u-boot-brain/arch/arm/cpu/arm1176/tnetv107x/clock.c
Masahiro Yamada b41411954d linux/kernel.h: sync min, max, min3, max3 macros with Linux
U-Boot has never cared about the type when we get max/min of two
values, but Linux Kernel does.  This commit gets min, max, min3, max3
macros synced with the kernel introducing type checks.

Many of references of those macros must be fixed to suppress warnings.
We have two options:
 - Use min, max, min3, max3 only when the arguments have the same type
   (or add casts to the arguments)
 - Use min_t/max_t instead with the appropriate type for the first
   argument

Signed-off-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Acked-by: Pavel Machek <pavel@denx.de>
Acked-by: Lukasz Majewski <l.majewski@samsung.com>
Tested-by: Lukasz Majewski <l.majewski@samsung.com>
[trini: Fixup arch/blackfin/lib/string.c]
Signed-off-by: Tom Rini <trini@ti.com>
2014-11-23 06:48:30 -05:00

433 lines
11 KiB
C

/*
* TNETV107X: Clock management APIs
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm-generic/errno.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/arch/clock.h>
#define CLOCK_BASE TNETV107X_CLOCK_CONTROL_BASE
#define PSC_BASE TNETV107X_PSC_BASE
#define BIT(x) (1 << (x))
#define MAX_PREDIV 64
#define MAX_POSTDIV 8UL
#define MAX_MULT 512
#define MAX_DIV (MAX_PREDIV * MAX_POSTDIV)
/* LPSC registers */
#define PSC_PTCMD 0x120
#define PSC_PTSTAT 0x128
#define PSC_MDSTAT(n) (0x800 + (n) * 4)
#define PSC_MDCTL(n) (0xA00 + (n) * 4)
#define PSC_MDCTL_LRSTZ BIT(8)
#define psc_reg_read(reg) __raw_readl((u32 *)(PSC_BASE + (reg)))
#define psc_reg_write(reg, val) __raw_writel(val, (u32 *)(PSC_BASE + (reg)))
/* SSPLL registers */
struct sspll_regs {
u32 modes;
u32 postdiv;
u32 prediv;
u32 mult_factor;
u32 divider_range;
u32 bw_divider;
u32 spr_amount;
u32 spr_rate_div;
u32 diag;
};
/* SSPLL base addresses */
static struct sspll_regs *sspll_regs[] = {
(struct sspll_regs *)(CLOCK_BASE + 0x040),
(struct sspll_regs *)(CLOCK_BASE + 0x080),
(struct sspll_regs *)(CLOCK_BASE + 0x0c0),
};
#define sspll_reg(pll, reg) (&(sspll_regs[pll]->reg))
#define sspll_reg_read(pll, reg) __raw_readl(sspll_reg(pll, reg))
#define sspll_reg_write(pll, reg, val) __raw_writel(val, sspll_reg(pll, reg))
/* PLL Control Registers */
struct pllctl_regs {
u32 ctl; /* 00 */
u32 ocsel; /* 04 */
u32 secctl; /* 08 */
u32 __pad0;
u32 mult; /* 10 */
u32 prediv; /* 14 */
u32 div1; /* 18 */
u32 div2; /* 1c */
u32 div3; /* 20 */
u32 oscdiv1; /* 24 */
u32 postdiv; /* 28 */
u32 bpdiv; /* 2c */
u32 wakeup; /* 30 */
u32 __pad1;
u32 cmd; /* 38 */
u32 stat; /* 3c */
u32 alnctl; /* 40 */
u32 dchange; /* 44 */
u32 cken; /* 48 */
u32 ckstat; /* 4c */
u32 systat; /* 50 */
u32 ckctl; /* 54 */
u32 __pad2[2];
u32 div4; /* 60 */
u32 div5; /* 64 */
u32 div6; /* 68 */
u32 div7; /* 6c */
u32 div8; /* 70 */
};
struct lpsc_map {
int pll, div;
};
static struct pllctl_regs *pllctl_regs[] = {
(struct pllctl_regs *)(CLOCK_BASE + 0x700),
