u-boot-brain/drivers/ram/mpc83xx_sdram.c
Simon Glass 41575d8e4c dm: treewide: Rename auto_alloc_size members to be shorter
This construct is quite long-winded. In earlier days it made some sense
since auto-allocation was a strange concept. But with driver model now
used pretty universally, we can shorten this to 'auto'. This reduces
verbosity and makes it easier to read.

Coincidentally it also ensures that every declaration is on one line,
thus making dtoc's job easier.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 08:00:25 -07:00

1100 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2018
* Mario Six, Guntermann & Drunck GmbH, mario.six@gdsys.cc
*/
#include <common.h>
#include <dm.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <asm/bitops.h>
#include <dt-bindings/memory/mpc83xx-sdram.h>
DECLARE_GLOBAL_DATA_PTR;
/* Masks for the CS config register */
static const u32 CSCONFIG_ENABLE = 0x80000000;
static const u32 BANK_BITS_2;
static const u32 BANK_BITS_3 = 0x00004000;
static const u32 ROW_BITS_12;
static const u32 ROW_BITS_13 = 0x00000100;
static const u32 ROW_BITS_14 = 0x00000200;
static const u32 COL_BITS_8;
static const u32 COL_BITS_9 = 0x00000001;
static const u32 COL_BITS_10 = 0x00000002;
static const u32 COL_BITS_11 = 0x00000003;
/* Shifts for the DDR SDRAM Timing Configuration 3 register */
static const uint TIMING_CFG3_EXT_REFREC_SHIFT = (31 - 15);
/* Shifts for the DDR SDRAM Timing Configuration 0 register */
static const uint TIMING_CFG0_RWT_SHIFT = (31 - 1);
static const uint TIMING_CFG0_WRT_SHIFT = (31 - 3);
static const uint TIMING_CFG0_RRT_SHIFT = (31 - 5);
static const uint TIMING_CFG0_WWT_SHIFT = (31 - 7);
static const uint TIMING_CFG0_ACT_PD_EXIT_SHIFT = (31 - 11);
static const uint TIMING_CFG0_PRE_PD_EXIT_SHIFT = (31 - 15);
static const uint TIMING_CFG0_ODT_PD_EXIT_SHIFT = (31 - 23);
static const uint TIMING_CFG0_MRS_CYC_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Timing Configuration 1 register */
static const uint TIMING_CFG1_PRETOACT_SHIFT = (31 - 3);
static const uint TIMING_CFG1_ACTTOPRE_SHIFT = (31 - 7);
static const uint TIMING_CFG1_ACTTORW_SHIFT = (31 - 11);
static const uint TIMING_CFG1_CASLAT_SHIFT = (31 - 15);
static const uint TIMING_CFG1_REFREC_SHIFT = (31 - 19);
static const uint TIMING_CFG1_WRREC_SHIFT = (31 - 23);
static const uint TIMING_CFG1_ACTTOACT_SHIFT = (31 - 27);
static const uint TIMING_CFG1_WRTORD_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Timing Configuration 2 register */
static const uint TIMING_CFG2_CPO_SHIFT = (31 - 8);
static const uint TIMING_CFG2_WR_DATA_DELAY_SHIFT = (31 - 21);
static const uint TIMING_CFG2_ADD_LAT_SHIFT = (31 - 3);
static const uint TIMING_CFG2_WR_LAT_DELAY_SHIFT = (31 - 12);
static const uint TIMING_CFG2_RD_TO_PRE_SHIFT = (31 - 18);
static const uint TIMING_CFG2_CKE_PLS_SHIFT = (31 - 25);
static const uint TIMING_CFG2_FOUR_ACT_SHIFT;
/* Shifts for the DDR SDRAM Control Configuration register */
static const uint SDRAM_CFG_SREN_SHIFT = (31 - 1);
static const uint SDRAM_CFG_ECC_EN_SHIFT = (31 - 2);
static const uint SDRAM_CFG_RD_EN_SHIFT = (31 - 3);
static const uint SDRAM_CFG_SDRAM_TYPE_SHIFT = (31 - 7);
static const uint SDRAM_CFG_DYN_PWR_SHIFT = (31 - 10);
static const uint SDRAM_CFG_DBW_SHIFT = (31 - 12);
static const uint SDRAM_CFG_NCAP_SHIFT = (31 - 14);
static const uint SDRAM_CFG_2T_EN_SHIFT = (31 - 16);
static const uint SDRAM_CFG_BA_INTLV_CTL_SHIFT = (31 - 23);
static const uint SDRAM_CFG_PCHB8_SHIFT = (31 - 27);
static const uint SDRAM_CFG_HSE_SHIFT = (31 - 28);
static const uint SDRAM_CFG_BI_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Control Configuration 2 register */
static const uint SDRAM_CFG2_FRC_SR_SHIFT = (31 - 0);
static const uint SDRAM_CFG2_DLL_RST_DIS = (31 - 2);
static const uint SDRAM_CFG2_DQS_CFG = (31 - 5);
static const uint SDRAM_CFG2_ODT_CFG = (31 - 10);
static const uint SDRAM_CFG2_NUM_PR = (31 - 19);
/* Shifts for the DDR SDRAM Mode register */
static const uint SDRAM_MODE_ESD_SHIFT = (31 - 15);
static const uint SDRAM_MODE_SD_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Mode 2 register */
static const uint SDRAM_MODE2_ESD2_SHIFT = (31 - 15);
static const uint SDRAM_MODE2_ESD3_SHIFT = (31 - 31);
/* Shifts for the DDR SDRAM Interval Configuration register */
static const uint SDRAM_INTERVAL_REFINT_SHIFT = (31 - 15);
static const uint SDRAM_INTERVAL_BSTOPRE_SHIFT = (31 - 31);
/* Mask for the DDR SDRAM Mode Control register */
static const u32 SDRAM_CFG_MEM_EN = 0x80000000;
int dram_init(void)
{
struct udevice *ram_ctrl;
int ret;
/* Current assumption: There is only one RAM controller */
ret = uclass_first_device_err(UCLASS_RAM, &ram_ctrl);
if (ret) {
debug("%s: uclass_first_device_err failed: %d\n",
__func__, ret);
return ret;
}
/* FIXME(mario.six@gdsys.cc): Set gd->ram_size? */
return 0;
}
phys_size_t get_effective_memsize(void)
{
if (!IS_ENABLED(CONFIG_VERY_BIG_RAM))
return gd->ram_size;
/* Limit stack to what we can reasonable map */
return ((gd->ram_size > CONFIG_MAX_MEM_MAPPED) ?
