>
#include <dt-bindings/clock/sifive-fu540-prci.h>
#include <dt-bindings/reset/sifive-fu540-prci.h>
#include <errno.h>
#include <reset-uclass.h>
#include <asm/io.h>
#include <asm/arch/reset.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/clk/analogbits-wrpll-cln28hpc.h>
/*
* EXPECTED_CLK_PARENT_COUNT: how many parent clocks this driver expects:
* hfclk and rtcclk
*/
#define EXPECTED_CLK_PARENT_COUNT 2
/*
* Register offsets and bitmasks
*/
/* COREPLLCFG0 */
#define PRCI_COREPLLCFG0_OFFSET 0x4
#define PRCI_COREPLLCFG0_DIVR_SHIFT 0
#define PRCI_COREPLLCFG0_DIVR_MASK (0x3f << PRCI_COREPLLCFG0_DIVR_SHIFT)
#define PRCI_COREPLLCFG0_DIVF_SHIFT 6
#define PRCI_COREPLLCFG0_DIVF_MASK (0x1ff << PRCI_COREPLLCFG0_DIVF_SHIFT)
#define PRCI_COREPLLCFG0_DIVQ_SHIFT 15
#define PRCI_COREPLLCFG0_DIVQ_MASK (0x7 << PRCI_COREPLLCFG0_DIVQ_SHIFT)
#define PRCI_COREPLLCFG0_RANGE_SHIFT 18
#define PRCI_COREPLLCFG0_RANGE_MASK (0x7 << PRCI_COREPLLCFG0_RANGE_SHIFT)
#define PRCI_COREPLLCFG0_BYPASS_SHIFT 24
#define PRCI_COREPLLCFG0_BYPASS_MASK (0x1 << PRCI_COREPLLCFG0_BYPASS_SHIFT)
#define PRCI_COREPLLCFG0_FSE_SHIFT 25
#define PRCI_COREPLLCFG0_FSE_MASK (0x1 << PRCI_COREPLLCFG0_FSE_SHIFT)
#define PRCI_COREPLLCFG0_LOCK_SHIFT 31
#define PRCI_COREPLLCFG0_LOCK_MASK (0x1 << PRCI_COREPLLCFG0_LOCK_SHIFT)
/* COREPLLCFG1 */
#define PRCI_COREPLLCFG1_OFFSET 0x8
#define PRCI_COREPLLCFG1_CKE_SHIFT 31
#define PRCI_COREPLLCFG1_CKE_MASK (0x1 << PRCI_COREPLLCFG1_CKE_SHIFT)
/* DDRPLLCFG0 */
#define PRCI_DDRPLLCFG0_OFFSET 0xc
#define PRCI_DDRPLLCFG0_DIVR_SHIFT 0
#define PRCI_DDRPLLCFG0_DIVR_MASK (0x3f << PRCI_DDRPLLCFG0_DIVR_SHIFT)
#define PRCI_DDRPLLCFG0_DIVF_SHIFT 6
#define PRCI_DDRPLLCFG0_DIVF_MASK (0x1ff << PRCI_DDRPLLCFG0_DIVF_SHIFT)
#define PRCI_DDRPLLCFG0_DIVQ_SHIFT 15
#define PRCI_DDRPLLCFG0_DIVQ_MASK (0x7 << PRCI_DDRPLLCFG0_DIVQ_SHIFT)
#define PRCI_DDRPLLCFG0_RANGE_SHIFT 18
#define PRCI_DDRPLLCFG0_RANGE_MASK (0x7 << PRCI_DDRPLLCFG0_RANGE_SHIFT)
#define PRCI_DDRPLLCFG0_BYPASS_SHIFT 24
#define PRCI_DDRPLLCFG0_BYPASS_MASK (0x1 << PRCI_DDRPLLCFG0_BYPASS_SHIFT)
#define PRCI_DDRPLLCFG0_FSE_SHIFT 25
#define PRCI_DDRPLLCFG0_FSE_MASK (0x1 << PRCI_DDRPLLCFG0_FSE_SHIFT)
#define PRCI_DDRPLLCFG0_LOCK_SHIFT 31
#define PRCI_DDRPLLCFG0_LOCK_MASK (0x1 << PRCI_DDRPLLCFG0_LOCK_SHIFT)
/* DDRPLLCFG1 */
#define PRCI_DDRPLLCFG1_OFFSET 0x10
#define PRCI_DDRPLLCFG1_CKE_SHIFT 31
#define PRCI_DDRPLLCFG1_CKE_MASK (0x1 << PRCI_DDRPLLCFG1_CKE_SHIFT)
/* GEMGXLPLLCFG0 */
#define PRCI_GEMGXLPLLCFG0_OFFSET 0x1c
#define PRCI_GEMGXLPLLCFG0_DIVR_SHIFT 0
#define PRCI_GEMGXLPLLCFG0_DIVR_MASK \
(0x3f << PRCI_GEMGXLPLLCFG0_DIVR_SHIFT)
#define PRCI_GEMGXLPLLCFG0_DIVF_SHIFT 6
