u-boot-brain/drivers/mmc/mmc.c
Łukasz Majewski 6272203641 mmc:fix: Set mmc width according to MMC host capabilities
This patch sets the MMC width according to the MMC host capabilities.
It turned out, that there are some targets (e.g. GONI), which are able
to read data from SPI only at 4 bit mode.
This patch restricts the width number according to the MMC host.

Signed-off-by: Lukasz Majewski <l.majewski@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Andy Fleming <afleming@gmail.com>
2012-05-08 18:02:21 -05:00

1413 lines
29 KiB
C

/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the Linux code
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <linux/list.h>
#include <div64.h>
/* Set block count limit because of 16 bit register limit on some hardware*/
#ifndef CONFIG_SYS_MMC_MAX_BLK_COUNT
#define CONFIG_SYS_MMC_MAX_BLK_COUNT 65535
#endif
static struct list_head mmc_devices;
static int cur_dev_num = -1;
int __board_mmc_getcd(struct mmc *mmc) {
return -1;
}
int board_mmc_getcd(struct mmc *mmc)__attribute__((weak,
alias("__board_mmc_getcd")));
#ifdef CONFIG_MMC_BOUNCE_BUFFER
static int mmc_bounce_need_bounce(struct mmc_data *orig)
{
ulong addr, len;
if (orig->flags & MMC_DATA_READ)
addr = (ulong)orig->dest;
else
addr = (ulong)orig->src;
if (addr % ARCH_DMA_MINALIGN) {
debug("MMC: Unaligned data destination address %08lx!\n", addr);
return 1;
}
len = (ulong)(orig->blocksize * orig->blocks);
if (len % ARCH_DMA_MINALIGN) {
debug("MMC: Unaligned data destination length %08lx!\n", len);
return 1;
}
return 0;
}
static int mmc_bounce_buffer_start(struct mmc_data *backup,
struct mmc_data *orig)
{
ulong origlen, len;
void *buffer;
if (!orig)
return 0;
if (!mmc_bounce_need_bounce(orig))
return 0;
memcpy(backup, orig, sizeof(struct mmc_data));
origlen = orig->blocksize * orig->blocks;
len = roundup(origlen, ARCH_DMA_MINALIGN);
buffer = memalign(ARCH_DMA_MINALIGN, len);
if (!buffer) {
puts("MMC: Error allocating MMC bounce buffer!\n");
return 1;
}
if (orig->flags & MMC_DATA_READ) {
orig->dest = buffer;
} else {
memcpy(buffer, orig->src, origlen);
orig->src = buffer;
}
return 0;
}
static void mmc_bounce_buffer_stop(struct mmc_data *backup,
struct mmc_data *orig)
{
ulong len;
if (!orig)
return;
if (!mmc_bounce_need_bounce(backup))
return;
if (backup->flags & MMC_DATA_READ) {
len = backup->blocksize * backup->blocks;
memcpy(backup->dest, orig->dest, len);
free(orig->dest);
orig->dest = backup->dest;
} else {
free((void *)orig->src);
orig->src = backup->src;
}
return;
}
#else
static inline int mmc_bounce_buffer_start(struct mmc_data *backup,
struct mmc_data *orig) { return 0; }
static inline void mmc_bounce_buffer_stop(struct mmc_data *backup,
struct mmc_data *orig) { }
#endif
int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
struct mmc_data backup;
int ret;
memset(&backup, 0, sizeof(backup));
ret = mmc_bounce_buffer_start(&backup, data);
if (ret)
return ret;
#ifdef CONFIG_MMC_TRACE
int i;
u8 *ptr;
printf("CMD_SEND:%d\n", cmd->cmdidx);
printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg);
printf("\t\tFLAG\t\t\t %d\n", cmd->flags);
ret = mmc->send_cmd(mmc, cmd, data);
switch (cmd->resp_type) {
case MMC_RSP_NONE:
printf("\t\tMMC_RSP_NONE\n");
break;
case MMC_RSP_R1:
printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R1b:
printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n",
cmd->response[0]);
break;
case MMC_RSP_R2:
printf("\t\tMMC_RSP_R2\t\t 0x%08X \n",
cmd->response[0]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[1]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[2]);
printf("\t\t \t\t 0x%08X \n",
cmd->response[3]);
printf("\n");
printf("\t\t\t\t\tDUMPING DATA\n");
for (i = 0; i < 4; i++) {
int j;