CONFIG_MAX_MEM_MAPPED : gd->ram_size);
}
/**
* struct mpc83xx_sdram_priv - Private data for MPC83xx RAM controllers
* @total_size: The total size of all RAM modules associated with this RAM
* controller in bytes
*/
struct mpc83xx_sdram_priv {
ulong total_size;
};
/**
* mpc83xx_sdram_static_init() - Statically initialize a RAM module.
* @node: Device tree node associated with ths module in question
* @cs: The chip select to use for this RAM module
* @mapaddr: The address where the RAM module should be mapped
* @size: The size of the RAM module to be mapped in bytes
*
* Return: 0 if OK, -ve on error
*/
static int mpc83xx_sdram_static_init(ofnode node, u32 cs, u32 mapaddr, u32 size)
{
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
u32 msize = size;
u32 msize_log2 = __ilog2(msize);
u32 auto_precharge, odt_rd_cfg, odt_wr_cfg, bank_bits, row_bits,
col_bits;
u32 bank_bits_mask, row_bits_mask, col_bits_mask;
/* Configure the DDR local access window */
out_be32(&im->sysconf.ddrlaw[cs].bar, mapaddr & 0xfffff000);
out_be32(&im->sysconf.ddrlaw[cs].ar, LBLAWAR_EN | (msize_log2 - 1));
out_be32(&im->ddr.csbnds[cs].csbnds, (msize - 1) >> 24);
auto_precharge = ofnode_read_u32_default(node, "auto_precharge", 0);
switch (auto_precharge) {
case AUTO_PRECHARGE_ENABLE:
case AUTO_PRECHARGE_DISABLE:
break;
default:
debug("%s: auto_precharge value %d invalid.\n",
ofnode_get_name(node), auto_precharge);
return -EINVAL;
}
odt_rd_cfg = ofnode_read_u32_default(node, "odt_rd_cfg", 0);
switch (odt_rd_cfg) {
case ODT_RD_ONLY_OTHER_DIMM:
if (!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_rd_cfg value %d invalid.\n",
ofnode_get_name(node), odt_rd_cfg);
return -EINVAL;
}
/* fall through */
case ODT_RD_NEVER:
case ODT_RD_ONLY_CURRENT:
case ODT_RD_ONLY_OTHER_CS:
if (!IS_ENABLED(CONFIG_ARCH_MPC830X) &&
!IS_ENABLED(CONFIG_ARCH_MPC831X) &&
!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_rd_cfg value %d invalid.\n",
ofnode_get_name(node), odt_rd_cfg);
return -EINVAL;
}
/* fall through */
/* Only MPC832x knows this value */
case ODT_RD_ALL:
break;
default:
debug("%s: odt_rd_cfg value %d invalid.\n",
ofnode_get_name(node), odt_rd_cfg);
return -EINVAL;
}
odt_wr_cfg = ofnode_read_u32_default(node, "odt_wr_cfg", 0);
switch (odt_wr_cfg) {
case ODT_WR_ONLY_OTHER_DIMM:
if (!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_wr_cfg value %d invalid.\n",
ofnode_get_name(node), odt_wr_cfg);
return -EINVAL;
}
/* fall through */
case ODT_WR_NEVER:
case ODT_WR_ONLY_CURRENT:
case ODT_WR_ONLY_OTHER_CS:
if (!IS_ENABLED(CONFIG_ARCH_MPC830X) &&
!IS_ENABLED(CONFIG_ARCH_MPC831X) &&
!IS_ENABLED(CONFIG_ARCH_MPC8360) &&
!IS_ENABLED(CONFIG_ARCH_MPC837X)) {
debug("%s: odt_wr_cfg value %d invalid.\n",
ofnode_get_name(node), odt_wr_cfg);
return -EINVAL;
}
/* fall through */
/* MPC832x only knows this value */
case ODT_WR_ALL:
break;
default:
debug("%s: odt_wr_cfg value %d invalid.\n",
ofnode_get_name(node), odt_wr_cfg);
return -EINVAL;
}
bank_bits = ofnode_read_u32_default(node, "bank_bits", 0);
switch (bank_bits) {
case 2:
bank_bits_mask = BANK_BITS_2;
break;
case 3:
bank_bits_mask = BANK_BITS_3;
break;
default:
debug("%s: bank_bits value %d invalid.\n",
ofnode_get_name(node), bank_bits);
return -EINVAL;
}
row_bits = ofnode_read_u32_default(node, "row_bits", 0);
switch (row_bits) {
case 12:
row_bits_mask = ROW_BITS_12;
break;
case 13:
row_bits_mask = ROW_BITS_13;
break;
case 14:
row_bits_mask = ROW_BITS_14;
break;
default:
debug("%s: row_bits value %d invalid.\n",
ofnode_get_name(node), row_bits);
return -EINVAL;
}
col_bits = ofnode_read_u32_default(node, "col_bits", 0);
switch (col_bits) {
case 8:
col_bits_mask = COL_BITS_8;
break;
case 9:
col_bits_mask = COL_BITS_9;
break;
case 10:
col_bits_mask = COL_BITS_10;
