u-boot-brain/drivers/spi/spi-qup.c
Simon Glass 41575d8e4c dm: treewide: Rename auto_alloc_size members to be shorter
This construct is quite long-winded. In earlier days it made some sense
since auto-allocation was a strange concept. But with driver model now
used pretty universally, we can shorten this to 'auto'. This reduces
verbosity and makes it easier to read.

Coincidentally it also ensures that every declaration is on one line,
thus making dtoc's job easier.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 08:00:25 -07:00

804 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Driver for Qualcomm QUP SPI controller
* FIFO and Block modes supported, no DMA
* mode support
*
* Copyright (c) 2020 Sartura Ltd.
*
* Author: Robert Marko <robert.marko@sartura.hr>
* Author: Luka Kovacic <luka.kovacic@sartura.hr>
*
* Based on stock U-boot and Linux drivers
*/
#include <asm/gpio.h>
#include <asm/io.h>
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <linux/delay.h>
#include <spi.h>
#define QUP_CONFIG 0x0000
#define QUP_STATE 0x0004
#define QUP_IO_M_MODES 0x0008
#define QUP_SW_RESET 0x000c
#define QUP_OPERATIONAL 0x0018
#define QUP_ERROR_FLAGS 0x001c
#define QUP_ERROR_FLAGS_EN 0x0020
#define QUP_OPERATIONAL_MASK 0x0028
#define QUP_HW_VERSION 0x0030
#define QUP_MX_OUTPUT_CNT 0x0100
#define QUP_OUTPUT_FIFO 0x0110
#define QUP_MX_WRITE_CNT 0x0150
#define QUP_MX_INPUT_CNT 0x0200
#define QUP_MX_READ_CNT 0x0208
#define QUP_INPUT_FIFO 0x0218
#define SPI_CONFIG 0x0300
#define SPI_IO_CONTROL 0x0304
#define SPI_ERROR_FLAGS 0x0308
#define SPI_ERROR_FLAGS_EN 0x030c
/* QUP_CONFIG fields */
#define QUP_CONFIG_SPI_MODE BIT(8)
#define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13)
#define QUP_CONFIG_NO_INPUT BIT(7)
#define QUP_CONFIG_NO_OUTPUT BIT(6)
#define QUP_CONFIG_N 0x001f
/* QUP_STATE fields */
#define QUP_STATE_VALID BIT(2)
#define QUP_STATE_RESET 0
#define QUP_STATE_RUN 1
#define QUP_STATE_PAUSE 3
#define QUP_STATE_MASK 3
#define QUP_STATE_CLEAR 2
/* QUP_IO_M_MODES fields */
#define QUP_IO_M_PACK_EN BIT(15)
#define QUP_IO_M_UNPACK_EN BIT(14)
#define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12
#define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10
#define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT)
#define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT)
#define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0)
#define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2)
#define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5)
#define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7)
#define QUP_IO_M_MODE_FIFO 0
#define QUP_IO_M_MODE_BLOCK 1
#define QUP_IO_M_MODE_DMOV 2
#define QUP_IO_M_MODE_BAM 3
/* QUP_OPERATIONAL fields */
#define QUP_OP_IN_BLOCK_READ_REQ BIT(13)
#define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12)
#define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11)
#define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10)
#define QUP_OP_IN_SERVICE_FLAG BIT(9)
#define QUP_OP_OUT_SERVICE_FLAG BIT(8)
#define QUP_OP_IN_FIFO_FULL BIT(7)
#define QUP_OP_OUT_FIFO_FULL BIT(6)
#define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5)
#define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4)
/* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */
#define QUP_ERROR_OUTPUT_OVER_RUN BIT(5)
#define QUP_ERROR_INPUT_UNDER_RUN BIT(4)
#define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3)
#define QUP_ERROR_INPUT_OVER_RUN BIT(2)
/* SPI_CONFIG fields */
#define SPI_CONFIG_HS_MODE BIT(10)
#define SPI_CONFIG_INPUT_FIRST BIT(9)