printf("\t\t\t\t\t%03d - ", i*4);
ptr = (u8 *)&cmd->response[i];
ptr += 3;
for (j = 0; j < 4; j++)
printf("%02X ", *ptr--);
printf("\n");
}
break;
case MMC_RSP_R3:
printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n",
cmd->response[0]);
break;
default:
printf("\t\tERROR MMC rsp not supported\n");
break;
}
#else
ret = mmc->send_cmd(mmc, cmd, data);
#endif
mmc_bounce_buffer_stop(&backup, data);
return ret;
}
int mmc_send_status(struct mmc *mmc, int timeout)
{
struct mmc_cmd cmd;
int err, retries = 5;
#ifdef CONFIG_MMC_TRACE
int status;
#endif
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = MMC_RSP_R1;
if (!mmc_host_is_spi(mmc))
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
do {
err = mmc_send_cmd(mmc, &cmd, NULL);
if (!err) {
if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) &&
(cmd.response[0] & MMC_STATUS_CURR_STATE) !=
MMC_STATE_PRG)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
printf("Status Error: 0x%08X\n",
cmd.response[0]);
return COMM_ERR;
}
} else if (--retries < 0)
return err;
udelay(1000);
} while (timeout--);
#ifdef CONFIG_MMC_TRACE
status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9;
printf("CURR STATE:%d\n", status);
#endif
if (!timeout) {
printf("Timeout waiting card ready\n");
return TIMEOUT;
}
return 0;
}
int mmc_set_blocklen(struct mmc *mmc, int len)
{
struct mmc_cmd cmd;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return mmc_send_cmd(mmc, &cmd, NULL);
}
struct mmc *find_mmc_device(int dev_num)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
if (m->block_dev.dev == dev_num)
return m;
}
printf("MMC Device %d not found\n", dev_num);
return NULL;
}
static ulong mmc_erase_t(struct mmc *mmc, ulong start, lbaint_t blkcnt)
{
struct mmc_cmd cmd;
ulong end;
int err, start_cmd, end_cmd;
if (mmc->high_capacity)
end = start + blkcnt - 1;
else {
end = (start + blkcnt - 1) * mmc->write_bl_len;
start *= mmc->write_bl_len;
}
if (IS_SD(mmc)) {
start_cmd = SD_CMD_ERASE_WR_BLK_START;
end_cmd = SD_CMD_ERASE_WR_BLK_END;
} else {
start_cmd = MMC_CMD_ERASE_GROUP_START;
end_cmd = MMC_CMD_ERASE_GROUP_END;
}
cmd.cmdidx = start_cmd;
cmd.cmdarg = start;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
cmd.cmdidx = end_cmd;
cmd.cmdarg = end;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
cmd.cmdidx = MMC_CMD_ERASE;
cmd.cmdarg = SECURE_ERASE;
cmd.resp_type = MMC_RSP_R1b;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
goto err_out;
return 0;
err_out:
puts("mmc erase failed\n");
return err;
}
static unsigned long
mmc_berase(int dev_num, unsigned long start, lbaint_t blkcnt)
{
int err = 0;
struct mmc *mmc = find_mmc_device(dev_num);
lbaint_t blk = 0, blk_r = 0;
if (!mmc)
return -1;
if ((start % mmc->erase_grp_size) || (blkcnt % mmc->erase_grp_size))
printf("\n\nCaution! Your devices Erase group is 0x%x\n"
"The erase range would be change to 0x%lx~0x%lx\n\n",
mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
((start + blkcnt + mmc->erase_grp_size)
& ~(mmc->erase_grp_size - 1)) - 1);
while (blk < blkcnt) {
blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
mmc->erase_grp_size : (blkcnt - blk);
err = mmc_erase_t(mmc, start + blk, blk_r);
if (err)
break;
blk += blk_r;
}
return blk;
}
static ulong
mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
{
struct mmc_cmd cmd;
struct mmc_data data;
int timeout = 1000;
if ((start + blkcnt) > mmc->block_dev.lba) {
printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
start + blkcnt, mmc->block_dev.lba);
return 0;
}
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->write_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.src = src;
data.blocks = blkcnt;
data.blocksize = mmc->write_bl_len;
data.flags = MMC_DATA_WRITE;