#define PRCI_GEMGXLPLLCFG0_DIVF_MASK \
(0x1ff << PRCI_GEMGXLPLLCFG0_DIVF_SHIFT)
#define PRCI_GEMGXLPLLCFG0_DIVQ_SHIFT 15
#define PRCI_GEMGXLPLLCFG0_DIVQ_MASK (0x7 << PRCI_GEMGXLPLLCFG0_DIVQ_SHIFT)
#define PRCI_GEMGXLPLLCFG0_RANGE_SHIFT 18
#define PRCI_GEMGXLPLLCFG0_RANGE_MASK \
(0x7 << PRCI_GEMGXLPLLCFG0_RANGE_SHIFT)
#define PRCI_GEMGXLPLLCFG0_BYPASS_SHIFT 24
#define PRCI_GEMGXLPLLCFG0_BYPASS_MASK \
(0x1 << PRCI_GEMGXLPLLCFG0_BYPASS_SHIFT)
#define PRCI_GEMGXLPLLCFG0_FSE_SHIFT 25
#define PRCI_GEMGXLPLLCFG0_FSE_MASK \
(0x1 << PRCI_GEMGXLPLLCFG0_FSE_SHIFT)
#define PRCI_GEMGXLPLLCFG0_LOCK_SHIFT 31
#define PRCI_GEMGXLPLLCFG0_LOCK_MASK (0x1 << PRCI_GEMGXLPLLCFG0_LOCK_SHIFT)
/* GEMGXLPLLCFG1 */
#define PRCI_GEMGXLPLLCFG1_OFFSET 0x20
#define PRCI_GEMGXLPLLCFG1_CKE_SHIFT 31
#define PRCI_GEMGXLPLLCFG1_CKE_MASK (0x1 << PRCI_GEMGXLPLLCFG1_CKE_SHIFT)
/* CORECLKSEL */
#define PRCI_CORECLKSEL_OFFSET 0x24
#define PRCI_CORECLKSEL_CORECLKSEL_SHIFT 0
#define PRCI_CORECLKSEL_CORECLKSEL_MASK \
(0x1 << PRCI_CORECLKSEL_CORECLKSEL_SHIFT)
/* DEVICESRESETREG */
#define PRCI_DEVICESRESETREG_OFFSET 0x28
#define PRCI_DEVICERESETCNT 5
#define PRCI_DEVICESRESETREG_DDR_CTRL_RST_N_MASK \
(0x1 << PRCI_RST_DDR_CTRL_N)
#define PRCI_DEVICESRESETREG_DDR_AXI_RST_N_MASK \
(0x1 << PRCI_RST_DDR_AXI_N)
#define PRCI_DEVICESRESETREG_DDR_AHB_RST_N_MASK \
(0x1 << PRCI_RST_DDR_AHB_N)
#define PRCI_DEVICESRESETREG_DDR_PHY_RST_N_MASK \
(0x1 << PRCI_RST_DDR_PHY_N)
#define PRCI_DEVICESRESETREG_GEMGXL_RST_N_MASK \
(0x1 << PRCI_RST_GEMGXL_N)
/* CLKMUXSTATUSREG */
#define PRCI_CLKMUXSTATUSREG_OFFSET 0x2c
#define PRCI_CLKMUXSTATUSREG_TLCLKSEL_STATUS_SHIFT 1
#define PRCI_CLKMUXSTATUSREG_TLCLKSEL_STATUS_MASK \
(0x1 << PRCI_CLKMUXSTATUSREG_TLCLKSEL_STATUS_SHIFT)
/* PROCMONCFG */
#define PRCI_PROCMONCFG_OFFSET 0xF0
#define PRCI_PROCMONCFG_CORE_CLOCK_SHIFT 24
#define PRCI_PROCMONCFG_CORE_CLOCK_MASK \
(0x1 << PRCI_PROCMONCFG_CORE_CLOCK_SHIFT)
/*
* Private structures
*/
/**
* struct __prci_data - per-device-instance data
* @va: base virtual address of the PRCI IP block
* @parent: parent clk instance
*
* PRCI per-device instance data
*/
struct __prci_data {
void *va;
struct clk parent_hfclk;
struct clk parent_rtcclk;
};
/**
* struct __prci_wrpll_data - WRPLL configuration and integration data
* @c: WRPLL current configuration record
* @enable_bypass: fn ptr to code to bypass the WRPLL (if applicable; else NULL)
* @disable_bypass: fn ptr to code to not bypass the WRPLL (or NULL)
* @cfg0_offs: WRPLL CFG0 register offset (in bytes) from the PRCI base address
* @cfg1_offs: WRPLL CFG1 register offset (in bytes) from the PRCI base address
* @release_reset: fn ptr to code to release clock reset