#define SPI_CONFIG_LOOPBACK BIT(8)
/* SPI_IO_CONTROL fields */
#define SPI_IO_C_FORCE_CS BIT(11)
#define SPI_IO_C_CLK_IDLE_HIGH BIT(10)
#define SPI_IO_C_MX_CS_MODE BIT(8)
#define SPI_IO_C_CS_N_POLARITY_0 BIT(4)
#define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2)
#define SPI_IO_C_CS_SELECT_MASK 0x000c
#define SPI_IO_C_TRISTATE_CS BIT(1)
#define SPI_IO_C_NO_TRI_STATE BIT(0)
/* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */
#define SPI_ERROR_CLK_OVER_RUN BIT(1)
#define SPI_ERROR_CLK_UNDER_RUN BIT(0)
#define SPI_NUM_CHIPSELECTS 4
#define SPI_DELAY_THRESHOLD 1
#define SPI_DELAY_RETRY 10
#define SPI_RESET_STATE 0
#define SPI_RUN_STATE 1
#define SPI_CORE_RESET 0
#define SPI_CORE_RUNNING 1
#define DUMMY_DATA_VAL 0
#define TIMEOUT_CNT 100
#define QUP_STATE_VALID_BIT 2
#define QUP_CONFIG_MINI_CORE_MSK (0x0F << 8)
#define QUP_CONFIG_MINI_CORE_SPI BIT(8)
#define QUP_CONF_INPUT_MSK BIT(7)
#define QUP_CONF_INPUT_ENA (0 << 7)
#define QUP_CONF_NO_INPUT BIT(7)
#define QUP_CONF_OUTPUT_MSK BIT(6)
#define QUP_CONF_OUTPUT_ENA (0 << 6)
#define QUP_CONF_NO_OUTPUT BIT(6)
#define QUP_STATE_RUN_STATE 0x1
#define QUP_STATE_RESET_STATE 0x0
#define QUP_STATE_PAUSE_STATE 0x3
#define SPI_BIT_WORD_MSK 0x1F
#define SPI_8_BIT_WORD 0x07
#define LOOP_BACK_MSK BIT(8)
#define NO_LOOP_BACK (0 << 8)
#define SLAVE_OPERATION_MSK BIT(5)
#define SLAVE_OPERATION (0 << 5)
#define CLK_ALWAYS_ON (0 << 9)
#define MX_CS_MODE BIT(8)
#define CS_POLARITY_MASK BIT(4)
#define NO_TRI_STATE BIT(0)
#define FORCE_CS_MSK BIT(11)
#define FORCE_CS_EN BIT(11)
#define FORCE_CS_DIS (0 << 11)
#define OUTPUT_BIT_SHIFT_MSK BIT(16)
#define OUTPUT_BIT_SHIFT_EN BIT(16)
#define INPUT_BLOCK_MODE_MSK (0x03 << 12)
#define INPUT_BLOCK_MODE (0x01 << 12)
#define OUTPUT_BLOCK_MODE_MSK (0x03 << 10)
#define OUTPUT_BLOCK_MODE (0x01 << 10)
#define INPUT_BAM_MODE (0x3 << 12)
#define OUTPUT_BAM_MODE (0x3 << 10)
#define PACK_EN (0x1 << 15)
#define UNPACK_EN (0x1 << 14)
#define PACK_EN_MSK (0x1 << 15)
#define UNPACK_EN_MSK (0x1 << 14)
#define OUTPUT_SERVICE_MSK (0x1 << 8)
#define INPUT_SERVICE_MSK (0x1 << 9)
#define OUTPUT_SERVICE_DIS (0x1 << 8)
#define INPUT_SERVICE_DIS (0x1 << 9)
#define BLSP0_SPI_DEASSERT_WAIT_REG 0x0310
#define QUP_DATA_AVAILABLE_FOR_READ BIT(5)
#define SPI_INPUT_BLOCK_SIZE 4
#define SPI_OUTPUT_BLOCK_SIZE 4
#define SPI_BITLEN_MSK 0x07
#define MAX_COUNT_SIZE 0xffff
struct qup_spi_priv {
phys_addr_t base;
struct clk clk;
u32 num_cs;
struct gpio_desc cs_gpios[SPI_NUM_CHIPSELECTS];
bool cs_high;
u32 core_state;
};
static int qup_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
{
struct qup_spi_priv *priv = dev_get_priv(dev);
debug("%s: cs=%d enable=%d\n", __func__, cs, enable);
if (cs >= SPI_NUM_CHIPSELECTS)
return -ENODEV;
if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
return -EINVAL;
if (priv->cs_high)
enable = !enable;
return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
}
/*
* Function to write data to OUTPUT FIFO
*/
static void qup_spi_write_byte(struct udevice *dev, unsigned char data)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
/* Wait for space in the FIFO */
while ((readl(priv->base + QUP_OPERATIONAL) & QUP_OP_OUT_FIFO_FULL))
udelay(1);
/* Write the byte of data */
writel(data, priv->base + QUP_OUTPUT_FIFO);
}
/*
* Function to read data from Input FIFO
*/
static unsigned char qup_spi_read_byte(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
/* Wait for Data in FIFO */
while (!(readl(priv->base + QUP_OPERATIONAL) & QUP_DATA_AVAILABLE_FOR_READ)) {
printf("Stuck at FIFO data wait\n");
