u-boot-brain/drivers/mmc/mtk-sd.c
Weijie Gao 2a505cd1c7 mmc: mtk-sd: add pad control settings for MediaTek MT7620/MT76x8 SoCs
The driver is missing pad control settings (pad delay and pad conf) for
the mt7620 and mt76x8. Although mt76x8 still works well, mt7620 will
encounter CRC error on data transfers.

This patch adds default pad control settings for mt7620_compat.

Reviewed-by: Stefan Roese <sr@denx.de>
Signed-off-by: Weijie Gao <weijie.gao@mediatek.com>
2021-01-24 21:39:27 +01:00

1808 lines
45 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* MediaTek SD/MMC Card Interface driver
*
* Copyright (C) 2018 MediaTek Inc.
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <mmc.h>
#include <errno.h>
#include <malloc.h>
#include <mapmem.h>
#include <stdbool.h>
#include <asm/gpio.h>
#include <dm/device_compat.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/iopoll.h>
/* MSDC_CFG */
#define MSDC_CFG_HS400_CK_MODE_EXT BIT(22)
#define MSDC_CFG_CKMOD_EXT_M 0x300000
#define MSDC_CFG_CKMOD_EXT_S 20
#define MSDC_CFG_CKDIV_EXT_M 0xfff00
#define MSDC_CFG_CKDIV_EXT_S 8
#define MSDC_CFG_HS400_CK_MODE BIT(18)
#define MSDC_CFG_CKMOD_M 0x30000
#define MSDC_CFG_CKMOD_S 16
#define MSDC_CFG_CKDIV_M 0xff00
#define MSDC_CFG_CKDIV_S 8
#define MSDC_CFG_CKSTB BIT(7)
#define MSDC_CFG_PIO BIT(3)
#define MSDC_CFG_RST BIT(2)
#define MSDC_CFG_CKPDN BIT(1)
#define MSDC_CFG_MODE BIT(0)
/* MSDC_IOCON */
#define MSDC_IOCON_W_DSPL BIT(8)
#define MSDC_IOCON_DSPL BIT(2)
#define MSDC_IOCON_RSPL BIT(1)
/* MSDC_PS */
#define MSDC_PS_DAT0 BIT(16)
#define MSDC_PS_CDDBCE_M 0xf000
#define MSDC_PS_CDDBCE_S 12
#define MSDC_PS_CDSTS BIT(1)
#define MSDC_PS_CDEN BIT(0)
/* #define MSDC_INT(EN) */
#define MSDC_INT_ACMDRDY BIT(3)
#define MSDC_INT_ACMDTMO BIT(4)
#define MSDC_INT_ACMDCRCERR BIT(5)
#define MSDC_INT_CMDRDY BIT(8)
#define MSDC_INT_CMDTMO BIT(9)
#define MSDC_INT_RSPCRCERR BIT(10)
#define MSDC_INT_XFER_COMPL BIT(12)
#define MSDC_INT_DATTMO BIT(14)
#define MSDC_INT_DATCRCERR BIT(15)
/* MSDC_FIFOCS */
#define MSDC_FIFOCS_CLR BIT(31)
#define MSDC_FIFOCS_TXCNT_M 0xff0000
#define MSDC_FIFOCS_TXCNT_S 16
#define MSDC_FIFOCS_RXCNT_M 0xff
#define MSDC_FIFOCS_RXCNT_S 0
/* #define SDC_CFG */
#define SDC_CFG_DTOC_M 0xff000000
#define SDC_CFG_DTOC_S 24
#define SDC_CFG_SDIOIDE BIT(20)
#define SDC_CFG_SDIO BIT(19)
#define SDC_CFG_BUSWIDTH_M 0x30000
#define SDC_CFG_BUSWIDTH_S 16
/* SDC_CMD */
#define SDC_CMD_BLK_LEN_M 0xfff0000
#define SDC_CMD_BLK_LEN_S 16
#define SDC_CMD_STOP BIT(14)
#define SDC_CMD_WR BIT(13)
#define SDC_CMD_DTYPE_M 0x1800