*
* @enable_bypass and @disable_bypass are used for WRPLL instances
* that contain a separate external glitchless clock mux downstream
* from the PLL. The WRPLL internal bypass mux is not glitchless.
*/
struct __prci_wrpll_data {
struct wrpll_cfg c;
void (*enable_bypass)(struct __prci_data *pd);
void (*disable_bypass)(struct __prci_data *pd);
u8 cfg0_offs;
u8 cfg1_offs;
void (*release_reset)(struct __prci_data *pd);
};
struct __prci_clock;
/* struct __prci_clock_ops - clock operations */
struct __prci_clock_ops {
int (*set_rate)(struct __prci_clock *pc,
unsigned long rate,
unsigned long parent_rate);
unsigned long (*round_rate)(struct __prci_clock *pc,
unsigned long rate,
unsigned long *parent_rate);
unsigned long (*recalc_rate)(struct __prci_clock *pc,
unsigned long parent_rate);
int (*enable_clk)(struct __prci_clock *pc, bool enable);
};
/**
* struct __prci_clock - describes a clock device managed by PRCI
* @name: user-readable clock name string - should match the manual
* @parent_name: parent name for this clock
* @ops: struct __prci_clock_ops for control
* @pwd: WRPLL-specific data, associated with this clock (if not NULL)
* @pd: PRCI-specific data associated with this clock (if not NULL)
*
* PRCI clock data. Used by the PRCI driver to register PRCI-provided
* clocks to the Linux clock infrastructure.
*/
struct __prci_clock {
const char *name;
const char *parent_name;
const struct __prci_clock_ops *ops;
struct __prci_wrpll_data *pwd;
struct __prci_data *pd;
};
/*
* Private functions
*/
/**
* __prci_readl() - read from a PRCI register
* @pd: PRCI context
* @offs: register offset to read from (in bytes, from PRCI base address)
*
* Read the register located at offset @offs from the base virtual
* address of the PRCI register target described by @pd, and return
* the value to the caller.
*
* Context: Any context.
*
* Return: the contents of the register described by @pd and @offs.
*/
static u32 __prci_readl(struct __prci_data *pd, u32 offs)
{
return readl(pd->va + offs);
}
static void __prci_writel(u32 v, u32 offs, struct __prci_data *pd)
{
writel(v, pd->va + offs);
}
/* WRPLL-related private functions */
/**
* __prci_wrpll_unpack() - unpack WRPLL configuration registers into parameters
* @c: ptr to a struct wrpll_cfg record to write config into
* @r: value read from the PRCI PLL configuration register
*
* Given a value @r read from an FU540 PRCI PLL configuration register,
* split it into fields and populate it into the WRPLL configuration record
* pointed to by @c.
*
* The COREPLLCFG0 macros are used below, but the other *PLLCFG0 macros
* have the same register layout.
*
* Context: Any context.