udelay(1);
}
/* Read a byte of data */
return readl(priv->base + QUP_INPUT_FIFO) & 0xff;
}
/*
* Function to check wheather Input or Output FIFO
* has data to be serviced
*/
static int qup_spi_check_fifo_status(struct udevice *dev, u32 reg_addr)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
unsigned int count = TIMEOUT_CNT;
unsigned int status_flag;
unsigned int val;
do {
val = readl(priv->base + reg_addr);
count--;
if (count == 0)
return -ETIMEDOUT;
status_flag = ((val & QUP_OP_OUT_SERVICE_FLAG) | (val & QUP_OP_IN_SERVICE_FLAG));
} while (!status_flag);
return 0;
}
/*
* Function to configure Input and Output enable/disable
*/
static void qup_spi_enable_io_config(struct udevice *dev, u32 write_cnt, u32 read_cnt)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
if (write_cnt) {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA);
} else {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT);
}
if (read_cnt) {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA);
} else {
clrsetbits_le32(priv->base + QUP_CONFIG,
QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT);
}
}
static int check_bit_state(struct udevice *dev, u32 reg_addr, int bit_num, int val,
int us_delay)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
unsigned int count = TIMEOUT_CNT;
unsigned int bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01);
while (bit_val != val) {
count--;
if (count == 0)
return -ETIMEDOUT;
udelay(us_delay);
bit_val = ((readl(priv->base + reg_addr) >> bit_num) & 0x01);
}
return 0;
}
/*
* Check whether QUPn State is valid
*/
static int check_qup_state_valid(struct udevice *dev)
{
return check_bit_state(dev, QUP_STATE, QUP_STATE_VALID, 1, 1);
}
/*
* Configure QUPn Core state
*/
static int qup_spi_config_spi_state(struct udevice *dev, unsigned int state)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
u32 val;
int ret;
ret = check_qup_state_valid(dev);
if (ret != 0)
return ret;
switch (state) {
case SPI_RUN_STATE:
/* Set the state to RUN */
val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK)
| QUP_STATE_RUN);
writel(val, priv->base + QUP_STATE);
ret = check_qup_state_valid(dev);
if (ret != 0)
return ret;
priv->core_state = SPI_CORE_RUNNING;
break;
case SPI_RESET_STATE:
/* Set the state to RESET */
val = ((readl(priv->base + QUP_STATE) & ~QUP_STATE_MASK)
| QUP_STATE_RESET);
writel(val, priv->base + QUP_STATE);
ret = check_qup_state_valid(dev);
if (ret != 0)
return ret;
priv->core_state = SPI_CORE_RESET;
break;
default:
printf("Unsupported QUP SPI state: %d\n", state);
ret = -EINVAL;
break;
}
return ret;
}
/*
* Function to read bytes number of data from the Input FIFO
*/
static int __qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
u32 val;
unsigned int i;
unsigned int read_bytes = bytes;
unsigned int fifo_count;
int ret = 0;
int state_config;
/* Configure no of bytes to read */
state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
if (state_config)
return state_config;
/* Configure input and output enable */
qup_spi_enable_io_config(dev, 0, read_bytes);
writel(bytes, priv->base + QUP_MX_INPUT_CNT);
state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE);
if (state_config)
return state_config;
while (read_bytes) {
ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL);
if (ret != 0)
goto out;
val = readl(priv->base + QUP_OPERATIONAL);
if (val & QUP_OP_IN_SERVICE_FLAG) {
/*
* acknowledge to hw that software will
* read input data
*/
val &= QUP_OP_IN_SERVICE_FLAG;
writel(val, priv->base + QUP_OPERATIONAL);
fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ?