if (mmc_send_cmd(mmc, &cmd, &data)) {
printf("mmc write failed\n");
return 0;
}
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if (!mmc_host_is_spi(mmc) && blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
printf("mmc fail to send stop cmd\n");
return 0;
}
}
/* Waiting for the ready status */
if (mmc_send_status(mmc, timeout))
return 0;
return blkcnt;
}
static ulong
mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
{
lbaint_t cur, blocks_todo = blkcnt;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if (mmc_set_blocklen(mmc, mmc->write_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_write_blocks(mmc, start, cur, src) != cur)
return 0;
blocks_todo -= cur;
start += cur;
src += cur * mmc->write_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
int mmc_read_blocks(struct mmc *mmc, void *dst, ulong start, lbaint_t blkcnt)
{
struct mmc_cmd cmd;
struct mmc_data data;
if (blkcnt > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (mmc->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * mmc->read_bl_len;
cmd.resp_type = MMC_RSP_R1;
cmd.flags = 0;
data.dest = dst;
data.blocks = blkcnt;
data.blocksize = mmc->read_bl_len;
data.flags = MMC_DATA_READ;
if (mmc_send_cmd(mmc, &cmd, &data))
return 0;
if (blkcnt > 1) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_R1b;
cmd.flags = 0;
if (mmc_send_cmd(mmc, &cmd, NULL)) {
printf("mmc fail to send stop cmd\n");
return 0;
}
}
return blkcnt;
}
static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
{
lbaint_t cur, blocks_todo = blkcnt;
if (blkcnt == 0)
return 0;
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return 0;
if ((start + blkcnt) > mmc->block_dev.lba) {
printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
start + blkcnt, mmc->block_dev.lba);
return 0;
}
if (mmc_set_blocklen(mmc, mmc->read_bl_len))
return 0;
do {
cur = (blocks_todo > mmc->b_max) ? mmc->b_max : blocks_todo;
if(mmc_read_blocks(mmc, dst, start, cur) != cur)
return 0;
blocks_todo -= cur;
start += cur;
dst += cur * mmc->read_bl_len;
} while (blocks_todo > 0);
return blkcnt;
}
int mmc_go_idle(struct mmc* mmc)
{
struct mmc_cmd cmd;
int err;
udelay(1000);
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = MMC_RSP_NONE;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(2000);
return 0;
}
int
sd_send_op_cond(struct mmc *mmc)
{
int timeout = 1000;
int err;
struct mmc_cmd cmd;
do {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 :
(mmc->voltages & 0xff8000);
if (mmc->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc->version != SD_VERSION_2)
mmc->version = SD_VERSION_1_0;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_op_cond(struct mmc *mmc)
{
int timeout = 10000;
struct mmc_cmd cmd;
int err;
/* Some cards seem to need this */
mmc_go_idle(mmc);
/* Asking to the card its capabilities */
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
do {
cmd.cmdidx = MMC_CMD_SEND_OP_COND;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = (mmc_host_is_spi(mmc) ? 0 :
(mmc->voltages &
(cmd.response[0] & OCR_VOLTAGE_MASK)) |
(cmd.response[0] & OCR_ACCESS_MODE));
if (mmc->host_caps & MMC_MODE_HC)
cmd.cmdarg |= OCR_HCS;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
udelay(1000);
} while (!(cmd.response[0] & OCR_BUSY) && timeout--);
if (timeout <= 0)
return UNUSABLE_ERR;
if (mmc_host_is_spi(mmc)) { /* read OCR for spi */
cmd.cmdidx = MMC_CMD_SPI_READ_OCR;
cmd.resp_type = MMC_RSP_R3;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
mmc->version = MMC_VERSION_UNKNOWN;
mmc->ocr = cmd.response[0];
mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
mmc->rca = 0;
return 0;
}
int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
{
struct mmc_cmd cmd;
struct mmc_data data;
