u-boot-brain/drivers/thermal/imx_tmu.c
Simon Glass 41575d8e4c dm: treewide: Rename auto_alloc_size members to be shorter
This construct is quite long-winded. In earlier days it made some sense
since auto-allocation was a strange concept. But with driver model now
used pretty universally, we can shorten this to 'auto'. This reduces
verbosity and makes it easier to read.

Coincidentally it also ensures that every declaration is on one line,
thus making dtoc's job easier.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 08:00:25 -07:00

469 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2017~2020 NXP
*
*/
#include <config.h>
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/device.h>
#include <errno.h>
#include <fuse.h>
#include <linux/delay.h>
#include <malloc.h>
#include <thermal.h>
DECLARE_GLOBAL_DATA_PTR;
#define SITES_MAX 16
#define FLAGS_VER2 0x1
#define FLAGS_VER3 0x2
#define TMR_DISABLE 0x0
#define TMR_ME 0x80000000
#define TMR_ALPF 0x0c000000
#define TMTMIR_DEFAULT 0x00000002
#define TIER_DISABLE 0x0
#define TER_EN 0x80000000
#define TER_ADC_PD 0x40000000
#define TER_ALPF 0x3
/*
* i.MX TMU Registers
*/
struct imx_tmu_site_regs {
u32 tritsr; /* Immediate Temperature Site Register */
u32 tratsr; /* Average Temperature Site Register */
u8 res0[0x8];
};
struct imx_tmu_regs {
u32 tmr; /* Mode Register */
u32 tsr; /* Status Register */
u32 tmtmir; /* Temperature measurement interval Register */
u8 res0[0x14];
u32 tier; /* Interrupt Enable Register */
u32 tidr; /* Interrupt Detect Register */
u32 tiscr; /* Interrupt Site Capture Register */
u32 ticscr; /* Interrupt Critical Site Capture Register */
u8 res1[0x10];
u32 tmhtcrh; /* High Temperature Capture Register */
u32 tmhtcrl; /* Low Temperature Capture Register */
u8 res2[0x8];
u32 tmhtitr; /* High Temperature Immediate Threshold */
u32 tmhtatr; /* High Temperature Average Threshold */
u32 tmhtactr; /* High Temperature Average Crit Threshold */
u8 res3[0x24];
u32 ttcfgr; /* Temperature Configuration Register */
u32 tscfgr; /* Sensor Configuration Register */
u8 res4[0x78];
struct imx_tmu_site_regs site[SITES_MAX];
u8 res5[0x9f8];
u32 ipbrr0; /* IP Block Revision Register 0 */
u32 ipbrr1; /* IP Block Revision Register 1 */
u8 res6[0x310];
u32 ttr0cr; /* Temperature Range 0 Control Register */
u32 ttr1cr; /* Temperature Range 1 Control Register */
u32 ttr2cr; /* Temperature Range 2 Control Register */
u32 ttr3cr; /* Temperature Range 3 Control Register */
};
struct imx_tmu_regs_v2 {
u32 ter; /* TMU enable Register */
u32 tsr; /* Status Register */
u32 tier; /* Interrupt enable register */
u32 tidr; /* Interrupt detect register */
u32 tmhtitr; /* Monitor high temperature immediate threshold register */
u32 tmhtatr; /* Monitor high temperature average threshold register */
u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */
u32 tscr; /* Sensor value capture register */
u32 tritsr; /* Report immediate temperature site register 0 */
u32 tratsr; /* Report average temperature site register 0 */
u32 tasr; /* Amplifier setting register */
u32 ttmc; /* Test MUX control */
u32 tcaliv;
};
struct imx_tmu_regs_v3 {
u32 ter; /* TMU enable Register */
u32 tps; /* Status Register */
u32 tier; /* Interrupt enable register */
u32 tidr; /* Interrupt detect register */
u32 tmhtitr; /* Monitor high temperature immediate threshold register */
u32 tmhtatr; /* Monitor high temperature average threshold register */
u32 tmhtactr; /* TMU monitor high temperature average critical threshold register */
u32 tscr; /* Sensor value capture register */
u32 tritsr; /* Report immediate temperature site register 0 */
u32 tratsr; /* Report average temperature site register 0 */
u32 tasr; /* Amplifier setting register */
u32 ttmc; /* Test MUX control */
u32 tcaliv0;
u32 tcaliv1;
u32 tcaliv_m40;
u32 trim;
};
union tmu_regs {