#define SDC_CMD_DTYPE_S 11
#define SDC_CMD_RSPTYP_M 0x380
#define SDC_CMD_RSPTYP_S 7
#define SDC_CMD_CMD_M 0x3f
#define SDC_CMD_CMD_S 0
/* SDC_STS */
#define SDC_STS_CMDBUSY BIT(1)
#define SDC_STS_SDCBUSY BIT(0)
/* SDC_ADV_CFG0 */
#define SDC_RX_ENHANCE_EN BIT(20)
/* PATCH_BIT0 */
#define MSDC_INT_DAT_LATCH_CK_SEL_M 0x380
#define MSDC_INT_DAT_LATCH_CK_SEL_S 7
/* PATCH_BIT1 */
#define MSDC_PB1_STOP_DLY_M 0xf00
#define MSDC_PB1_STOP_DLY_S 8
/* PATCH_BIT2 */
#define MSDC_PB2_CRCSTSENSEL_M 0xe0000000
#define MSDC_PB2_CRCSTSENSEL_S 29
#define MSDC_PB2_CFGCRCSTS BIT(28)
#define MSDC_PB2_RESPSTSENSEL_M 0x70000
#define MSDC_PB2_RESPSTSENSEL_S 16
#define MSDC_PB2_CFGRESP BIT(15)
#define MSDC_PB2_RESPWAIT_M 0x0c
#define MSDC_PB2_RESPWAIT_S 2
/* MSDC_PAD_CTRL0 */
#define MSDC_PAD_CTRL0_CLKRDSEL_M 0xff000000
#define MSDC_PAD_CTRL0_CLKRDSEL_S 24
#define MSDC_PAD_CTRL0_CLKTDSEL BIT(20)
#define MSDC_PAD_CTRL0_CLKIES BIT(19)
#define MSDC_PAD_CTRL0_CLKSMT BIT(18)
#define MSDC_PAD_CTRL0_CLKPU BIT(17)
#define MSDC_PAD_CTRL0_CLKPD BIT(16)
#define MSDC_PAD_CTRL0_CLKSR BIT(8)
#define MSDC_PAD_CTRL0_CLKDRVP_M 0x70
#define MSDC_PAD_CTRL0_CLKDRVP_S 4
#define MSDC_PAD_CTRL0_CLKDRVN_M 0x7
#define MSDC_PAD_CTRL0_CLKDRVN_S 0
/* MSDC_PAD_CTRL1 */
#define MSDC_PAD_CTRL1_CMDRDSEL_M 0xff000000
#define MSDC_PAD_CTRL1_CMDRDSEL_S 24
#define MSDC_PAD_CTRL1_CMDTDSEL BIT(20)
#define MSDC_PAD_CTRL1_CMDIES BIT(19)
#define MSDC_PAD_CTRL1_CMDSMT BIT(18)
#define MSDC_PAD_CTRL1_CMDPU BIT(17)
#define MSDC_PAD_CTRL1_CMDPD BIT(16)
#define MSDC_PAD_CTRL1_CMDSR BIT(8)
#define MSDC_PAD_CTRL1_CMDDRVP_M 0x70
#define MSDC_PAD_CTRL1_CMDDRVP_S 4
#define MSDC_PAD_CTRL1_CMDDRVN_M 0x7
#define MSDC_PAD_CTRL1_CMDDRVN_S 0
/* MSDC_PAD_CTRL2 */
#define MSDC_PAD_CTRL2_DATRDSEL_M 0xff000000
#define MSDC_PAD_CTRL2_DATRDSEL_S 24
#define MSDC_PAD_CTRL2_DATTDSEL BIT(20)
#define MSDC_PAD_CTRL2_DATIES BIT(19)
#define MSDC_PAD_CTRL2_DATSMT BIT(18)
#define MSDC_PAD_CTRL2_DATPU BIT(17)
#define MSDC_PAD_CTRL2_DATPD BIT(16)
#define MSDC_PAD_CTRL2_DATSR BIT(8)
#define MSDC_PAD_CTRL2_DATDRVP_M 0x70
#define MSDC_PAD_CTRL2_DATDRVP_S 4
#define MSDC_PAD_CTRL2_DATDRVN_M 0x7
#define MSDC_PAD_CTRL2_DATDRVN_S 0
/* PAD_TUNE */
#define MSDC_PAD_TUNE_CLKTDLY_M 0xf8000000
#define MSDC_PAD_TUNE_CLKTDLY_S 27
#define MSDC_PAD_TUNE_CMDRRDLY_M 0x7c00000
#define MSDC_PAD_TUNE_CMDRRDLY_S 22
#define MSDC_PAD_TUNE_CMD_SEL BIT(21)
#define MSDC_PAD_TUNE_CMDRDLY_M 0x1f0000
#define MSDC_PAD_TUNE_CMDRDLY_S 16
#define MSDC_PAD_TUNE_RXDLYSEL BIT(15)
#define MSDC_PAD_TUNE_RD_SEL BIT(13)