int err;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.dest = ext_csd;
data.blocks = 1;
data.blocksize = 512;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
return err;
}
int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
{
struct mmc_cmd cmd;
int timeout = 1000;
int ret;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = MMC_RSP_R1b;
cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) |
(value << 8);
cmd.flags = 0;
ret = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
if (!ret)
ret = mmc_send_status(mmc, timeout);
return ret;
}
int mmc_change_freq(struct mmc *mmc)
{
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
char cardtype;
int err;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Only version 4 supports high-speed */
if (mmc->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf;
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
if (err)
return err;
/* Now check to see that it worked */
err = mmc_send_ext_csd(mmc, ext_csd);
if (err)
return err;
/* No high-speed support */
if (!ext_csd[EXT_CSD_HS_TIMING])
return 0;
/* High Speed is set, there are two types: 52MHz and 26MHz */
if (cardtype & MMC_HS_52MHZ)
mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
else
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
int mmc_switch_part(int dev_num, unsigned int part_num)
{
struct mmc *mmc = find_mmc_device(dev_num);
if (!mmc)
return -1;
return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF,
(mmc->part_config & ~PART_ACCESS_MASK)
| (part_num & PART_ACCESS_MASK));
}
int mmc_getcd(struct mmc *mmc)
{
int cd;
cd = board_mmc_getcd(mmc);
if ((cd < 0) && mmc->getcd)
cd = mmc->getcd(mmc);
return cd;
}
int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
{
struct mmc_cmd cmd;
struct mmc_data data;
/* Switch the frequency */
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = (mode << 31) | 0xffffff;
cmd.cmdarg &= ~(0xf << (group * 4));
cmd.cmdarg |= value << (group * 4);
cmd.flags = 0;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = MMC_DATA_READ;
return mmc_send_cmd(mmc, &cmd, &data);
}
int sd_change_freq(struct mmc *mmc)
{
int err;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16);
struct mmc_data data;
int timeout;
mmc->card_caps = 0;
if (mmc_host_is_spi(mmc))
return 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
retry_scr:
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = MMC_DATA_READ;
err = mmc_send_cmd(mmc, &cmd, &data);
if (err) {
if (timeout--)
goto retry_scr;
return err;
}
mmc->scr[0] = __be32_to_cpu(scr[0]);
mmc->scr[1] = __be32_to_cpu(scr[1]);
switch ((mmc->scr[0] >> 24) & 0xf) {
case 0:
mmc->version = SD_VERSION_1_0;
break;
case 1:
mmc->version = SD_VERSION_1_10;
break;
case 2:
mmc->version = SD_VERSION_2;
break;
default:
mmc->version = SD_VERSION_1_0;
break;
}
if (mmc->scr[0] & SD_DATA_4BIT)
mmc->card_caps |= MMC_MODE_4BIT;
/* Version 1.0 doesn't support switching */
if (mmc->version == SD_VERSION_1_0)
return 0;
timeout = 4;
while (timeout--) {
err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
(u8 *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
return 0;
/*
* If the host doesn't support SD_HIGHSPEED, do not switch card to
* HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid furthur problem when the card runs in different
* mode between the host.
*/
if (!((mmc->host_caps & MMC_MODE_HS_52MHz) &&
(mmc->host_caps & MMC_MODE_HS)))
return 0;
err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status);
if (err)
return err;
if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
mmc->card_caps |= MMC_MODE_HS;
return 0;
}
/* frequency bases */
/* divided by 10 to be nice to platforms without floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point.