struct imx_tmu_regs regs_v1;
struct imx_tmu_regs_v2 regs_v2;
struct imx_tmu_regs_v3 regs_v3;
};
struct imx_tmu_plat {
int critical;
int alert;
int polling_delay;
int id;
bool zone_node;
union tmu_regs *regs;
};
static int read_temperature(struct udevice *dev, int *temp)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
ulong drv_data = dev_get_driver_data(dev);
u32 val;
u32 retry = 10;
u32 valid = 0;
do {
mdelay(100);
retry--;
if (drv_data & FLAGS_VER3) {
val = readl(&pdata->regs->regs_v3.tritsr);
valid = val & (1 << (30 + pdata->id));
} else if (drv_data & FLAGS_VER2) {
val = readl(&pdata->regs->regs_v2.tritsr);
/*
* Check if TEMP is in valid range, the V bit in TRITSR
* only reflects the RAW uncalibrated data
*/
valid = ((val & 0xff) < 10 || (val & 0xff) > 125) ? 0 : 1;
} else {
val = readl(&pdata->regs->regs_v1.site[pdata->id].tritsr);
valid = val & 0x80000000;
}
} while (!valid && retry > 0);
if (retry > 0) {
if (drv_data & FLAGS_VER3) {
val = (val >> (pdata->id * 16)) & 0xff;
if (val & 0x80) /* Negative */
val = (~(val & 0x7f) + 1);
*temp = val;
if (*temp < -40 || *temp > 125) /* Check the range */
return -EINVAL;
*temp *= 1000;
} else {
*temp = (val & 0xff) * 1000;
}
} else {
return -EINVAL;
}
return 0;
}
int imx_tmu_get_temp(struct udevice *dev, int *temp)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
int cpu_tmp = 0;
int ret;
ret = read_temperature(dev, &cpu_tmp);
if (ret)
return ret;
while (cpu_tmp >= pdata->alert) {
printf("CPU Temperature (%dC) has beyond alert (%dC), close to critical (%dC)", cpu_tmp, pdata->alert, pdata->critical);
puts(" waiting...\n");
mdelay(pdata->polling_delay);
ret = read_temperature(dev, &cpu_tmp);
if (ret)
return ret;
}
*temp = cpu_tmp / 1000;
return 0;
}
static const struct dm_thermal_ops imx_tmu_ops = {
.get_temp = imx_tmu_get_temp,
};
static int imx_tmu_calibration(struct udevice *dev)
{
int i, val, len, ret;
u32 range[4];
const fdt32_t *calibration;
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
ulong drv_data = dev_get_driver_data(dev);
debug("%s\n", __func__);
if (drv_data & (FLAGS_VER2 | FLAGS_VER3))
return 0;
ret = dev_read_u32_array(dev, "fsl,tmu-range", range, 4);
if (ret) {
printf("TMU: missing calibration range, ret = %d.\n", ret);
return ret;
}
/* Init temperature range registers */
writel(range[0], &pdata->regs->regs_v1.ttr0cr);
writel(range[1], &pdata->regs->regs_v1.ttr1cr);
writel(range[2], &pdata->regs->regs_v1.ttr2cr);
writel(range[3], &pdata->regs->regs_v1.ttr3cr);
calibration = dev_read_prop(dev, "fsl,tmu-calibration", &len);
if (!calibration || len % 8) {
printf("TMU: invalid calibration data.\n");
return -ENODEV;
}
for (i = 0; i < len; i += 8, calibration += 2) {
val = fdt32_to_cpu(*calibration);
writel(val, &pdata->regs->regs_v1.ttcfgr);
val = fdt32_to_cpu(*(calibration + 1));
writel(val, &pdata->regs->regs_v1.tscfgr);
}
return 0;
}
void __weak imx_tmu_arch_init(void *reg_base)
{
}
static void imx_tmu_init(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
ulong drv_data = dev_get_driver_data(dev);
debug("%s\n", __func__);
if (drv_data & FLAGS_VER3) {
/* Disable monitoring */
writel(0x0, &pdata->regs->regs_v3.ter);
/* Disable interrupt, using polling instead */
writel(0x0, &pdata->regs->regs_v3.tier);
} else if (drv_data & FLAGS_VER2) {
/* Disable monitoring */
writel(0x0, &pdata->regs->regs_v2.ter);
/* Disable interrupt, using polling instead */
writel(0x0, &pdata->regs->regs_v2.tier);
} else {
/* Disable monitoring */
writel(TMR_DISABLE, &pdata->regs->regs_v1.tmr);
/* Disable interrupt, using polling instead */
writel(TIER_DISABLE, &pdata->regs->regs_v1.tier);
/* Set update_interval */
writel(TMTMIR_DEFAULT, &pdata->regs->regs_v1.tmtmir);
}
imx_tmu_arch_init((void *)pdata->regs);
}
static int imx_tmu_enable_msite(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