SPI_INPUT_BLOCK_SIZE : read_bytes);
for (i = 0; i < fifo_count; i++) {
*data_buffer = qup_spi_read_byte(dev);
data_buffer++;
read_bytes--;
}
}
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)qup_spi_config_spi_state(dev, SPI_RESET_STATE);
return ret;
}
static int qup_spi_blsp_spi_read(struct udevice *dev, u8 *data_buffer, unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __qup_spi_blsp_spi_read(dev, data_buffer, length);
if (ret != 0)
return ret;
data_buffer += length;
bytes -= length;
}
return 0;
}
/*
* Function to write data to the Output FIFO
*/
static int __qup_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
u32 val;
unsigned int i;
unsigned int write_len = bytes;
unsigned int read_len = bytes;
unsigned int fifo_count;
int ret = 0;
int state_config;
state_config = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
if (state_config)
return state_config;
writel(bytes, priv->base + QUP_MX_OUTPUT_CNT);
writel(bytes, priv->base + QUP_MX_INPUT_CNT);
state_config = qup_spi_config_spi_state(dev, SPI_RUN_STATE);
if (state_config)
return state_config;
/* Configure input and output enable */
qup_spi_enable_io_config(dev, write_len, read_len);
/*
* read_len considered to ensure that we read the dummy data for the
* write we performed. This is needed to ensure with WR-RD transaction
* to get the actual data on the subsequent read cycle that happens
*/
while (write_len || read_len) {
ret = qup_spi_check_fifo_status(dev, QUP_OPERATIONAL);
if (ret != 0)
goto out;
val = readl(priv->base + QUP_OPERATIONAL);
if (val & QUP_OP_OUT_SERVICE_FLAG) {
/*
* acknowledge to hw that software will write
* expected output data
*/
val &= QUP_OP_OUT_SERVICE_FLAG;
writel(val, priv->base + QUP_OPERATIONAL);
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
else
fifo_count = write_len;
for (i = 0; i < fifo_count; i++) {
/* Write actual data to output FIFO */
qup_spi_write_byte(dev, *cmd_buffer);
cmd_buffer++;
write_len--;
}
}
if (val & QUP_OP_IN_SERVICE_FLAG) {
/*
* acknowledge to hw that software
* will read input data
*/
val &= QUP_OP_IN_SERVICE_FLAG;
writel(val, priv->base + QUP_OPERATIONAL);
if (read_len > SPI_INPUT_BLOCK_SIZE)
fifo_count = SPI_INPUT_BLOCK_SIZE;
else
fifo_count = read_len;
for (i = 0; i < fifo_count; i++) {
/* Read dummy data for the data written */
(void)qup_spi_read_byte(dev);
/* Decrement the write count after reading the
* dummy data from the device. This is to make
* sure we read dummy data before we write the
* data to fifo
*/
read_len--;
}
}
}
out:
/*
* Put the SPI Core back in the Reset State
* to end the transfer
*/
(void)qup_spi_config_spi_state(dev, SPI_RESET_STATE);
return ret;
}
static int qup_spi_blsp_spi_write(struct udevice *dev, const u8 *cmd_buffer, unsigned int bytes)
{
int length, ret;
while (bytes) {
length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE;
ret = __qup_blsp_spi_write(dev, cmd_buffer, length);
if (ret != 0)
return ret;
cmd_buffer += length;
bytes -= length;
}
return 0;
}
static int qup_spi_set_speed(struct udevice *dev, uint speed)
{
return 0;
}
static int qup_spi_set_mode(struct udevice *dev, uint mode)
{
struct qup_spi_priv *priv = dev_get_priv(dev);
unsigned int clk_idle_state;
unsigned int input_first_mode;
u32 val;
switch (mode) {
case SPI_MODE_0:
clk_idle_state = 0;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE_1:
clk_idle_state = 0;
input_first_mode = 0;
break;
case SPI_MODE_2:
clk_idle_state = 1;
input_first_mode = SPI_CONFIG_INPUT_FIRST;
break;
case SPI_MODE_3:
clk_idle_state = 1;
input_first_mode = 0;
break;
default:
printf("Unsupported spi mode: %d\n", mode);
return -EINVAL;
}
if (mode & SPI_CS_HIGH)
priv->cs_high = true;
else
priv->cs_high = false;
val = readl(priv->base + SPI_CONFIG);
val |= input_first_mode;
writel(val, priv->base + SPI_CONFIG);
val = readl(priv->base + SPI_IO_CONTROL);
if (clk_idle_state)
val |= SPI_IO_C_CLK_IDLE_HIGH;
else
val &= ~SPI_IO_C_CLK_IDLE_HIGH;
writel(val, priv->base + SPI_IO_CONTROL);
return 0;
}
static void qup_spi_reset(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
/* Driver may not be probed yet */
if (!priv)
return;
writel(0x1, priv->base + QUP_SW_RESET);
udelay(5);
}
static int qup_spi_hw_init(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct qup_spi_priv *priv = dev_get_priv(bus);
int ret;
/* QUPn module configuration */
qup_spi_reset(dev);
/* Set the QUPn state */
ret = qup_spi_config_spi_state(dev, SPI_RESET_STATE);
if (ret)
return ret;
/*
* Configure Mini core to SPI core with Input Output enabled,
* SPI master, N = 8 bits
*/
clrsetbits_le32(priv->base + QUP_CONFIG, (QUP_CONFIG_MINI_CORE_MSK |
QUP_CONF_INPUT_MSK |
QUP_CONF_OUTPUT_MSK |
SPI_BIT_WORD_MSK),
(QUP_CONFIG_MINI_CORE_SPI |
QUP_CONF_INPUT_ENA |
QUP_CONF_OUTPUT_ENA |
SPI_8_BIT_WORD));
/*
* Configure Input first SPI protocol,
* SPI master mode and no loopback
*/
clrsetbits_le32(priv->base + SPI_CONFIG, (LOOP_BACK_MSK |
SLAVE_OPERATION_MSK),
(NO_LOOP_BACK |
SLAVE_OPERATION));
/*
* Configure SPI IO Control Register
* CLK_ALWAYS_ON = 0
* MX_CS_MODE = 0
* NO_TRI_STATE = 1
*/
writel((CLK_ALWAYS_ON | NO_TRI_STATE), priv->base + SPI_IO_CONTROL);
/*
* Configure SPI IO Modes.