*/
static const int multipliers[] = {
0, /* reserved */
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
void mmc_set_ios(struct mmc *mmc)
{
mmc->set_ios(mmc);
}
void mmc_set_clock(struct mmc *mmc, uint clock)
{
if (clock > mmc->f_max)
clock = mmc->f_max;
if (clock < mmc->f_min)
clock = mmc->f_min;
mmc->clock = clock;
mmc_set_ios(mmc);
}
void mmc_set_bus_width(struct mmc *mmc, uint width)
{
mmc->bus_width = width;
mmc_set_ios(mmc);
}
int mmc_startup(struct mmc *mmc)
{
int err, width;
uint mult, freq;
u64 cmult, csize, capacity;
struct mmc_cmd cmd;
ALLOC_CACHE_ALIGN_BUFFER(char, ext_csd, 512);
ALLOC_CACHE_ALIGN_BUFFER(char, test_csd, 512);
int timeout = 1000;
#ifdef CONFIG_MMC_SPI_CRC_ON
if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */
cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 1;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
#endif
/* Put the Card in Identify Mode */
cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID :
MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
memcpy(mmc->cid, cmd.response, 16);
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = mmc->rca << 16;
cmd.resp_type = MMC_RSP_R6;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if (IS_SD(mmc))
mmc->rca = (cmd.response[0] >> 16) & 0xffff;
}
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = MMC_RSP_R2;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
/* Waiting for the ready status */
mmc_send_status(mmc, timeout);
if (err)
return err;
mmc->csd[0] = cmd.response[0];
mmc->csd[1] = cmd.response[1];
mmc->csd[2] = cmd.response[2];
mmc->csd[3] = cmd.response[3];
if (mmc->version == MMC_VERSION_UNKNOWN) {
int version = (cmd.response[0] >> 26) & 0xf;
switch (version) {
case 0:
mmc->version = MMC_VERSION_1_2;
break;
case 1:
mmc->version = MMC_VERSION_1_4;
break;
case 2:
mmc->version = MMC_VERSION_2_2;
break;
case 3:
mmc->version = MMC_VERSION_3;
break;
case 4:
mmc->version = MMC_VERSION_4;
break;
default:
mmc->version = MMC_VERSION_1_2;
break;
}
}
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[(cmd.response[0] & 0x7)];
mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
mmc->tran_speed = freq * mult;
mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
if (IS_SD(mmc))
mmc->write_bl_len = mmc->read_bl_len;
else
mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
if (mmc->high_capacity) {
csize = (mmc->csd[1] & 0x3f) << 16
| (mmc->csd[2] & 0xffff0000) >> 16;
cmult = 8;
} else {
csize = (mmc->csd[1] & 0x3ff) << 2
| (mmc->csd[2] & 0xc0000000) >> 30;
cmult = (mmc->csd[2] & 0x00038000) >> 15;
}
mmc->capacity = (csize + 1) << (cmult + 2);
mmc->capacity *= mmc->read_bl_len;
if (mmc->read_bl_len > 512)
mmc->read_bl_len = 512;
if (mmc->write_bl_len > 512)
mmc->write_bl_len = 512;
/* Select the card, and put it into Transfer Mode */
if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
}
/*
* For SD, its erase group is always one sector
*/
mmc->erase_grp_size = 1;
mmc->part_config = MMCPART_NOAVAILABLE;
if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(mmc, ext_csd);
if (!err & (ext_csd[EXT_CSD_REV] >= 2)) {
/*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is more
* than 2GB
*/
capacity = ext_csd[EXT_CSD_SEC_CNT] << 0
| ext_csd[EXT_CSD_SEC_CNT + 1] << 8
| ext_csd[EXT_CSD_SEC_CNT + 2] << 16
| ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
capacity *= 512;
if ((capacity >> 20) > 2 * 1024)
mmc->capacity = capacity;
}
/*
* Check whether GROUP_DEF is set, if yes, read out
* group size from ext_csd directly, or calculate
* the group size from the csd value.
*/
if (ext_csd[EXT_CSD_ERASE_GROUP_DEF])
mmc->erase_grp_size =
ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 512 * 1024;
else {
int erase_gsz, erase_gmul;
erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10;
erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5;
mmc->erase_grp_size = (erase_gsz + 1)
* (erase_gmul + 1);
}
/* store the partition info of emmc */
if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT)
mmc->part_config = ext_csd[EXT_CSD_PART_CONF];
}
if (IS_SD(mmc))
err = sd_change_freq(mmc);
else
err = mmc_change_freq(mmc);
if (err)
return err;
/* Restrict card's capabilities by what the host can do */
mmc->card_caps &= mmc->host_caps;
if (IS_SD(mmc)) {
