u-boot-brain/drivers/nvme/nvme.c
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

837 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 NXP Semiconductors
* Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <pci.h>
#include <dm/device-internal.h>
#include "nvme.h"
#define NVME_Q_DEPTH 2
#define NVME_AQ_DEPTH 2
#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
#define ADMIN_TIMEOUT 60
#define IO_TIMEOUT 30
#define MAX_PRP_POOL 512
enum nvme_queue_id {
NVME_ADMIN_Q,
NVME_IO_Q,
NVME_Q_NUM,
};
/*
* An NVM Express queue. Each device has at least two (one for admin
* commands and one for I/O commands).
*/
struct nvme_queue {
struct nvme_dev *dev;
struct nvme_command *sq_cmds;
struct nvme_completion *cqes;
wait_queue_head_t sq_full;
u32 __iomem *q_db;
u16 q_depth;
s16 cq_vector;
u16 sq_head;
u16 sq_tail;
u16 cq_head;
u16 qid;
u8 cq_phase;
u8 cqe_seen;
unsigned long cmdid_data[];
};
static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
{
u32 bit = enabled ? NVME_CSTS_RDY : 0;
int timeout;
ulong start;
/* Timeout field in the CAP register is in 500 millisecond units */
timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
start = get_timer(0);
while (get_timer(start) < timeout) {
if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
return 0;
}
return -ETIME;
}
static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
int total_len, u64 dma_addr)
{
u32 page_size = dev->page_size;
int offset = dma_addr & (page_size - 1);
u64 *prp_pool;
int length = total_len;
int i, nprps;
length -= (page_size - offset);
if (length <= 0) {
*prp2 = 0;
return 0;
}
if (length)
dma_addr += (page_size - offset);
if (length <= page_size) {
*prp2 = dma_addr;
return 0;
}
nprps = DIV_ROUND_UP(length, page_size);
if (nprps > dev->prp_entry_num) {
free(dev->prp_pool);
dev->prp_pool = malloc(nprps << 3);
if (!dev->prp_pool) {
printf("Error: malloc prp_pool fail\n");
return -ENOMEM;
}
dev->prp_entry_num = nprps;
}
prp_pool = dev->prp_pool;
i = 0;
while (nprps) {
if (i == ((page_size >> 3) - 1)) {
*(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
page_size);
i = 0;
prp_pool += page_size;
}
*(prp_pool + i++) = cpu_to_le64(dma_addr);
dma_addr += page_size;
nprps--;
}
*prp2 = (ulong)dev->prp_pool;
return 0;
}
static __le16 nvme_get_cmd_id(void)
{
static unsigned short cmdid;
return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
}
static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
{
u64 start = (ulong)&nvmeq->cqes[index];
u64 stop = start + sizeof(struct nvme_completion);
invalidate_dcache_range(start, stop);
return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
}
/**
* nvme_submit_cmd() - copy a command into a queue and ring the doorbell
*
* @nvmeq: The queue to use
* @cmd: The command to send
*/
static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
{
u16 tail = nvmeq->sq_tail;
memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
(ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
if (++tail == nvmeq->q_depth)
tail = 0;
writel(tail, nvmeq->q_db);
nvmeq->sq_tail = tail;
}
static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
struct nvme_command *cmd,
u32 *result, unsigned timeout)
{
u16 head = nvmeq->cq_head;
u16 phase = nvmeq->cq_phase;
u16 status;
ulong start_time;
ulong timeout_us = timeout * 100000;
cmd->common.command_id = nvme_get_cmd_id();
nvme_submit_cmd(nvmeq, cmd);
start_time = timer_get_us();
for (;;) {
status = nvme_read_completion_status(nvmeq, head);
if ((status & 0x01) == phase)
break;
if (timeout_us > 0 && (timer_get_us() - start_time)
>= timeout_us)
return -ETIMEDOUT;
}
status >>= 1;
if (status) {
printf("ERROR: status = %x, phase = %d, head = %d\n",
status, phase, head);
status = 0;
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
return -EIO;
}
if (result)
*result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
if (++head == nvmeq->q_depth) {
head = 0;
phase = !phase;
}
writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
nvmeq->cq_head = head;
nvmeq->cq_phase = phase;
return status;
}
static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
u32 *result)
{