* OUTPUT_BIT_SHIFT_EN = 1
* INPUT_MODE = Block Mode
* OUTPUT MODE = Block Mode
*/
clrsetbits_le32(priv->base + QUP_IO_M_MODES, (OUTPUT_BIT_SHIFT_MSK |
INPUT_BLOCK_MODE_MSK |
OUTPUT_BLOCK_MODE_MSK),
(OUTPUT_BIT_SHIFT_EN |
INPUT_BLOCK_MODE |
OUTPUT_BLOCK_MODE));
/* Disable Error mask */
writel(0, priv->base + SPI_ERROR_FLAGS_EN);
writel(0, priv->base + QUP_ERROR_FLAGS_EN);
writel(0, priv->base + BLSP0_SPI_DEASSERT_WAIT_REG);
return ret;
}
static int qup_spi_claim_bus(struct udevice *dev)
{
int ret;
ret = qup_spi_hw_init(dev);
if (ret)
return -EIO;
return 0;
}
static int qup_spi_release_bus(struct udevice *dev)
{
/* Reset the SPI hardware */
qup_spi_reset(dev);
return 0;
}
static int qup_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(dev);
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
unsigned int len;
const u8 *txp = dout;
u8 *rxp = din;
int ret = 0;
if (bitlen & SPI_BITLEN_MSK) {
printf("Invalid bit length\n");
return -EINVAL;
}
len = bitlen >> 3;
if (flags & SPI_XFER_BEGIN) {
ret = qup_spi_hw_init(dev);
if (ret != 0)
return ret;
ret = qup_spi_set_cs(bus, slave_plat->cs, false);
if (ret != 0)
return ret;
}
if (dout != NULL) {
ret = qup_spi_blsp_spi_write(dev, txp, len);
if (ret != 0)
return ret;
}
if (din != NULL) {
ret = qup_spi_blsp_spi_read(dev, rxp, len);
if (ret != 0)
return ret;
}
if (flags & SPI_XFER_END) {
ret = qup_spi_set_cs(bus, slave_plat->cs, true);
if (ret != 0)
return ret;
}
return ret;
}
static int qup_spi_probe(struct udevice *dev)
{
struct qup_spi_priv *priv = dev_get_priv(dev);
int ret;
priv->base = dev_read_addr(dev);
if (priv->base == FDT_ADDR_T_NONE)
return -EINVAL;
ret = clk_get_by_index(dev, 0, &priv->clk);
if (ret)
return ret;
ret = clk_enable(&priv->clk);
if (ret < 0)
return ret;
priv->num_cs = dev_read_u32_default(dev, "num-cs", 1);
ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
priv->num_cs, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
if (ret < 0) {
printf("Can't get %s cs gpios: %d\n", dev->name, ret);
return -EINVAL;
}
return 0;
}
static const struct dm_spi_ops qup_spi_ops = {
.claim_bus = qup_spi_claim_bus,
.release_bus = qup_spi_release_bus,
.xfer = qup_spi_xfer,
.set_speed = qup_spi_set_speed,
.set_mode = qup_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id qup_spi_ids[] = {
{ .compatible = "qcom,spi-qup-v1.1.1", },
{ .compatible = "qcom,spi-qup-v2.1.1", },
{ .compatible = "qcom,spi-qup-v2.2.1", },
{ }
};
U_BOOT_DRIVER(spi_qup) = {
.name = "spi_qup",
.id = UCLASS_SPI,
.of_match = qup_spi_ids,
.ops = &qup_spi_ops,
.priv_auto = sizeof(struct qup_spi_priv),
.probe = qup_spi_probe,
};