#define MSDC_PAD_TUNE_DATRRDLY_M 0x1f00
#define MSDC_PAD_TUNE_DATRRDLY_S 8
#define MSDC_PAD_TUNE_DATWRDLY_M 0x1f
#define MSDC_PAD_TUNE_DATWRDLY_S 0
#define PAD_CMD_TUNE_RX_DLY3 0x3E
#define PAD_CMD_TUNE_RX_DLY3_S 1
/* PAD_TUNE0 */
#define MSDC_PAD_TUNE0_DAT0RDDLY_M 0x1f000000
#define MSDC_PAD_TUNE0_DAT0RDDLY_S 24
#define MSDC_PAD_TUNE0_DAT1RDDLY_M 0x1f0000
#define MSDC_PAD_TUNE0_DAT1RDDLY_S 16
#define MSDC_PAD_TUNE0_DAT2RDDLY_M 0x1f00
#define MSDC_PAD_TUNE0_DAT2RDDLY_S 8
#define MSDC_PAD_TUNE0_DAT3RDDLY_M 0x1f
#define MSDC_PAD_TUNE0_DAT3RDDLY_S 0
/* PAD_TUNE1 */
#define MSDC_PAD_TUNE1_DAT4RDDLY_M 0x1f000000
#define MSDC_PAD_TUNE1_DAT4RDDLY_S 24
#define MSDC_PAD_TUNE1_DAT5RDDLY_M 0x1f0000
#define MSDC_PAD_TUNE1_DAT5RDDLY_S 16
#define MSDC_PAD_TUNE1_DAT6RDDLY_M 0x1f00
#define MSDC_PAD_TUNE1_DAT6RDDLY_S 8
#define MSDC_PAD_TUNE1_DAT7RDDLY_M 0x1f
#define MSDC_PAD_TUNE1_DAT7RDDLY_S 0
/* EMMC50_CFG0 */
#define EMMC50_CFG_CFCSTS_SEL BIT(4)
/* SDC_FIFO_CFG */
#define SDC_FIFO_CFG_WRVALIDSEL BIT(24)
#define SDC_FIFO_CFG_RDVALIDSEL BIT(25)
/* EMMC_TOP_CONTROL mask */
#define PAD_RXDLY_SEL BIT(0)
#define DELAY_EN BIT(1)
#define PAD_DAT_RD_RXDLY2 (0x1f << 2)
#define PAD_DAT_RD_RXDLY (0x1f << 7)
#define PAD_DAT_RD_RXDLY_S 7
#define PAD_DAT_RD_RXDLY2_SEL BIT(12)
#define PAD_DAT_RD_RXDLY_SEL BIT(13)
#define DATA_K_VALUE_SEL BIT(14)
#define SDC_RX_ENH_EN BIT(15)
/* EMMC_TOP_CMD mask */
#define PAD_CMD_RXDLY2 (0x1f << 0)
#define PAD_CMD_RXDLY (0x1f << 5)
#define PAD_CMD_RXDLY_S 5
#define PAD_CMD_RD_RXDLY2_SEL BIT(10)
#define PAD_CMD_RD_RXDLY_SEL BIT(11)
#define PAD_CMD_TX_DLY (0x1f << 12)
/* SDC_CFG_BUSWIDTH */
#define MSDC_BUS_1BITS 0x0
#define MSDC_BUS_4BITS 0x1
#define MSDC_BUS_8BITS 0x2
#define MSDC_FIFO_SIZE 128
#define PAD_DELAY_MAX 32
#define DEFAULT_CD_DEBOUNCE 8
#define SCLK_CYCLES_SHIFT 20
#define CMD_INTS_MASK \
(MSDC_INT_CMDRDY | MSDC_INT_RSPCRCERR | MSDC_INT_CMDTMO)
#define DATA_INTS_MASK \
(MSDC_INT_XFER_COMPL | MSDC_INT_DATTMO | MSDC_INT_DATCRCERR)
/* Register offset */
struct mtk_sd_regs {
u32 msdc_cfg;
u32 msdc_iocon;
u32 msdc_ps;
u32 msdc_int;
u32 msdc_inten;
u32 msdc_fifocs;
u32 msdc_txdata;
u32 msdc_rxdata;
u32 reserved0[4];
u32 sdc_cfg;
u32 sdc_cmd;
u32 sdc_arg;
u32 sdc_sts;
u32 sdc_resp[4];
u32 sdc_blk_num;
u32 sdc_vol_chg;
u32 sdc_csts;
u32 sdc_csts_en;
u32 sdc_datcrc_sts;
u32 sdc_adv_cfg0;
u32 reserved1[2];
u32 emmc_cfg0;
u32 emmc_cfg1;
u32 emmc_sts;
u32 emmc_iocon;
u32 sd_acmd_resp;
u32 sd_acmd19_trg;
u32 sd_acmd19_sts;
u32 dma_sa_high4bit;
u32 dma_sa;
u32 dma_ca;
u32 dma_ctrl;
u32 dma_cfg;