return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
result, ADMIN_TIMEOUT);
}
static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
int qid, int depth)
{
struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
if (!nvmeq)
return NULL;
memset(nvmeq, 0, sizeof(*nvmeq));
nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
if (!nvmeq->cqes)
goto free_nvmeq;
memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
if (!nvmeq->sq_cmds)
goto free_queue;
memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
nvmeq->dev = dev;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
nvmeq->q_depth = depth;
nvmeq->qid = qid;
dev->queue_count++;
dev->queues[qid] = nvmeq;
return nvmeq;
free_queue:
free((void *)nvmeq->cqes);
free_nvmeq:
free(nvmeq);
return NULL;
}
static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.delete_queue.opcode = opcode;
c.delete_queue.qid = cpu_to_le16(id);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
{
return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
}
static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
{
return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
}
static int nvme_enable_ctrl(struct nvme_dev *dev)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config |= NVME_CC_ENABLE;
writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
return nvme_wait_ready(dev, true);
}
static int nvme_disable_ctrl(struct nvme_dev *dev)
{
dev->ctrl_config &= ~NVME_CC_SHN_MASK;
dev->ctrl_config &= ~NVME_CC_ENABLE;
writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
return nvme_wait_ready(dev, false);
}
static void nvme_free_queue(struct nvme_queue *nvmeq)
{
free((void *)nvmeq->cqes);
free(nvmeq->sq_cmds);
free(nvmeq);
}
static void nvme_free_queues(struct nvme_dev *dev, int lowest)
{
int i;
for (i = dev->queue_count - 1; i >= lowest; i--) {
struct nvme_queue *nvmeq = dev->queues[i];
dev->queue_count--;
dev->queues[i] = NULL;
nvme_free_queue(nvmeq);
}
}
static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
{
struct nvme_dev *dev = nvmeq->dev;
nvmeq->sq_tail = 0;
nvmeq->cq_head = 0;
nvmeq->cq_phase = 1;
nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
flush_dcache_range((ulong)nvmeq->cqes,
(ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
dev->online_queues++;
}
static int nvme_configure_admin_queue(struct nvme_dev *dev)
{
int result;
u32 aqa;
u64 cap = dev->cap;
struct nvme_queue *nvmeq;
/* most architectures use 4KB as the page size */
unsigned page_shift = 12;
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
if (page_shift < dev_page_min) {
debug("Device minimum page size (%u) too large for host (%u)\n",
1 << dev_page_min, 1 << page_shift);
return -ENODEV;
}
if (page_shift > dev_page_max) {
debug("Device maximum page size (%u) smaller than host (%u)\n",
1 << dev_page_max, 1 << page_shift);
page_shift = dev_page_max;
}
result = nvme_disable_ctrl(dev);
if (result < 0)
return result;
nvmeq = dev->queues[NVME_ADMIN_Q];
if (!nvmeq) {
nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
if (!nvmeq)
return -ENOMEM;
}
aqa = nvmeq->q_depth - 1;
aqa |= aqa << 16;
aqa |= aqa << 16;
dev->page_size = 1 << page_shift;
dev->ctrl_config = NVME_CC_CSS_NVM;
dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
writel(aqa, &dev->bar->aqa);
nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
result = nvme_enable_ctrl(dev);
if (result)
goto free_nvmeq;
nvmeq->cq_vector = 0;
nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
return result;
free_nvmeq:
nvme_free_queues(dev, 0);
return result;
}
static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
memset(&c, 0, sizeof(c));
c.create_cq.opcode = nvme_admin_create_cq;
c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
c.create_cq.cqid = cpu_to_le16(qid);
c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_cq.cq_flags = cpu_to_le16(flags);
c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
struct nvme_queue *nvmeq)
{
struct nvme_command c;
int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
memset(&c, 0, sizeof(c));
c.create_sq.opcode = nvme_admin_create_sq;
c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