*/
static void __prci_wrpll_unpack(struct wrpll_cfg *c, u32 r)
{
u32 v;
v = r & PRCI_COREPLLCFG0_DIVR_MASK;
v >>= PRCI_COREPLLCFG0_DIVR_SHIFT;
c->divr = v;
v = r & PRCI_COREPLLCFG0_DIVF_MASK;
v >>= PRCI_COREPLLCFG0_DIVF_SHIFT;
c->divf = v;
v = r & PRCI_COREPLLCFG0_DIVQ_MASK;
v >>= PRCI_COREPLLCFG0_DIVQ_SHIFT;
c->divq = v;
v = r & PRCI_COREPLLCFG0_RANGE_MASK;
v >>= PRCI_COREPLLCFG0_RANGE_SHIFT;
c->range = v;
c->flags &= (WRPLL_FLAGS_INT_FEEDBACK_MASK |
WRPLL_FLAGS_EXT_FEEDBACK_MASK);
/* external feedback mode not supported */
c->flags |= WRPLL_FLAGS_INT_FEEDBACK_MASK;
}
/**
* __prci_wrpll_pack() - pack PLL configuration parameters into a register value
* @c: pointer to a struct wrpll_cfg record containing the PLL's cfg
*
* Using a set of WRPLL configuration values pointed to by @c,
* assemble a PRCI PLL configuration register value, and return it to
* the caller.
*
* Context: Any context. Caller must ensure that the contents of the
* record pointed to by @c do not change during the execution
* of this function.
*
* Returns: a value suitable for writing into a PRCI PLL configuration
* register
*/
static u32 __prci_wrpll_pack(const struct wrpll_cfg *c)
{
u32 r = 0;
r |= c->divr << PRCI_COREPLLCFG0_DIVR_SHIFT;
r |= c->divf << PRCI_COREPLLCFG0_DIVF_SHIFT;
r |= c->divq << PRCI_COREPLLCFG0_DIVQ_SHIFT;
r |= c->range << PRCI_COREPLLCFG0_RANGE_SHIFT;
/* external feedback mode not supported */
r |= PRCI_COREPLLCFG0_FSE_MASK;
return r;
}
/**
* __prci_wrpll_read_cfg0() - read the WRPLL configuration from the PRCI
* @pd: PRCI context
* @pwd: PRCI WRPLL metadata
*
* Read the current configuration of the PLL identified by @pwd from
* the PRCI identified by @pd, and store it into the local configuration
* cache in @pwd.
*
* Context: Any context. Caller must prevent the records pointed to by
* @pd and @pwd from changing during execution.
*/
static void __prci_wrpll_read_cfg0(struct __prci_data *pd,
struct __prci_wrpll_data *pwd)
{
__prci_wrpll_unpack(&pwd->c, __prci_readl(pd, pwd->cfg0_offs));
}
/**
* __prci_wrpll_write_cfg0() - write WRPLL configuration into the PRCI
* @pd: PRCI context
* @pwd: PRCI WRPLL metadata
* @c: WRPLL configuration record to write
*
* Write the WRPLL configuration described by @c into the WRPLL
* configuration register identified by @pwd in the PRCI instance
* described by @c. Make a cached copy of the WRPLL's current
* configuration so it can be used by other code.
*
* Context: Any context. Caller must prevent the records pointed to by
* @pd and @pwd from changing during execution.
*/
static void __prci_wrpll_write_cfg0(struct __prci_data *pd,
struct __prci_wrpll_data *pwd,
struct wrpll_cfg *c)
{
__prci_writel(__prci_wrpll_pack(c), pwd->cfg0_offs, pd);
memcpy(&pwd->c, c, sizeof(*c));
}
/**
* __prci_wrpll_write_cfg1() - write Clock enable/disable configuration
* into the PRCI
* @pd: PRCI context
* @pwd: PRCI WRPLL metadata
* @enable: Clock enable or disable value
*/
static void __prci_wrpll_write_cfg1(struct __prci_data *pd,
struct __prci_wrpll_data *pwd,
u32 enable)
{
__prci_writel(enable, pwd->cfg1_offs, pd);
}
/* Core clock mux control */
/**
* __prci_coreclksel_use_hfclk() - switch the CORECLK mux to output HFCLK
* @pd: struct __prci_data * for the PRCI containing the CORECLK mux reg
*
* Switch the CORECLK mux to the HFCLK input source; return once complete.
*
* Context: Any context. Caller must prevent concurrent changes to the
* PRCI_CORECLKSEL_OFFSET register.