u32 sw_dbg_sel;
u32 sw_dbg_out;
u32 dma_length;
u32 reserved2;
u32 patch_bit0;
u32 patch_bit1;
u32 patch_bit2;
u32 reserved3;
u32 dat0_tune_crc;
u32 dat1_tune_crc;
u32 dat2_tune_crc;
u32 dat3_tune_crc;
u32 cmd_tune_crc;
u32 sdio_tune_wind;
u32 reserved4[2];
u32 pad_ctrl0;
u32 pad_ctrl1;
u32 pad_ctrl2;
u32 pad_tune;
u32 pad_tune0;
u32 pad_tune1;
u32 dat_rd_dly[4];
u32 reserved5[2];
u32 hw_dbg_sel;
u32 main_ver;
u32 eco_ver;
u32 reserved6[27];
u32 pad_ds_tune;
u32 pad_cmd_tune;
u32 reserved7[30];
u32 emmc50_cfg0;
u32 reserved8[7];
u32 sdc_fifo_cfg;
};
struct msdc_top_regs {
u32 emmc_top_control;
u32 emmc_top_cmd;
u32 emmc50_pad_ctl0;
u32 emmc50_pad_ds_tune;
u32 emmc50_pad_dat0_tune;
u32 emmc50_pad_dat1_tune;
u32 emmc50_pad_dat2_tune;
u32 emmc50_pad_dat3_tune;
u32 emmc50_pad_dat4_tune;
u32 emmc50_pad_dat5_tune;
u32 emmc50_pad_dat6_tune;
u32 emmc50_pad_dat7_tune;
};
struct msdc_compatible {
u8 clk_div_bits;
bool pad_tune0;
bool async_fifo;
bool data_tune;
bool busy_check;
bool stop_clk_fix;
bool enhance_rx;
bool builtin_pad_ctrl;
bool default_pad_dly;
};
struct msdc_delay_phase {
u8 maxlen;
u8 start;
u8 final_phase;
};
struct msdc_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct msdc_tune_para {
u32 iocon;
u32 pad_tune;
u32 pad_cmd_tune;
};
struct msdc_host {
struct mtk_sd_regs *base;
struct msdc_top_regs *top_base;
struct mmc *mmc;
struct msdc_compatible *dev_comp;
struct clk src_clk; /* for SD/MMC bus clock */
struct clk src_clk_cg; /* optional, MSDC source clock control gate */
struct clk h_clk; /* MSDC core clock */
u32 src_clk_freq; /* source clock */
u32 mclk; /* mmc framework required bus clock */
u32 sclk; /* actual calculated bus clock */
/* operation timeout clocks */
u32 timeout_ns;
u32 timeout_clks;
/* tuning options */
u32 hs400_ds_delay;
u32 hs200_cmd_int_delay;
u32 hs200_write_int_delay;
u32 latch_ck;
u32 r_smpl; /* sample edge */
bool hs400_mode;
/* whether to use gpio detection or built-in hw detection */
bool builtin_cd;
bool cd_active_high;
/* card detection / write protection GPIOs */
#if CONFIG_IS_ENABLED(DM_GPIO)
struct gpio_desc gpio_wp;
struct gpio_desc gpio_cd;
#endif
uint last_resp_type;
uint last_data_write;
enum bus_mode timing;
struct msdc_tune_para def_tune_para;
struct msdc_tune_para saved_tune_para;
};
static void msdc_reset_hw(struct msdc_host *host)
{
u32 reg;
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_RST);
readl_poll_timeout(&host->base->msdc_cfg, reg,
!(reg & MSDC_CFG_RST), 1000000);
}
static void msdc_fifo_clr(struct msdc_host *host)
{
u32 reg;