break;
case 11:
col_bits_mask = COL_BITS_11;
break;
default:
debug("%s: col_bits value %d invalid.\n",
ofnode_get_name(node), col_bits);
return -EINVAL;
}
/* Write CS config value */
out_be32(&im->ddr.cs_config[cs], CSCONFIG_ENABLE | auto_precharge |
odt_rd_cfg | odt_wr_cfg |
bank_bits_mask | row_bits_mask |
col_bits_mask);
return 0;
}
/**
* mpc83xx_sdram_spd_init() - Initialize a RAM module using a SPD flash.
* @node: Device tree node associated with ths module in question
* @cs: The chip select to use for this RAM module
* @mapaddr: The address where the RAM module should be mapped
* @size: The size of the RAM module to be mapped in bytes
*
* Return: 0 if OK, -ve on error
*/
static int mpc83xx_sdram_spd_init(ofnode node, u32 cs, u32 mapaddr, u32 size)
{
/* TODO(mario.six@gdsys.cc): Implement */
return 0;
}
static int mpc83xx_sdram_ofdata_to_platdata(struct udevice *dev)
{
return 0;
}
static int mpc83xx_sdram_probe(struct udevice *dev)
{
struct mpc83xx_sdram_priv *priv = dev_get_priv(dev);
immap_t *im = (immap_t *)CONFIG_SYS_IMMR;
int ret = 0;
ofnode subnode;
/* DDR control driver register values */
u32 dso, pz_override, nz_override, odt_term, ddr_type, mvref_sel, m_odr;
u32 ddrcdr;
/* DDR SDRAM Clock Control register values */
u32 clock_adjust;
/* DDR SDRAM Timing Configuration 3 register values */
u32 ext_refresh_rec, ext_refresh_rec_mask;
/* DDR SDRAM Timing Configuration 0 register values */
u32 read_to_write, write_to_read, read_to_read, write_to_write,
active_powerdown_exit, precharge_powerdown_exit,
odt_powerdown_exit, mode_reg_set_cycle;
u32 timing_cfg_0;
/* DDR SDRAM Timing Configuration 1 register values */
u32 precharge_to_activate, activate_to_precharge,
activate_to_readwrite, mcas_latency, refresh_recovery,
last_data_to_precharge, activate_to_activate,
last_write_data_to_read;
u32 timing_cfg_1;
/* DDR SDRAM Timing Configuration 2 register values */
u32 additive_latency, mcas_to_preamble_override, write_latency,
read_to_precharge, write_cmd_to_write_data,
minimum_cke_pulse_width, four_activates_window;
u32 timing_cfg_2;
/* DDR SDRAM Control Configuration register values */
u32 self_refresh, ecc, registered_dram, sdram_type,
dynamic_power_management, databus_width, nc_auto_precharge,
timing_2t, bank_interleaving_ctrl, precharge_bit_8, half_strength,
bypass_initialization;
u32 sdram_cfg;
/* DDR SDRAM Control Configuration 2 register values */
u32 force_self_refresh, dll_reset, dqs_config, odt_config,
posted_refreshes;
u32 sdram_cfg2;
/* DDR SDRAM Mode Configuration register values */
u32 sdmode, esdmode;
u32 sdram_mode;
/* DDR SDRAM Mode Configuration 2 register values */
u32 esdmode2, esdmode3;
u32 sdram_mode2;
/* DDR SDRAM Interval Configuration register values */
u32 refresh_interval, precharge_interval;
u32 sdram_interval;
priv->total_size = 0;
/* Disable both banks initially (might be re-enabled in loop below) */
out_be32(&im->ddr.cs_config[0], 0);
out_be32(&im->ddr.cs_config[1], 0);
dso = dev_read_u32_default(dev, "driver_software_override", 0);
if (dso > 1) {
debug("%s: driver_software_override value %d invalid.\n",
dev->name, dso);
return -EINVAL;
}
pz_override = dev_read_u32_default(dev, "p_impedance_override", 0);
switch (pz_override) {
case DSO_P_IMPEDANCE_HIGHEST_Z:
case DSO_P_IMPEDANCE_MUCH_HIGHER_Z:
case DSO_P_IMPEDANCE_HIGHER_Z:
case DSO_P_IMPEDANCE_NOMINAL:
case DSO_P_IMPEDANCE_LOWER_Z:
break;
default:
debug("%s: p_impedance_override value %d invalid.\n",
dev->name, pz_override);
return -EINVAL;
}
nz_override = dev_read_u32_default(dev, "n_impedance_override", 0);
switch (nz_override) {
case DSO_N_IMPEDANCE_HIGHEST_Z:
case DSO_N_IMPEDANCE_MUCH_HIGHER_Z:
case DSO_N_IMPEDANCE_HIGHER_Z:
case DSO_N_IMPEDANCE_NOMINAL:
case DSO_N_IMPEDANCE_LOWER_Z:
break;
default:
debug("%s: n_impedance_override value %d invalid.\n",
dev->name, nz_override);
return -EINVAL;
}
odt_term = dev_read_u32_default(dev, "odt_termination_value", 0);
if (odt_term > 1) {
debug("%s: odt_termination_value value %d invalid.\n",
dev->name, odt_term);
return -EINVAL;
}
ddr_type = dev_read_u32_default(dev, "ddr_type", 0);
if (ddr_type > 1) {
debug("%s: ddr_type value %d invalid.\n",
dev->name, ddr_type);
return -EINVAL;
}
mvref_sel = dev_read_u32_default(dev, "mvref_sel", 0);
if (mvref_sel > 1) {
debug("%s: mvref_sel value %d invalid.\n",
dev->name, mvref_sel);
return -EINVAL;
}
m_odr = dev_read_u32_default(dev, "m_odr", 0);
if (mvref_sel > 1) {
debug("%s: m_odr value %d invalid.\n",
dev->name, m_odr);
return -EINVAL;
}
ddrcdr = dso << (31 - 1) |
pz_override << (31 - 5) |
nz_override << (31 - 9) |
odt_term << (31 - 12) |
ddr_type << (31 - 13) |
mvref_sel << (31 - 29) |
m_odr << (31 - 30) | 1;
/* Configure the DDR control driver register */
out_be32(&im->sysconf.ddrcdr, ddrcdr);
dev_for_each_subnode(subnode, dev) {
u32 val[3];
u32 cs, addr, size;
/* CS, map address, size -> three values */
ofnode_read_u32_array(subnode, "reg", val, 3);
cs = val[0];
addr = val[1];
size = val[2];
if (cs > 1) {
debug("%s: chip select value %d invalid.\n",
dev->name, cs);
return -EINVAL;
}
/* TODO(mario.six@gdsys.cc): Sanity check for size. */
if (ofnode_read_bool(subnode, "read-spd"))
ret = mpc83xx_sdram_spd_init(subnode, cs, addr, size);
else
ret = mpc83xx_sdram_static_init(subnode, cs, addr,
size);
if (ret) {
debug("%s: RAM init failed.\n", dev->name);
return ret;
}
};
/*
* TODO(mario.six@gdsys.cc): This should only occur for static
* configuration
*/
clock_adjust = dev_read_u32_default(dev, "clock_adjust", 0);
switch (clock_adjust) {
case CLOCK_ADJUST_025:
case CLOCK_ADJUST_05:
case CLOCK_ADJUST_075:
case CLOCK_ADJUST_1:
break;
default:
debug("%s: clock_adjust value %d invalid.\n",
dev->name, clock_adjust);
return -EINVAL;
}
/* Configure the DDR SDRAM Clock Control register */
out_be32(&im->ddr.sdram_clk_cntl, clock_adjust);
ext_refresh_rec = dev_read_u32_default(dev, "ext_refresh_rec", 0);
switch (ext_refresh_rec) {
case 0:
ext_refresh_rec_mask = 0 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 16:
ext_refresh_rec_mask = 1 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 32:
ext_refresh_rec_mask = 2 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 48:
ext_refresh_rec_mask = 3 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 64:
ext_refresh_rec_mask = 4 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 80:
ext_refresh_rec_mask = 5 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 96:
ext_refresh_rec_mask = 6 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
case 112:
ext_refresh_rec_mask = 7 << TIMING_CFG3_EXT_REFREC_SHIFT;
break;
default:
debug("%s: ext_refresh_rec value %d invalid.\n",
dev->name, ext_refresh_rec);
return -EINVAL;
}
/* Configure the DDR SDRAM Timing Configuration 3 register */
out_be32(&im->ddr.timing_cfg_3, ext_refresh_rec_mask);
read_to_write = dev_read_u32_default(dev, "read_to_write", 0);
if (read_to_write > 3) {
debug("%s: read_to_write value %d invalid.\n",
dev->name, read_to_write);
return -EINVAL;
}
write_to_read = dev_read_u32_default(dev, "write_to_read", 0);
if (write_to_read > 3) {
debug("%s: write_to_read value %d invalid.\n",
dev->name, write_to_read);
return -EINVAL;
}
read_to_read = dev_read_u32_default(dev, "read_to_read", 0);
if (read_to_read > 3) {
debug("%s: read_to_read value %d invalid.\n",
dev->name, read_to_read);
return -EINVAL;
}
write_to_write = dev_read_u32_default(dev, "write_to_write", 0);
if (write_to_write > 3) {
debug("%s: write_to_write value %d invalid.\n",