ulong drv_data = dev_get_driver_data(dev);
u32 reg;
debug("%s\n", __func__);
if (!pdata->regs)
return -EIO;
if (drv_data & FLAGS_VER3) {
reg = readl(&pdata->regs->regs_v3.ter);
reg &= ~TER_EN;
writel(reg, &pdata->regs->regs_v3.ter);
writel(pdata->id << 30, &pdata->regs->regs_v3.tps);
reg &= ~TER_ALPF;
reg |= 0x1;
reg &= ~TER_ADC_PD;
writel(reg, &pdata->regs->regs_v3.ter);
/* Enable monitor */
reg |= TER_EN;
writel(reg, &pdata->regs->regs_v3.ter);
} else if (drv_data & FLAGS_VER2) {
reg = readl(&pdata->regs->regs_v2.ter);
reg &= ~TER_EN;
writel(reg, &pdata->regs->regs_v2.ter);
reg &= ~TER_ALPF;
reg |= 0x1;
writel(reg, &pdata->regs->regs_v2.ter);
/* Enable monitor */
reg |= TER_EN;
writel(reg, &pdata->regs->regs_v2.ter);
} else {
/* Clear the ME before setting MSITE and ALPF*/
reg = readl(&pdata->regs->regs_v1.tmr);
reg &= ~TMR_ME;
writel(reg, &pdata->regs->regs_v1.tmr);
reg |= 1 << (15 - pdata->id);
reg |= TMR_ALPF;
writel(reg, &pdata->regs->regs_v1.tmr);
/* Enable ME */
reg |= TMR_ME;
writel(reg, &pdata->regs->regs_v1.tmr);
}
return 0;
}
static int imx_tmu_bind(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
int ret;
ofnode node, offset;
const char *name;
const void *prop;
debug("%s dev name %s\n", __func__, dev->name);
prop = dev_read_prop(dev, "compatible", NULL);
if (!prop)
return 0;
pdata->zone_node = 1;
node = ofnode_path("/thermal-zones");
ofnode_for_each_subnode(offset, node) {
/* Bind the subnode to this driver */
name = ofnode_get_name(offset);
ret = device_bind_with_driver_data(dev, dev->driver, name,
dev->driver_data, offset,
NULL);
if (ret)
printf("Error binding driver '%s': %d\n",
dev->driver->name, ret);
}
return 0;
}
static int imx_tmu_parse_fdt(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev), *p_parent_data;
struct ofnode_phandle_args args;
ofnode trips_np;
int ret;
debug("%s dev name %s\n", __func__, dev->name);
if (pdata->zone_node) {
pdata->regs = (union tmu_regs *)dev_read_addr_ptr(dev);
if (!pdata->regs)
return -EINVAL;
return 0;
}
p_parent_data = dev_get_platdata(dev->parent);
if (p_parent_data->zone_node)
pdata->regs = p_parent_data->regs;
ret = dev_read_phandle_with_args(dev, "thermal-sensors",
"#thermal-sensor-cells",
0, 0, &args);
if (ret)
return ret;
if (!ofnode_equal(args.node, dev_ofnode(dev->parent)))
return -EFAULT;
if (args.args_count >= 1)
pdata->id = args.args[0];
else
pdata->id = 0;
debug("args.args_count %d, id %d\n", args.args_count, pdata->id);
pdata->polling_delay = dev_read_u32_default(dev, "polling-delay", 1000);
trips_np = ofnode_path("/thermal-zones/cpu-thermal/trips");
ofnode_for_each_subnode(trips_np, trips_np) {
const char *type;
type = ofnode_get_property(trips_np, "type", NULL);
if (!type)
continue;
if (!strcmp(type, "critical"))
pdata->critical = ofnode_read_u32_default(trips_np, "temperature", 85);
else if (strcmp(type, "passive") == 0)
pdata->alert = ofnode_read_u32_default(trips_np, "temperature", 80);
else
continue;
}
debug("id %d polling_delay %d, critical %d, alert %d\n",
pdata->id, pdata->polling_delay, pdata->critical, pdata->alert);
return 0;
}
static int imx_tmu_probe(struct udevice *dev)
{
struct imx_tmu_plat *pdata = dev_get_platdata(dev);
int ret;
ret = imx_tmu_parse_fdt(dev);
if (ret) {
printf("Error in parsing TMU FDT %d\n", ret);
return ret;
}
if (pdata->zone_node) {
imx_tmu_init(dev);
imx_tmu_calibration(dev);
} else {
imx_tmu_enable_msite(dev);
}
return 0;
}
static const struct udevice_id imx_tmu_ids[] = {
{ .compatible = "fsl,imx8mq-tmu", },
{ .compatible = "fsl,imx8mm-tmu", .data = FLAGS_VER2, },
{ .compatible = "fsl,imx8mp-tmu", .data = FLAGS_VER3, },
{ }
};
U_BOOT_DRIVER(imx_tmu) = {
.name = "imx_tmu",
.id = UCLASS_THERMAL,
.ops = &imx_tmu_ops,
.of_match = imx_tmu_ids,
.bind = imx_tmu_bind,
.probe = imx_tmu_probe,
.platdata_auto = sizeof(struct imx_tmu_plat),
.flags = DM_FLAG_PRE_RELOC,
};