setbits_le32(&host->base->msdc_fifocs, MSDC_FIFOCS_CLR);
readl_poll_timeout(&host->base->msdc_fifocs, reg,
!(reg & MSDC_FIFOCS_CLR), 1000000);
}
static u32 msdc_fifo_rx_bytes(struct msdc_host *host)
{
return (readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S;
}
static u32 msdc_fifo_tx_bytes(struct msdc_host *host)
{
return (readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S;
}
static u32 msdc_cmd_find_resp(struct msdc_host *host, struct mmc_cmd *cmd)
{
u32 resp;
switch (cmd->resp_type) {
/* Actually, R1, R5, R6, R7 are the same */
case MMC_RSP_R1:
resp = 0x1;
break;
case MMC_RSP_R1b:
resp = 0x7;
break;
case MMC_RSP_R2:
resp = 0x2;
break;
case MMC_RSP_R3:
resp = 0x3;
break;
case MMC_RSP_NONE:
default:
resp = 0x0;
break;
}
return resp;
}
static u32 msdc_cmd_prepare_raw_cmd(struct msdc_host *host,
struct mmc_cmd *cmd,
struct mmc_data *data)
{
u32 opcode = cmd->cmdidx;
u32 resp_type = msdc_cmd_find_resp(host, cmd);
uint blocksize = 0;
u32 dtype = 0;
u32 rawcmd = 0;
switch (opcode) {
case MMC_CMD_WRITE_MULTIPLE_BLOCK:
case MMC_CMD_READ_MULTIPLE_BLOCK:
dtype = 2;
break;
case MMC_CMD_WRITE_SINGLE_BLOCK:
case MMC_CMD_READ_SINGLE_BLOCK:
case SD_CMD_APP_SEND_SCR:
case MMC_CMD_SEND_TUNING_BLOCK:
case MMC_CMD_SEND_TUNING_BLOCK_HS200:
dtype = 1;
break;
case SD_CMD_SWITCH_FUNC: /* same as MMC_CMD_SWITCH */
case SD_CMD_SEND_IF_COND: /* same as MMC_CMD_SEND_EXT_CSD */
case SD_CMD_APP_SD_STATUS: /* same as MMC_CMD_SEND_STATUS */
if (data)
dtype = 1;
}
if (data) {
if (data->flags == MMC_DATA_WRITE)
rawcmd |= SDC_CMD_WR;
if (data->blocks > 1)
dtype = 2;
blocksize = data->blocksize;
}
rawcmd |= ((opcode << SDC_CMD_CMD_S) & SDC_CMD_CMD_M) |
((resp_type << SDC_CMD_RSPTYP_S) & SDC_CMD_RSPTYP_M) |
((blocksize << SDC_CMD_BLK_LEN_S) & SDC_CMD_BLK_LEN_M) |
((dtype << SDC_CMD_DTYPE_S) & SDC_CMD_DTYPE_M);
if (opcode == MMC_CMD_STOP_TRANSMISSION)
rawcmd |= SDC_CMD_STOP;
return rawcmd;
}
static int msdc_cmd_done(struct msdc_host *host, int events,
struct mmc_cmd *cmd)
{
u32 *rsp = cmd->response;
int ret = 0;
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
rsp[0] = readl(&host->base->sdc_resp[3]);
rsp[1] = readl(&host->base->sdc_resp[2]);
rsp[2] = readl(&host->base->sdc_resp[1]);
rsp[3] = readl(&host->base->sdc_resp[0]);
} else {
rsp[0] = readl(&host->base->sdc_resp[0]);
}
}
if (!(events & MSDC_INT_CMDRDY)) {
if (cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK &&
cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200)
/*
* should not clear fifo/interrupt as the tune data
* may have alreay come.