dev->name, write_to_write);
return -EINVAL;
}
active_powerdown_exit =
dev_read_u32_default(dev, "active_powerdown_exit", 0);
if (active_powerdown_exit > 7) {
debug("%s: active_powerdown_exit value %d invalid.\n",
dev->name, active_powerdown_exit);
return -EINVAL;
}
precharge_powerdown_exit =
dev_read_u32_default(dev, "precharge_powerdown_exit", 0);
if (precharge_powerdown_exit > 7) {
debug("%s: precharge_powerdown_exit value %d invalid.\n",
dev->name, precharge_powerdown_exit);
return -EINVAL;
}
odt_powerdown_exit = dev_read_u32_default(dev, "odt_powerdown_exit", 0);
if (odt_powerdown_exit > 15) {
debug("%s: odt_powerdown_exit value %d invalid.\n",
dev->name, odt_powerdown_exit);
return -EINVAL;
}
mode_reg_set_cycle = dev_read_u32_default(dev, "mode_reg_set_cycle", 0);
if (mode_reg_set_cycle > 15) {
debug("%s: mode_reg_set_cycle value %d invalid.\n",
dev->name, mode_reg_set_cycle);
return -EINVAL;
}
timing_cfg_0 = read_to_write << TIMING_CFG0_RWT_SHIFT |
write_to_read << TIMING_CFG0_WRT_SHIFT |
read_to_read << TIMING_CFG0_RRT_SHIFT |
write_to_write << TIMING_CFG0_WWT_SHIFT |
active_powerdown_exit << TIMING_CFG0_ACT_PD_EXIT_SHIFT |
precharge_powerdown_exit << TIMING_CFG0_PRE_PD_EXIT_SHIFT |
odt_powerdown_exit << TIMING_CFG0_ODT_PD_EXIT_SHIFT |
mode_reg_set_cycle << TIMING_CFG0_MRS_CYC_SHIFT;
out_be32(&im->ddr.timing_cfg_0, timing_cfg_0);
precharge_to_activate =
dev_read_u32_default(dev, "precharge_to_activate", 0);
if (precharge_to_activate > 7 || precharge_to_activate == 0) {
debug("%s: precharge_to_activate value %d invalid.\n",
dev->name, precharge_to_activate);
return -EINVAL;
}
activate_to_precharge =
dev_read_u32_default(dev, "activate_to_precharge", 0);
if (activate_to_precharge > 19) {
debug("%s: activate_to_precharge value %d invalid.\n",
dev->name, activate_to_precharge);
return -EINVAL;
}
activate_to_readwrite =
dev_read_u32_default(dev, "activate_to_readwrite", 0);
if (activate_to_readwrite > 7 || activate_to_readwrite == 0) {
debug("%s: activate_to_readwrite value %d invalid.\n",
dev->name, activate_to_readwrite);
return -EINVAL;
}
mcas_latency = dev_read_u32_default(dev, "mcas_latency", 0);
switch (mcas_latency) {
case CASLAT_20:
case CASLAT_25:
if (!IS_ENABLED(CONFIG_ARCH_MPC8308)) {
debug("%s: MCAS latency < 3.0 unsupported on MPC8308\n",
dev->name);
return -EINVAL;
}
/* fall through */
case CASLAT_30:
case CASLAT_35:
case CASLAT_40:
case CASLAT_45:
case CASLAT_50:
case CASLAT_55:
case CASLAT_60:
case CASLAT_65:
case CASLAT_70:
case CASLAT_75:
case CASLAT_80:
break;
default:
debug("%s: mcas_latency value %d invalid.\n",
dev->name, mcas_latency);
return -EINVAL;
}
refresh_recovery = dev_read_u32_default(dev, "refresh_recovery", 0);
if (refresh_recovery > 23 || refresh_recovery < 8) {
debug("%s: refresh_recovery value %d invalid.\n",
dev->name, refresh_recovery);
return -EINVAL;
}
last_data_to_precharge =
dev_read_u32_default(dev, "last_data_to_precharge", 0);
if (last_data_to_precharge > 7 || last_data_to_precharge == 0) {
debug("%s: last_data_to_precharge value %d invalid.\n",
dev->name, last_data_to_precharge);
return -EINVAL;
}
activate_to_activate =
dev_read_u32_default(dev, "activate_to_activate", 0);
if (activate_to_activate > 7 || activate_to_activate == 0) {
debug("%s: activate_to_activate value %d invalid.\n",
dev->name, activate_to_activate);
return -EINVAL;
}
last_write_data_to_read =
dev_read_u32_default(dev, "last_write_data_to_read", 0);
if (last_write_data_to_read > 7 || last_write_data_to_read == 0) {
debug("%s: last_write_data_to_read value %d invalid.\n",
dev->name, last_write_data_to_read);
return -EINVAL;
}
timing_cfg_1 = precharge_to_activate << TIMING_CFG1_PRETOACT_SHIFT |
(activate_to_precharge > 15 ?