*/
static void __prci_coreclksel_use_hfclk(struct __prci_data *pd)
{
u32 r;
r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET);
r |= PRCI_CORECLKSEL_CORECLKSEL_MASK;
__prci_writel(r, PRCI_CORECLKSEL_OFFSET, pd);
r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); /* barrier */
}
/**
* __prci_coreclksel_use_corepll() - switch the CORECLK mux to output COREPLL
* @pd: struct __prci_data * for the PRCI containing the CORECLK mux reg
*
* Switch the CORECLK mux to the PLL output clock; return once complete.
*
* Context: Any context. Caller must prevent concurrent changes to the
* PRCI_CORECLKSEL_OFFSET register.
*/
static void __prci_coreclksel_use_corepll(struct __prci_data *pd)
{
u32 r;
r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET);
r &= ~PRCI_CORECLKSEL_CORECLKSEL_MASK;
__prci_writel(r, PRCI_CORECLKSEL_OFFSET, pd);
r = __prci_readl(pd, PRCI_CORECLKSEL_OFFSET); /* barrier */
}
static unsigned long sifive_fu540_prci_wrpll_recalc_rate(
struct __prci_clock *pc,
unsigned long parent_rate)
{
struct __prci_wrpll_data *pwd = pc->pwd;
return wrpll_calc_output_rate(&pwd->c, parent_rate);
}
static unsigned long sifive_fu540_prci_wrpll_round_rate(
struct __prci_clock *pc,
unsigned long rate,
unsigned long *parent_rate)
{
struct __prci_wrpll_data *pwd = pc->pwd;
struct wrpll_cfg c;
memcpy(&c, &pwd->c, sizeof(c));
wrpll_configure_for_rate(&c, rate, *parent_rate);
return wrpll_calc_output_rate(&c, *parent_rate);
}
static int sifive_fu540_prci_wrpll_set_rate(struct __prci_clock *pc,
unsigned long rate,
unsigned long parent_rate)
{
struct __prci_wrpll_data *pwd = pc->pwd;
struct __prci_data *pd = pc->pd;
int r;
r = wrpll_configure_for_rate(&pwd->c, rate, parent_rate);
if (r)
return r;
if (pwd->enable_bypass)
pwd->enable_bypass(pd);
__prci_wrpll_write_cfg0(pd, pwd, &pwd->c);
udelay(wrpll_calc_max_lock_us(&pwd->c));
if (pwd->disable_bypass)
pwd->disable_bypass(pd);
return 0;
}
static int sifive_fu540_prci_clock_enable(struct __prci_clock *pc, bool enable)
{
struct __prci_wrpll_data *pwd = pc->pwd;
struct __prci_data *pd = pc->pd;
if (enable) {
__prci_wrpll_write_cfg1(pd, pwd, PRCI_COREPLLCFG1_CKE_MASK);
if (pwd->release_reset)
pwd->release_reset(pd);
} else {
u32 r;
r = __prci_readl(pd, pwd->cfg1_offs);
r &= ~PRCI_COREPLLCFG1_CKE_MASK;
__prci_wrpll_write_cfg1(pd, pwd, r);
}
return 0;
}
static const struct __prci_clock_ops sifive_fu540_prci_wrpll_clk_ops = {
.set_rate = sifive_fu540_prci_wrpll_set_rate,
.round_rate = sifive_fu540_prci_wrpll_round_rate,
.recalc_rate = sifive_fu540_prci_wrpll_recalc_rate,
.enable_clk = sifive_fu540_prci_clock_enable,
};
/* TLCLKSEL clock integration */
static unsigned long sifive_fu540_prci_tlclksel_recalc_rate(
struct __prci_clock *pc,
unsigned long parent_rate)
{
struct __prci_data *pd = pc->pd;
u32 v;
u8 div;
v = __prci_readl(pd, PRCI_CLKMUXSTATUSREG_OFFSET);
v &= PRCI_CLKMUXSTATUSREG_TLCLKSEL_STATUS_MASK;
div = v ? 1 : 2;
return div_u64(parent_rate, div);
}
static const struct __prci_clock_ops sifive_fu540_prci_tlclksel_clk_ops = {