(struct pllctl_regs *)(CLOCK_BASE + 0x300),
(struct pllctl_regs *)(CLOCK_BASE + 0x500),
};
#define pllctl_reg(pll, reg) (&(pllctl_regs[pll]->reg))
#define pllctl_reg_read(pll, reg) __raw_readl(pllctl_reg(pll, reg))
#define pllctl_reg_write(pll, reg, val) __raw_writel(val, pllctl_reg(pll, reg))
#define pllctl_reg_rmw(pll, reg, mask, val) \
pllctl_reg_write(pll, reg, \
(pllctl_reg_read(pll, reg) & ~(mask)) | val)
#define pllctl_reg_setbits(pll, reg, mask) \
pllctl_reg_rmw(pll, reg, 0, mask)
#define pllctl_reg_clrbits(pll, reg, mask) \
pllctl_reg_rmw(pll, reg, mask, 0)
/* PLLCTL Bits */
#define PLLCTL_CLKMODE BIT(8)
#define PLLCTL_PLLSELB BIT(7)
#define PLLCTL_PLLENSRC BIT(5)
#define PLLCTL_PLLDIS BIT(4)
#define PLLCTL_PLLRST BIT(3)
#define PLLCTL_PLLPWRDN BIT(1)
#define PLLCTL_PLLEN BIT(0)
#define PLLDIV_ENABLE BIT(15)
static int pll_div_offset[] = {
#define div_offset(reg) offsetof(struct pllctl_regs, reg)
div_offset(div1), div_offset(div2), div_offset(div3),
div_offset(div4), div_offset(div5), div_offset(div6),
div_offset(div7), div_offset(div8),
};
static unsigned long pll_bypass_mask[] = { 1, 4, 2 };
static unsigned long pll_div_mask[] = { 0x01ff, 0x00ff, 0x00ff };
/* Mappings from PLL+DIV to subsystem clocks */
#define sys_arm1176_clk {SYS_PLL, 0}
#define sys_dsp_clk {SYS_PLL, 1}
#define sys_ddr_clk {SYS_PLL, 2}
#define sys_full_clk {SYS_PLL, 3}
#define sys_lcd_clk {SYS_PLL, 4}
#define sys_vlynq_ref_clk {SYS_PLL, 5}
#define sys_tsc_clk {SYS_PLL, 6}
#define sys_half_clk {SYS_PLL, 7}
#define eth_clk_5 {ETH_PLL, 0}
#define eth_clk_50 {ETH_PLL, 1}
#define eth_clk_125 {ETH_PLL, 2}
#define eth_clk_250 {ETH_PLL, 3}
#define eth_clk_25 {ETH_PLL, 4}
#define tdm_clk {TDM_PLL, 0}
#define tdm_extra_clk {TDM_PLL, 1}
#define tdm1_clk {TDM_PLL, 2}
static const struct lpsc_map lpsc_clk_map[] = {
[TNETV107X_LPSC_ARM] = sys_arm1176_clk,
[TNETV107X_LPSC_GEM] = sys_dsp_clk,
[TNETV107X_LPSC_DDR2_PHY] = sys_ddr_clk,
[TNETV107X_LPSC_TPCC] = sys_full_clk,
[TNETV107X_LPSC_TPTC0] = sys_full_clk,
[TNETV107X_LPSC_TPTC1] = sys_full_clk,
[TNETV107X_LPSC_RAM] = sys_full_clk,
[TNETV107X_LPSC_MBX_LITE] = sys_arm1176_clk,
[TNETV107X_LPSC_LCD] = sys_lcd_clk,
[TNETV107X_LPSC_ETHSS] = eth_clk_125,
[TNETV107X_LPSC_AEMIF] = sys_full_clk,
[TNETV107X_LPSC_CHIP_CFG] = sys_half_clk,
[TNETV107X_LPSC_TSC] = sys_tsc_clk,
[TNETV107X_LPSC_ROM] = sys_half_clk,
[TNETV107X_LPSC_UART2] = sys_half_clk,
[TNETV107X_LPSC_PKTSEC] = sys_half_clk,
[TNETV107X_LPSC_SECCTL] = sys_half_clk,
[TNETV107X_LPSC_KEYMGR] = sys_half_clk,
[TNETV107X_LPSC_KEYPAD] = sys_half_clk,
[TNETV107X_LPSC_GPIO] = sys_half_clk,
[TNETV107X_LPSC_MDIO] = sys_half_clk,
[TNETV107X_LPSC_SDIO0] = sys_half_clk,
[TNETV107X_LPSC_UART0] = sys_half_clk,
[TNETV107X_LPSC_UART1] = sys_half_clk,
[TNETV107X_LPSC_TIMER0] = sys_half_clk,
[TNETV107X_LPSC_TIMER1] = sys_half_clk,
[TNETV107X_LPSC_WDT_ARM] = sys_half_clk,
[TNETV107X_LPSC_WDT_DSP] = sys_half_clk,