c.create_sq.sqid = cpu_to_le16(qid);
c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
c.create_sq.sq_flags = cpu_to_le16(flags);
c.create_sq.cqid = cpu_to_le16(qid);
return nvme_submit_admin_cmd(dev, &c, NULL);
}
int nvme_identify(struct nvme_dev *dev, unsigned nsid,
unsigned cns, dma_addr_t dma_addr)
{
struct nvme_command c;
u32 page_size = dev->page_size;
int offset = dma_addr & (page_size - 1);
int length = sizeof(struct nvme_id_ctrl);
int ret;
memset(&c, 0, sizeof(c));
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.prp1 = cpu_to_le64(dma_addr);
length -= (page_size - offset);
if (length <= 0) {
c.identify.prp2 = 0;
} else {
dma_addr += (page_size - offset);
c.identify.prp2 = cpu_to_le64(dma_addr);
}
c.identify.cns = cpu_to_le32(cns);
ret = nvme_submit_admin_cmd(dev, &c, NULL);
if (!ret)
invalidate_dcache_range(dma_addr,
dma_addr + sizeof(struct nvme_id_ctrl));
return ret;
}
int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_get_features;
c.features.nsid = cpu_to_le32(nsid);
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
/*
* TODO: add cache invalidate operation when the size of
* the DMA buffer is known
*/
return nvme_submit_admin_cmd(dev, &c, result);
}
int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.features.opcode = nvme_admin_set_features;
c.features.prp1 = cpu_to_le64(dma_addr);
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
/*
* TODO: add cache flush operation when the size of
* the DMA buffer is known
*/
return nvme_submit_admin_cmd(dev, &c, result);
}
static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
{
struct nvme_dev *dev = nvmeq->dev;
int result;
nvmeq->cq_vector = qid - 1;
result = nvme_alloc_cq(dev, qid, nvmeq);
if (result < 0)
goto release_cq;
result = nvme_alloc_sq(dev, qid, nvmeq);
if (result < 0)
goto release_sq;
nvme_init_queue(nvmeq, qid);
return result;
release_sq:
nvme_delete_sq(dev, qid);
release_cq:
nvme_delete_cq(dev, qid);
return result;
}
static int nvme_set_queue_count(struct nvme_dev *dev, int count)
{
int status;
u32 result;
u32 q_count = (count - 1) | ((count - 1) << 16);
status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
q_count, 0, &result);
if (status < 0)
return status;
if (status > 1)
return 0;
return min(result & 0xffff, result >> 16) + 1;
}
static void nvme_create_io_queues(struct nvme_dev *dev)
{
unsigned int i;
for (i = dev->queue_count; i <= dev->max_qid; i++)
if (!nvme_alloc_queue(dev, i, dev->q_depth))
break;
for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
if (nvme_create_queue(dev->queues[i], i))
break;
}
static int nvme_setup_io_queues(struct nvme_dev *dev)
{
int nr_io_queues;
int result;
nr_io_queues = 1;
result = nvme_set_queue_count(dev, nr_io_queues);
if (result <= 0)
return result;
dev->max_qid = nr_io_queues;
/* Free previously allocated queues */
nvme_free_queues(dev, nr_io_queues + 1);
nvme_create_io_queues(dev);
return 0;
}
static int nvme_get_info_from_identify(struct nvme_dev *dev)
{
ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ctrl));
struct nvme_id_ctrl *ctrl = (struct nvme_id_ctrl *)buf;
int ret;
int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl);
if (ret)
return -EIO;
dev->nn = le32_to_cpu(ctrl->nn);
dev->vwc = ctrl->vwc;
memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
if (ctrl->mdts)
dev->max_transfer_shift = (ctrl->mdts + shift);
else {
/*
* Maximum Data Transfer Size (MDTS) field indicates the maximum
* data transfer size between the host and the controller. The
* host should not submit a command that exceeds this transfer
* size. The value is in units of the minimum memory page size
* and is reported as a power of two (2^n).
*
* The spec also says: a value of 0h indicates no restrictions
* on transfer size. But in nvme_blk_read/write() below we have
* the following algorithm for maximum number of logic blocks
* per transfer:
*
* u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
*
* In order for lbas not to overflow, the maximum number is 15
* which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
* Let's use 20 which provides 1MB size.