.recalc_rate = sifive_fu540_prci_tlclksel_recalc_rate,
};
static int __prci_consumer_reset(const char *rst_name, bool trigger)
{
struct udevice *dev;
struct reset_ctl rst_sig;
int ret;
ret = uclass_get_device_by_driver(UCLASS_RESET,
DM_DRIVER_GET(sifive_reset),
&dev);
if (ret) {
dev_err(dev, "Reset driver not found: %d\n", ret);
return ret;
}
ret = reset_get_by_name(dev, rst_name, &rst_sig);
if (ret) {
dev_err(dev, "failed to get %s reset\n", rst_name);
return ret;
}
if (reset_valid(&rst_sig)) {
if (trigger)
ret = reset_deassert(&rst_sig);
else
ret = reset_assert(&rst_sig);
if (ret) {
dev_err(dev, "failed to trigger reset id = %ld\n",
rst_sig.id);
return ret;
}
}
return ret;
}
/**
* __prci_ddr_release_reset() - Release DDR reset
* @pd: struct __prci_data * for the PRCI containing the DDRCLK mux reg
*
*/
static void __prci_ddr_release_reset(struct __prci_data *pd)
{
/* Release DDR ctrl reset */
__prci_consumer_reset("ddr_ctrl", true);
/* HACK to get the '1 full controller clock cycle'. */
asm volatile ("fence");
/* Release DDR AXI reset */
__prci_consumer_reset("ddr_axi", true);
/* Release DDR AHB reset */
__prci_consumer_reset("ddr_ahb", true);
/* Release DDR PHY reset */
__prci_consumer_reset("ddr_phy", true);
/* HACK to get the '1 full controller clock cycle'. */
asm volatile ("fence");
/*
* These take like 16 cycles to actually propagate. We can't go sending
* stuff before they come out of reset. So wait.
*/
for (int i = 0; i < 256; i++)
asm volatile ("nop");
}
/**
* __prci_ethernet_release_reset() - Release ethernet reset
* @pd: struct __prci_data * for the PRCI containing the Ethernet CLK mux reg
*
*/
static void __prci_ethernet_release_reset(struct __prci_data *pd)
{
/* Release GEMGXL reset */
__prci_consumer_reset("gemgxl_reset", true);
/* Procmon => core clock */
__prci_writel(PRCI_PROCMONCFG_CORE_CLOCK_MASK, PRCI_PROCMONCFG_OFFSET,
pd);
}
/*
* PRCI integration data for each WRPLL instance
*/
static struct __prci_wrpll_data __prci_corepll_data = {
.cfg0_offs = PRCI_COREPLLCFG0_OFFSET,
.cfg1_offs = PRCI_COREPLLCFG1_OFFSET,
.enable_bypass = __prci_coreclksel_use_hfclk,
.disable_bypass = __prci_coreclksel_use_corepll,
};
static struct __prci_wrpll_data __prci_ddrpll_data = {
.cfg0_offs = PRCI_DDRPLLCFG0_OFFSET,
.cfg1_offs = PRCI_DDRPLLCFG1_OFFSET,
.release_reset = __prci_ddr_release_reset,
};
static struct __prci_wrpll_data __prci_gemgxlpll_data = {
.cfg0_offs = PRCI_GEMGXLPLLCFG0_OFFSET,
.cfg1_offs = PRCI_GEMGXLPLLCFG1_OFFSET,
.release_reset = __prci_ethernet_release_reset,
};
/*
* List of clock controls provided by the PRCI
*/
static struct __prci_clock __prci_init_clocks[] = {
[PRCI_CLK_COREPLL] = {
.name = "corepll",
.parent_name = "hfclk",
.ops = &sifive_fu540_prci_wrpll_clk_ops,
.pwd = &__prci_corepll_data,
},
[PRCI_CLK_DDRPLL] = {
.name = "ddrpll",
.parent_name = "hfclk",
.ops = &sifive_fu540_prci_wrpll_clk_ops,
.pwd = &__prci_ddrpll_data,
},
[PRCI_CLK_GEMGXLPLL] = {
.name = "gemgxlpll",
.parent_name = "hfclk",
.ops = &sifive_fu540_prci_wrpll_clk_ops,
.pwd = &__prci_gemgxlpll_data,
},
[PRCI_CLK_TLCLK] = {