if (mmc->card_caps & MMC_MODE_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = mmc->rca << 16;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = MMC_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
mmc_set_bus_width(mmc, 4);
}
if (mmc->card_caps & MMC_MODE_HS)
mmc_set_clock(mmc, 50000000);
else
mmc_set_clock(mmc, 25000000);
} else {
width = ((mmc->host_caps & MMC_MODE_MASK_WIDTH_BITS) >>
MMC_MODE_WIDTH_BITS_SHIFT);
for (; width >= 0; width--) {
/* Set the card to use 4 bit*/
err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
EXT_CSD_BUS_WIDTH, width);
if (err)
continue;
if (!width) {
mmc_set_bus_width(mmc, 1);
break;
} else
mmc_set_bus_width(mmc, 4 * width);
err = mmc_send_ext_csd(mmc, test_csd);
if (!err && ext_csd[EXT_CSD_PARTITIONING_SUPPORT] \
== test_csd[EXT_CSD_PARTITIONING_SUPPORT]
&& ext_csd[EXT_CSD_ERASE_GROUP_DEF] \
== test_csd[EXT_CSD_ERASE_GROUP_DEF] \
&& ext_csd[EXT_CSD_REV] \
== test_csd[EXT_CSD_REV]
&& ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] \
== test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]
&& memcmp(&ext_csd[EXT_CSD_SEC_CNT], \
&test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
mmc->card_caps |= width;
break;
}
}
if (mmc->card_caps & MMC_MODE_HS) {
if (mmc->card_caps & MMC_MODE_HS_52MHz)
mmc_set_clock(mmc, 52000000);
else
mmc_set_clock(mmc, 26000000);
} else
mmc_set_clock(mmc, 20000000);
}
/* fill in device description */
mmc->block_dev.lun = 0;
mmc->block_dev.type = 0;
mmc->block_dev.blksz = mmc->read_bl_len;
mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
(mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
(mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
(mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
(mmc->cid[2] >> 24) & 0xf);
init_part(&mmc->block_dev);
return 0;
}
int mmc_send_if_cond(struct mmc *mmc)
{
struct mmc_cmd cmd;
int err;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* We set the bit if the host supports voltages between 2.7 and 3.6 V */
cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = MMC_RSP_R7;
cmd.flags = 0;
err = mmc_send_cmd(mmc, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return UNUSABLE_ERR;
else
mmc->version = SD_VERSION_2;
return 0;
}
int mmc_register(struct mmc *mmc)
{
/* Setup the universal parts of the block interface just once */
mmc->block_dev.if_type = IF_TYPE_MMC;
mmc->block_dev.dev = cur_dev_num++;
mmc->block_dev.removable = 1;
mmc->block_dev.block_read = mmc_bread;
mmc->block_dev.block_write = mmc_bwrite;
mmc->block_dev.block_erase = mmc_berase;
if (!mmc->b_max)
mmc->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
INIT_LIST_HEAD (&mmc->link);
list_add_tail (&mmc->link, &mmc_devices);
return 0;
}
#ifdef CONFIG_PARTITIONS
block_dev_desc_t *mmc_get_dev(int dev)
{
struct mmc *mmc = find_mmc_device(dev);
return mmc ? &mmc->block_dev : NULL;
}
#endif
int mmc_init(struct mmc *mmc)
{
int err;
if (mmc_getcd(mmc) == 0) {
mmc->has_init = 0;
printf("MMC: no card present\n");
return NO_CARD_ERR;
}
if (mmc->has_init)
return 0;
err = mmc->init(mmc);
if (err)
return err;
mmc_set_bus_width(mmc, 1);
mmc_set_clock(mmc, 1);
/* Reset the Card */
err = mmc_go_idle(mmc);
if (err)
return err;
/* The internal partition reset to user partition(0) at every CMD0*/
mmc->part_num = 0;
/* Test for SD version 2 */
err = mmc_send_if_cond(mmc);
/* Now try to get the SD card's operating condition */
err = sd_send_op_cond(mmc);
/* If the command timed out, we check for an MMC card */
if (err == TIMEOUT) {
err = mmc_send_op_cond(mmc);
if (err) {
printf("Card did not respond to voltage select!\n");
return UNUSABLE_ERR;
}
}
err = mmc_startup(mmc);
if (err)
mmc->has_init = 0;
else
mmc->has_init = 1;
return err;
}
/*
* CPU and board-specific MMC initializations. Aliased function
* signals caller to move on
*/
static int __def_mmc_init(bd_t *bis)
{
return -1;
}
int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
void print_mmc_devices(char separator)
{
struct mmc *m;
struct list_head *entry;
list_for_each(entry, &mmc_devices) {
m = list_entry(entry, struct mmc, link);
printf("%s: %d", m->name, m->block_dev.dev);
if (entry->next != &mmc_devices)
printf("%c ", separator);
}
printf("\n");
}
int get_mmc_num(void)
{
return cur_dev_num;
}
int mmc_initialize(bd_t *bis)
{
INIT_LIST_HEAD (&mmc_devices);
cur_dev_num = 0;
if (board_mmc_init(bis) < 0)
cpu_mmc_init(bis);
print_mmc_devices(',');
return 0;
}