*/
dev->max_transfer_shift = 20;
}
return 0;
}
int nvme_scan_namespace(void)
{
struct uclass *uc;
struct udevice *dev;
int ret;
ret = uclass_get(UCLASS_NVME, &uc);
if (ret)
return ret;
uclass_foreach_dev(dev, uc) {
ret = device_probe(dev);
if (ret)
return ret;
}
return 0;
}
static int nvme_blk_probe(struct udevice *udev)
{
struct nvme_dev *ndev = dev_get_priv(udev->parent);
struct blk_desc *desc = dev_get_uclass_platdata(udev);
struct nvme_ns *ns = dev_get_priv(udev);
u8 flbas;
ALLOC_CACHE_ALIGN_BUFFER(char, buf, sizeof(struct nvme_id_ns));
struct nvme_id_ns *id = (struct nvme_id_ns *)buf;
struct pci_child_platdata *pplat;
memset(ns, 0, sizeof(*ns));
ns->dev = ndev;
/* extract the namespace id from the block device name */
ns->ns_id = trailing_strtol(udev->name) + 1;
if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id))
return -EIO;
flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
ns->flbas = flbas;
ns->lba_shift = id->lbaf[flbas].ds;
ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
ns->mode_select_block_len = 1 << ns->lba_shift;
list_add(&ns->list, &ndev->namespaces);
desc->lba = ns->mode_select_num_blocks;
desc->log2blksz = ns->lba_shift;
desc->blksz = 1 << ns->lba_shift;
desc->bdev = udev;
pplat = dev_get_parent_platdata(udev->parent);
sprintf(desc->vendor, "0x%.4x", pplat->vendor);
memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
part_init(desc);
return 0;
}
static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, void *buffer, bool read)
{
struct nvme_ns *ns = dev_get_priv(udev);
struct nvme_dev *dev = ns->dev;
struct nvme_command c;
struct blk_desc *desc = dev_get_uclass_platdata(udev);
int status;
u64 prp2;
u64 total_len = blkcnt << desc->log2blksz;
u64 temp_len = total_len;
u64 slba = blknr;
u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
u64 total_lbas = blkcnt;
if (!read)
flush_dcache_range((unsigned long)buffer,
(unsigned long)buffer + total_len);
c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
c.rw.flags = 0;
c.rw.nsid = cpu_to_le32(ns->ns_id);
c.rw.control = 0;
c.rw.dsmgmt = 0;
c.rw.reftag = 0;
c.rw.apptag = 0;
c.rw.appmask = 0;
c.rw.metadata = 0;
while (total_lbas) {
if (total_lbas < lbas) {
lbas = (u16)total_lbas;
total_lbas = 0;
} else {
total_lbas -= lbas;
}
if (nvme_setup_prps(dev, &prp2,
lbas << ns->lba_shift, (ulong)buffer))
return -EIO;
c.rw.slba = cpu_to_le64(slba);
slba += lbas;
c.rw.length = cpu_to_le16(lbas - 1);
c.rw.prp1 = cpu_to_le64((ulong)buffer);
c.rw.prp2 = cpu_to_le64(prp2);
status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
&c, NULL, IO_TIMEOUT);
if (status)
break;
temp_len -= (u32)lbas << ns->lba_shift;
buffer += lbas << ns->lba_shift;
}
if (read)
invalidate_dcache_range((unsigned long)buffer,
(unsigned long)buffer + total_len);
return (total_len - temp_len) >> desc->log2blksz;
}
static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, void *buffer)
{
return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
}
static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
lbaint_t blkcnt, const void *buffer)
{
return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
}
static const struct blk_ops nvme_blk_ops = {
.read = nvme_blk_read,
.write = nvme_blk_write,
};
U_BOOT_DRIVER(nvme_blk) = {
.name = "nvme-blk",
.id = UCLASS_BLK,
.probe = nvme_blk_probe,
.ops = &nvme_blk_ops,
.priv_auto_alloc_size = sizeof(struct nvme_ns),
};
static int nvme_bind(struct udevice *udev)
{
static int ndev_num;
char name[20];
sprintf(name, "nvme#%d", ndev_num++);
return device_set_name(udev, name);
}
static int nvme_probe(struct udevice *udev)
{
int ret;
struct nvme_dev *ndev = dev_get_priv(udev);
ndev->instance = trailing_strtol(udev->name);
INIT_LIST_HEAD(&ndev->namespaces);
ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
PCI_REGION_MEM);
if (readl(&ndev->bar->csts) == -1) {
ret = -ENODEV;
printf("Error: %s: Out of memory!\n", udev->name);
goto free_nvme;
}
ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
if (!ndev->queues) {
ret = -ENOMEM;
printf("Error: %s: Out of memory!\n", udev->name);
goto free_nvme;
}
memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
ndev->prp_pool = malloc(MAX_PRP_POOL);
if (!ndev->prp_pool) {
ret = -ENOMEM;
printf("Error: %s: Out of memory!\n", udev->name);
goto free_nvme;
}
ndev->prp_entry_num = MAX_PRP_POOL >> 3;
ndev->cap = nvme_readq(&ndev->bar->cap);
ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
ret = nvme_configure_admin_queue(ndev);
if (ret)
goto free_queue;
ret = nvme_setup_io_queues(ndev);
if (ret)
goto free_queue;
nvme_get_info_from_identify(ndev);
return 0;
free_queue:
free((void *)ndev->queues);
free_nvme:
return ret;
}
U_BOOT_DRIVER(nvme) = {
.name = "nvme",
.id = UCLASS_NVME,
.bind = nvme_bind,
.probe = nvme_probe,
.priv_auto_alloc_size = sizeof(struct nvme_dev),
};
struct pci_device_id nvme_supported[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
{}
};
U_BOOT_PCI_DEVICE(nvme, nvme_supported);