.name = "tlclk",
.parent_name = "corepll",
.ops = &sifive_fu540_prci_tlclksel_clk_ops,
},
};
static ulong sifive_fu540_prci_parent_rate(struct __prci_clock *pc)
{
ulong parent_rate;
struct __prci_clock *p;
if (strcmp(pc->parent_name, "corepll") == 0) {
p = &__prci_init_clocks[PRCI_CLK_COREPLL];
if (!p->pd || !p->ops->recalc_rate)
return -ENXIO;
return p->ops->recalc_rate(p, sifive_fu540_prci_parent_rate(p));
}
if (strcmp(pc->parent_name, "rtcclk") == 0)
parent_rate = clk_get_rate(&pc->pd->parent_rtcclk);
else
parent_rate = clk_get_rate(&pc->pd->parent_hfclk);
return parent_rate;
}
static ulong sifive_fu540_prci_get_rate(struct clk *clk)
{
struct __prci_clock *pc;
if (ARRAY_SIZE(__prci_init_clocks) <= clk->id)
return -ENXIO;
pc = &__prci_init_clocks[clk->id];
if (!pc->pd || !pc->ops->recalc_rate)
return -ENXIO;
return pc->ops->recalc_rate(pc, sifive_fu540_prci_parent_rate(pc));
}
static ulong sifive_fu540_prci_set_rate(struct clk *clk, ulong rate)
{
int err;
struct __prci_clock *pc;
if (ARRAY_SIZE(__prci_init_clocks) <= clk->id)
return -ENXIO;
pc = &__prci_init_clocks[clk->id];
if (!pc->pd || !pc->ops->set_rate)
return -ENXIO;
err = pc->ops->set_rate(pc, rate, sifive_fu540_prci_parent_rate(pc));
if (err)
return err;
return rate;
}
static int sifive_fu540_prci_enable(struct clk *clk)
{
struct __prci_clock *pc;
int ret = 0;
if (ARRAY_SIZE(__prci_init_clocks) <= clk->id)
return -ENXIO;
pc = &__prci_init_clocks[clk->id];
if (!pc->pd)
return -ENXIO;
if (pc->ops->enable_clk)
ret = pc->ops->enable_clk(pc, 1);
return ret;
}
static int sifive_fu540_prci_disable(struct clk *clk)
{
struct __prci_clock *pc;
int ret = 0;
if (ARRAY_SIZE(__prci_init_clocks) <= clk->id)
return -ENXIO;
pc = &__prci_init_clocks[clk->id];
if (!pc->pd)
return -ENXIO;
if (pc->ops->enable_clk)
ret = pc->ops->enable_clk(pc, 0);
return ret;
}
static int sifive_fu540_prci_probe(struct udevice *dev)
{
int i, err;
struct __prci_clock *pc;
struct __prci_data *pd = dev_get_priv(dev);
pd->va = (void *)dev_read_addr(dev);
if (IS_ERR(pd->va))
return PTR_ERR(pd->va);
err = clk_get_by_index(dev, 0, &pd->parent_hfclk);
if (err)
return err;
err = clk_get_by_index(dev, 1, &pd->parent_rtcclk);
if (err)
return err;
for (i = 0; i < ARRAY_SIZE(__prci_init_clocks); ++i) {
pc = &__prci_init_clocks[i];
pc->pd = pd;
if (pc->pwd)
__prci_wrpll_read_cfg0(pd, pc->pwd);
}
return 0;
}
static struct clk_ops sifive_fu540_prci_ops = {
.set_rate = sifive_fu540_prci_set_rate,
.get_rate = sifive_fu540_prci_get_rate,
.enable = sifive_fu540_prci_enable,
.disable = sifive_fu540_prci_disable,
};
static int sifive_fu540_clk_bind(struct udevice *dev)
{
return sifive_reset_bind(dev, PRCI_DEVICERESETCNT);
}
static const struct udevice_id sifive_fu540_prci_ids[] = {
{ .compatible = "sifive,fu540-c000-prci" },
{ }
};
U_BOOT_DRIVER(sifive_fu540_prci) = {
.name = "sifive-fu540-prci",
.id = UCLASS_CLK,
.of_match = sifive_fu540_prci_ids,
.probe = sifive_fu540_prci_probe,
.ops = &sifive_fu540_prci_ops,
.priv_auto = sizeof(struct __prci_data),
.bind = sifive_fu540_clk_bind,
};