activate_to_precharge - 16 :
activate_to_precharge) << TIMING_CFG1_ACTTOPRE_SHIFT |
activate_to_readwrite << TIMING_CFG1_ACTTORW_SHIFT |
mcas_latency << TIMING_CFG1_CASLAT_SHIFT |
(refresh_recovery - 8) << TIMING_CFG1_REFREC_SHIFT |
last_data_to_precharge << TIMING_CFG1_WRREC_SHIFT |
activate_to_activate << TIMING_CFG1_ACTTOACT_SHIFT |
last_write_data_to_read << TIMING_CFG1_WRTORD_SHIFT;
/* Configure the DDR SDRAM Timing Configuration 1 register */
out_be32(&im->ddr.timing_cfg_1, timing_cfg_1);
additive_latency = dev_read_u32_default(dev, "additive_latency", 0);
if (additive_latency > 5) {
debug("%s: additive_latency value %d invalid.\n",
dev->name, additive_latency);
return -EINVAL;
}
mcas_to_preamble_override =
dev_read_u32_default(dev, "mcas_to_preamble_override", 0);
switch (mcas_to_preamble_override) {
case READ_LAT_PLUS_1:
case READ_LAT:
case READ_LAT_PLUS_1_4:
case READ_LAT_PLUS_1_2:
case READ_LAT_PLUS_3_4:
case READ_LAT_PLUS_5_4:
case READ_LAT_PLUS_3_2:
case READ_LAT_PLUS_7_4:
case READ_LAT_PLUS_2:
case READ_LAT_PLUS_9_4:
case READ_LAT_PLUS_5_2:
case READ_LAT_PLUS_11_4:
case READ_LAT_PLUS_3:
case READ_LAT_PLUS_13_4:
case READ_LAT_PLUS_7_2:
case READ_LAT_PLUS_15_4:
case READ_LAT_PLUS_4:
case READ_LAT_PLUS_17_4:
case READ_LAT_PLUS_9_2:
case READ_LAT_PLUS_19_4:
break;
default:
debug("%s: mcas_to_preamble_override value %d invalid.\n",
dev->name, mcas_to_preamble_override);
return -EINVAL;
}
write_latency = dev_read_u32_default(dev, "write_latency", 0);
if (write_latency > 7 || write_latency == 0) {
debug("%s: write_latency value %d invalid.\n",
dev->name, write_latency);
return -EINVAL;
}
read_to_precharge = dev_read_u32_default(dev, "read_to_precharge", 0);
if (read_to_precharge > 4 || read_to_precharge == 0) {
debug("%s: read_to_precharge value %d invalid.\n",
dev->name, read_to_precharge);
return -EINVAL;
}
write_cmd_to_write_data =
dev_read_u32_default(dev, "write_cmd_to_write_data", 0);
switch (write_cmd_to_write_data) {
case CLOCK_DELAY_0:
case CLOCK_DELAY_1_4:
case CLOCK_DELAY_1_2:
case CLOCK_DELAY_3_4:
case CLOCK_DELAY_1:
case CLOCK_DELAY_5_4:
case CLOCK_DELAY_3_2:
break;
default:
debug("%s: write_cmd_to_write_data value %d invalid.\n",
dev->name, write_cmd_to_write_data);
return -EINVAL;
}
minimum_cke_pulse_width =
dev_read_u32_default(dev, "minimum_cke_pulse_width", 0);
if (minimum_cke_pulse_width > 4 || minimum_cke_pulse_width == 0) {
debug("%s: minimum_cke_pulse_width value %d invalid.\n",
dev->name, minimum_cke_pulse_width);
return -EINVAL;
}
four_activates_window =
dev_read_u32_default(dev, "four_activates_window", 0);
if (four_activates_window > 20 || four_activates_window == 0) {
debug("%s: four_activates_window value %d invalid.\n",
dev->name, four_activates_window);
return -EINVAL;
}
timing_cfg_2 = additive_latency << TIMING_CFG2_ADD_LAT_SHIFT |
mcas_to_preamble_override << TIMING_CFG2_CPO_SHIFT |
write_latency << TIMING_CFG2_WR_LAT_DELAY_SHIFT |
read_to_precharge << TIMING_CFG2_RD_TO_PRE_SHIFT |
write_cmd_to_write_data << TIMING_CFG2_WR_DATA_DELAY_SHIFT |
minimum_cke_pulse_width << TIMING_CFG2_CKE_PLS_SHIFT |
four_activates_window << TIMING_CFG2_FOUR_ACT_SHIFT;
out_be32(&im->ddr.timing_cfg_2, timing_cfg_2);
self_refresh = dev_read_u32_default(dev, "self_refresh", 0);
switch (self_refresh) {
case SREN_DISABLE:
case SREN_ENABLE:
break;
default:
debug("%s: self_refresh value %d invalid.\n",
dev->name, self_refresh);
return -EINVAL;
}
ecc = dev_read_u32_default(dev, "ecc", 0);
switch (ecc) {
case ECC_DISABLE:
case ECC_ENABLE:
break;
default:
debug("%s: ecc value %d invalid.\n", dev->name, ecc);
return -EINVAL;
}
registered_dram = dev_read_u32_default(dev, "registered_dram", 0);
switch (registered_dram) {
case RD_DISABLE:
case RD_ENABLE:
break;
default:
debug("%s: registered_dram value %d invalid.\n",
dev->name, registered_dram);
return -EINVAL;
}
sdram_type = dev_read_u32_default(dev, "sdram_type", 0);
switch (sdram_type) {
case TYPE_DDR1:
case TYPE_DDR2:
break;
default:
debug("%s: sdram_type value %d invalid.\n",
dev->name, sdram_type);
return -EINVAL;
}
dynamic_power_management =
dev_read_u32_default(dev, "dynamic_power_management", 0);
switch (dynamic_power_management) {
case DYN_PWR_DISABLE:
case DYN_PWR_ENABLE:
break;
default:
debug("%s: dynamic_power_management value %d invalid.\n",
dev->name, dynamic_power_management);
return -EINVAL;
}
databus_width = dev_read_u32_default(dev, "databus_width", 0);
switch (databus_width) {
case DATA_BUS_WIDTH_16:
case DATA_BUS_WIDTH_32:
break;
default:
debug("%s: databus_width value %d invalid.\n",
dev->name, databus_width);
return -EINVAL;
}
nc_auto_precharge = dev_read_u32_default(dev, "nc_auto_precharge", 0);
switch (nc_auto_precharge) {
case NCAP_DISABLE:
case NCAP_ENABLE:
break;
default:
debug("%s: nc_auto_precharge value %d invalid.\n",
dev->name, nc_auto_precharge);
return -EINVAL;
}
timing_2t = dev_read_u32_default(dev, "timing_2t", 0);
switch (timing_2t) {
case TIMING_1T:
case TIMING_2T:
break;
default:
debug("%s: timing_2t value %d invalid.\n",
dev->name, timing_2t);
return -EINVAL;
}
bank_interleaving_ctrl =
dev_read_u32_default(dev, "bank_interleaving_ctrl", 0);
switch (bank_interleaving_ctrl) {
case INTERLEAVE_NONE:
case INTERLEAVE_1_AND_2:
break;
default:
debug("%s: bank_interleaving_ctrl value %d invalid.\n",
dev->name, bank_interleaving_ctrl);
return -EINVAL;
}
precharge_bit_8 = dev_read_u32_default(dev, "precharge_bit_8", 0);
switch (precharge_bit_8) {
case PRECHARGE_MA_10:
case PRECHARGE_MA_8:
break;
default:
debug("%s: precharge_bit_8 value %d invalid.\n",
dev->name, precharge_bit_8);
return -EINVAL;
}
half_strength = dev_read_u32_default(dev, "half_strength", 0);
switch (half_strength) {
case STRENGTH_FULL:
case STRENGTH_HALF:
break;
default:
debug("%s: half_strength value %d invalid.\n",
dev->name, half_strength);
return -EINVAL;
}
bypass_initialization =
dev_read_u32_default(dev, "bypass_initialization", 0);
switch (bypass_initialization) {
case INITIALIZATION_DONT_BYPASS:
case INITIALIZATION_BYPASS:
break;
default:
debug("%s: bypass_initialization value %d invalid.\n",
dev->name, bypass_initialization);
return -EINVAL;
}
sdram_cfg = self_refresh << SDRAM_CFG_SREN_SHIFT |
ecc << SDRAM_CFG_ECC_EN_SHIFT |
registered_dram << SDRAM_CFG_RD_EN_SHIFT |
sdram_type << SDRAM_CFG_SDRAM_TYPE_SHIFT |
dynamic_power_management << SDRAM_CFG_DYN_PWR_SHIFT |
databus_width << SDRAM_CFG_DBW_SHIFT |
nc_auto_precharge << SDRAM_CFG_NCAP_SHIFT |
timing_2t << SDRAM_CFG_2T_EN_SHIFT |
bank_interleaving_ctrl << SDRAM_CFG_BA_INTLV_CTL_SHIFT |
precharge_bit_8 << SDRAM_CFG_PCHB8_SHIFT |
half_strength << SDRAM_CFG_HSE_SHIFT |
bypass_initialization << SDRAM_CFG_BI_SHIFT;
out_be32(&im->ddr.sdram_cfg, sdram_cfg);
force_self_refresh = dev_read_u32_default(dev, "force_self_refresh", 0);
switch (force_self_refresh) {
case MODE_NORMAL:
case MODE_REFRESH:
break;
default:
debug("%s: force_self_refresh value %d invalid.\n",
dev->name, force_self_refresh);
return -EINVAL;
}
dll_reset = dev_read_u32_default(dev, "dll_reset", 0);
switch (dll_reset) {
case DLL_RESET_ENABLE:
case DLL_RESET_DISABLE:
break;
default:
debug("%s: dll_reset value %d invalid.\n",
dev->name, dll_reset);
return -EINVAL;
}
dqs_config = dev_read_u32_default(dev, "dqs_config", 0);
switch (dqs_config) {
case DQS_TRUE:
break;
default:
debug("%s: dqs_config value %d invalid.\n",
dev->name, dqs_config);
return -EINVAL;
}
odt_config = dev_read_u32_default(dev, "odt_config", 0);
switch (odt_config) {
case ODT_ASSERT_NEVER:
case ODT_ASSERT_WRITES:
case ODT_ASSERT_READS:
case ODT_ASSERT_ALWAYS:
break;
default:
debug("%s: odt_config value %d invalid.\n",
dev->name, odt_config);
return -EINVAL;
}
posted_refreshes = dev_read_u32_default(dev, "posted_refreshes", 0);
if (posted_refreshes > 8 || posted_refreshes == 0) {
debug("%s: posted_refreshes value %d invalid.\n",
dev->name, posted_refreshes);
return -EINVAL;
}
sdram_cfg2 = force_self_refresh << SDRAM_CFG2_FRC_SR_SHIFT |
dll_reset << SDRAM_CFG2_DLL_RST_DIS |
dqs_config << SDRAM_CFG2_DQS_CFG |
odt_config << SDRAM_CFG2_ODT_CFG |
posted_refreshes << SDRAM_CFG2_NUM_PR;
out_be32(&im->ddr.sdram_cfg2, sdram_cfg2);
sdmode = dev_read_u32_default(dev, "sdmode", 0);
if (sdmode > 0xFFFF) {
debug("%s: sdmode value %d invalid.\n",
dev->name, sdmode);
return -EINVAL;
}
esdmode = dev_read_u32_default(dev, "esdmode", 0);
if (esdmode > 0xFFFF) {
debug("%s: esdmode value %d invalid.\n", dev->name, esdmode);
return -EINVAL;
}
sdram_mode = sdmode << SDRAM_MODE_SD_SHIFT |
esdmode << SDRAM_MODE_ESD_SHIFT;
out_be32(&im->ddr.sdram_mode, sdram_mode);
esdmode2 = dev_read_u32_default(dev, "esdmode2", 0);
if (esdmode2 > 0xFFFF) {
debug("%s: esdmode2 value %d invalid.\n", dev->name, esdmode2);
return -EINVAL;
}
esdmode3 = dev_read_u32_default(dev, "esdmode3", 0);
if (esdmode3 > 0xFFFF) {
debug("%s: esdmode3 value %d invalid.\n", dev->name, esdmode3);
return -EINVAL;
}
sdram_mode2 = esdmode2 << SDRAM_MODE2_ESD2_SHIFT |
esdmode3 << SDRAM_MODE2_ESD3_SHIFT;
out_be32(&im->ddr.sdram_mode2, sdram_mode2);
refresh_interval = dev_read_u32_default(dev, "refresh_interval", 0);
if (refresh_interval > 0xFFFF) {
debug("%s: refresh_interval value %d invalid.\n",
dev->name, refresh_interval);
return -EINVAL;
}
precharge_interval = dev_read_u32_default(dev, "precharge_interval", 0);
if (precharge_interval > 0x3FFF) {
debug("%s: precharge_interval value %d invalid.\n",
dev->name, precharge_interval);
return -EINVAL;
}
sdram_interval = refresh_interval << SDRAM_INTERVAL_REFINT_SHIFT |
precharge_interval << SDRAM_INTERVAL_BSTOPRE_SHIFT;
out_be32(&im->ddr.sdram_interval, sdram_interval);
sync();
/* Enable DDR controller */
setbits_be32(&im->ddr.sdram_cfg, SDRAM_CFG_MEM_EN);
sync();
dev_for_each_subnode(subnode, dev) {
u32 val[3];
u32 addr, size;
/* CS, map address, size -> three values */
ofnode_read_u32_array(subnode, "reg", val, 3);
addr = val[1];
size = val[2];
priv->total_size += get_ram_size((long int *)addr, size);
};
gd->ram_size = priv->total_size;
return 0;
}
static int mpc83xx_sdram_get_info(struct udevice *dev, struct ram_info *info)
{
/* TODO(mario.six@gdsys.cc): Implement */
return 0;
}
static struct ram_ops mpc83xx_sdram_ops = {
.get_info = mpc83xx_sdram_get_info,
};
static const struct udevice_id mpc83xx_sdram_ids[] = {
{ .compatible = "fsl,mpc83xx-mem-controller" },
{ /* sentinel */ }
};
U_BOOT_DRIVER(mpc83xx_sdram) = {
.name = "mpc83xx_sdram",
.id = UCLASS_RAM,
.of_match = mpc83xx_sdram_ids,
.ops = &mpc83xx_sdram_ops,
.ofdata_to_platdata = mpc83xx_sdram_ofdata_to_platdata,
.probe = mpc83xx_sdram_probe,
.priv_auto = sizeof(struct mpc83xx_sdram_priv),
};