[TNETV107X_LPSC_SSP] = sys_half_clk,
[TNETV107X_LPSC_TDM0] = tdm_clk,
[TNETV107X_LPSC_VLYNQ] = sys_vlynq_ref_clk,
[TNETV107X_LPSC_MCDMA] = sys_half_clk,
[TNETV107X_LPSC_USB0] = sys_half_clk,
[TNETV107X_LPSC_TDM1] = tdm1_clk,
[TNETV107X_LPSC_DEBUGSS] = sys_half_clk,
[TNETV107X_LPSC_ETHSS_RGMII] = eth_clk_250,
[TNETV107X_LPSC_SYSTEM] = sys_half_clk,
[TNETV107X_LPSC_IMCOP] = sys_dsp_clk,
[TNETV107X_LPSC_SPARE] = sys_half_clk,
[TNETV107X_LPSC_SDIO1] = sys_half_clk,
[TNETV107X_LPSC_USB1] = sys_half_clk,
[TNETV107X_LPSC_USBSS] = sys_half_clk,
[TNETV107X_LPSC_DDR2_EMIF1_VRST] = sys_ddr_clk,
[TNETV107X_LPSC_DDR2_EMIF2_VCTL_RST] = sys_ddr_clk,
};
static const unsigned long pll_ext_freq[] = {
[SYS_PLL] = CONFIG_PLL_SYS_EXT_FREQ,
[ETH_PLL] = CONFIG_PLL_ETH_EXT_FREQ,
[TDM_PLL] = CONFIG_PLL_TDM_EXT_FREQ,
};
static unsigned long pll_freq_get(int pll)
{
unsigned long mult = 1, prediv = 1, postdiv = 1;
unsigned long ref = CONFIG_SYS_INT_OSC_FREQ;
unsigned long ret;
u32 bypass;
bypass = __raw_readl((u32 *)(CLOCK_BASE));
if (!(bypass & pll_bypass_mask[pll])) {
mult = sspll_reg_read(pll, mult_factor);
prediv = sspll_reg_read(pll, prediv) + 1;
postdiv = sspll_reg_read(pll, postdiv) + 1;
}
if (pllctl_reg_read(pll, ctl) & PLLCTL_CLKMODE)
ref = pll_ext_freq[pll];
if (!(pllctl_reg_read(pll, ctl) & PLLCTL_PLLEN))
return ref;
ret = (unsigned long)(ref + ((unsigned long long)ref * mult) / 256);
ret /= (prediv * postdiv);
return ret;
}
static unsigned long __pll_div_freq_get(int pll, unsigned int fpll,
int div)
{
int divider = 1;
unsigned long divreg;
divreg = __raw_readl((void *)pllctl_regs[pll] + pll_div_offset[div]);
if (divreg & PLLDIV_ENABLE)
divider = (divreg & pll_div_mask[pll]) + 1;
return fpll / divider;
}
static unsigned long pll_div_freq_get(int pll, int div)
{
unsigned int fpll = pll_freq_get(pll);
return __pll_div_freq_get(pll, fpll, div);
}
static void __pll_div_freq_set(int pll, unsigned int fpll, int div,
unsigned long hz)
{
int divider = (fpll / hz - 1);
divider &= pll_div_mask[pll];
divider |= PLLDIV_ENABLE;
__raw_writel(divider, (void *)pllctl_regs[pll] + pll_div_offset[div]);
pllctl_reg_setbits(pll, alnctl, (1 << div));
pllctl_reg_setbits(pll, dchange, (1 << div));
}
static unsigned long pll_div_freq_set(int pll, int div, unsigned long hz)
{
unsigned int fpll = pll_freq_get(pll);
__pll_div_freq_set(pll, fpll, div, hz);
pllctl_reg_write(pll, cmd, 1);
/* Wait until new divider takes effect */
while (pllctl_reg_read(pll, stat) & 0x01);
return __pll_div_freq_get(pll, fpll, div);
}
unsigned long clk_get_rate(unsigned int clk)
{
return pll_div_freq_get(lpsc_clk_map[clk].pll, lpsc_clk_map[clk].div);
}
unsigned long clk_round_rate(unsigned int clk, unsigned long hz)
{
unsigned long fpll, divider, pll;
pll = lpsc_clk_map[clk].pll;
fpll = pll_freq_get(pll);
divider = (fpll / hz - 1);
divider &= pll_div_mask[pll];
return fpll / (divider + 1);
}
int clk_set_rate(unsigned int clk, unsigned long _hz)
{
unsigned long hz;
hz = clk_round_rate(clk, _hz);
if (hz != _hz)
return -EINVAL; /* Cannot set to target freq */
pll_div_freq_set(lpsc_clk_map[clk].pll, lpsc_clk_map[clk].div, hz);
return 0;
}
void lpsc_control(int mod, unsigned long state, int lrstz)
{
u32 mdctl;
mdctl = psc_reg_read(PSC_MDCTL(mod));
mdctl &= ~0x1f;
mdctl |= state;
if (lrstz == 0)
mdctl &= ~PSC_MDCTL_LRSTZ;
else if (lrstz == 1)
mdctl |= PSC_MDCTL_LRSTZ;
psc_reg_write(PSC_MDCTL(mod), mdctl);
psc_reg_write(PSC_PTCMD, 1);
/* wait for power domain transition to end */
while (psc_reg_read(PSC_PTSTAT) & 1);
/* Wait for module state change */
while ((psc_reg_read(PSC_MDSTAT(mod)) & 0x1f) != state);
}
int lpsc_status(unsigned int id)
{
return psc_reg_read(PSC_MDSTAT(id)) & 0x1f;
}
static void init_pll(const struct pll_init_data *data)
{
unsigned long fpll;
unsigned long best_pre = 0, best_post = 0, best_mult = 0;
unsigned long div, prediv, postdiv, mult;
unsigned long delta, actual;
long best_delta = -1;
int i;
u32 tmp;
if (data->pll == SYS_PLL)
return; /* cannot reconfigure system pll on the fly */
tmp = pllctl_reg_read(data->pll, ctl);
if (data->internal_osc) {
tmp &= ~PLLCTL_CLKMODE;
fpll = CONFIG_SYS_INT_OSC_FREQ;
} else {
tmp |= PLLCTL_CLKMODE;
fpll = pll_ext_freq[data->pll];
}
pllctl_reg_write(data->pll, ctl, tmp);
mult = data->pll_freq / fpll;
for (mult = max(mult, 1UL); mult <= MAX_MULT; mult++) {
div = (fpll * mult) / data->pll_freq;
if (div < 1 || div > MAX_DIV)
continue;
for (postdiv = 1; postdiv <= min(div, MAX_POSTDIV); postdiv++) {
prediv = div / postdiv;
if (prediv < 1 || prediv > MAX_PREDIV)
continue;
actual = (fpll / prediv) * (mult / postdiv);
delta = (actual - data->pll_freq);
if (delta < 0)
delta = -delta;
if ((delta < best_delta) || (best_delta == -1)) {
best_delta = delta;
best_mult = mult;
best_pre = prediv;
best_post = postdiv;
if (delta == 0)
goto done;
}
}
}
done:
if (best_delta == -1) {
printf("pll cannot derive %lu from %lu\n",
data->pll_freq, fpll);
return;
}
fpll = fpll * best_mult;
fpll /= best_pre * best_post;
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLENSRC);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLEN);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLRST);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLPWRDN);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLDIS);
sspll_reg_write(data->pll, mult_factor, (best_mult - 1) << 8);
sspll_reg_write(data->pll, prediv, best_pre - 1);
sspll_reg_write(data->pll, postdiv, best_post - 1);
for (i = 0; i < 10; i++)
if (data->div_freq[i])
__pll_div_freq_set(data->pll, fpll, i,
data->div_freq[i]);
pllctl_reg_write(data->pll, cmd, 1);
/* Wait until pll "go" operation completes */
while (pllctl_reg_read(data->pll, stat) & 0x01);
pllctl_reg_clrbits(data->pll, ctl, PLLCTL_PLLRST);
pllctl_reg_setbits(data->pll, ctl, PLLCTL_PLLEN);
}
void init_plls(int num_pll, struct pll_init_data *config)
{
int i;
for (i = 0; i < num_pll; i++)
init_pll(&config[i]);
}