*/
msdc_reset_hw(host);
if (events & MSDC_INT_CMDTMO)
ret = -ETIMEDOUT;
else
ret = -EIO;
}
return ret;
}
static bool msdc_cmd_is_ready(struct msdc_host *host)
{
int ret;
u32 reg;
/* The max busy time we can endure is 20ms */
ret = readl_poll_timeout(&host->base->sdc_sts, reg,
!(reg & SDC_STS_CMDBUSY), 20000);
if (ret) {
pr_err("CMD bus busy detected\n");
msdc_reset_hw(host);
return false;
}
if (host->last_resp_type == MMC_RSP_R1b && host->last_data_write) {
ret = readl_poll_timeout(&host->base->msdc_ps, reg,
reg & MSDC_PS_DAT0, 1000000);
if (ret) {
pr_err("Card stuck in programming state!\n");
msdc_reset_hw(host);
return false;
}
}
return true;
}
static int msdc_start_command(struct msdc_host *host, struct mmc_cmd *cmd,
struct mmc_data *data)
{
u32 rawcmd;
u32 status;
u32 blocks = 0;
int ret;
if (!msdc_cmd_is_ready(host))
return -EIO;
if ((readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S ||
(readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S) {
pr_err("TX/RX FIFO non-empty before start of IO. Reset\n");
msdc_reset_hw(host);
}
msdc_fifo_clr(host);
host->last_resp_type = cmd->resp_type;
host->last_data_write = 0;
rawcmd = msdc_cmd_prepare_raw_cmd(host, cmd, data);
if (data)
blocks = data->blocks;
writel(CMD_INTS_MASK, &host->base->msdc_int);
writel(DATA_INTS_MASK, &host->base->msdc_int);
writel(blocks, &host->base->sdc_blk_num);
writel(cmd->cmdarg, &host->base->sdc_arg);
writel(rawcmd, &host->base->sdc_cmd);
ret = readl_poll_timeout(&host->base->msdc_int, status,
status & CMD_INTS_MASK, 1000000);
if (ret)
status = MSDC_INT_CMDTMO;
return msdc_cmd_done(host, status, cmd);
}
static void msdc_fifo_read(struct msdc_host *host, u8 *buf, u32 size)
{
u32 *wbuf;
while ((size_t)buf % 4) {
*buf++ = readb(&host->base->msdc_rxdata);
size--;
}
wbuf = (u32 *)buf;
while (size >= 4) {
*wbuf++ = readl(&host->base->msdc_rxdata);
size -= 4;
}
buf = (u8 *)wbuf;
while (size) {
*buf++ = readb(&host->base->msdc_rxdata);
size--;
}
}
static void msdc_fifo_write(struct msdc_host *host, const u8 *buf, u32 size)
{
const u32 *wbuf;
while ((size_t)buf % 4) {
writeb(*buf++, &host->base->msdc_txdata);
size--;
}
wbuf = (const u32 *)buf;
while (size >= 4) {
writel(*wbuf++, &host->base->msdc_txdata);
size -= 4;
}
buf = (const u8 *)wbuf;
while (size) {
writeb(*buf++, &host->base->msdc_txdata);
size--;
}
}
static int msdc_pio_read(struct msdc_host *host, u8 *ptr, u32 size)
{
u32 status;
u32 chksz;
int ret = 0;
while (1) {
status = readl(&host->base->msdc_int);
writel(status, &host->base->msdc_int);
status &= DATA_INTS_MASK;
if (status & MSDC_INT_DATCRCERR) {
ret = -EIO;
break;
}
if (status & MSDC_INT_DATTMO) {
ret = -ETIMEDOUT;
break;
}
chksz = min(size, (u32)MSDC_FIFO_SIZE);
if (msdc_fifo_rx_bytes(host) >= chksz) {
msdc_fifo_read(host, ptr, chksz);
ptr += chksz;
size -= chksz;
}
if (status & MSDC_INT_XFER_COMPL) {
if (size) {
pr_err("data not fully read\n");
ret = -EIO;
}
break;
}
}
return ret;
}
static int msdc_pio_write(struct msdc_host *host, const u8 *ptr, u32 size)
{
u32 status;
u32 chksz;
int ret = 0;
while (1) {
status = readl(&host->base->msdc_int);
writel(status, &host->base->msdc_int);
status &= DATA_INTS_MASK;
if (status & MSDC_INT_DATCRCERR) {
ret = -EIO;
break;
}
if (status & MSDC_INT_DATTMO) {
ret = -ETIMEDOUT;
break;
}
if (status & MSDC_INT_XFER_COMPL) {
if (size) {
pr_err("data not fully written\n");
ret = -EIO;
}
break;
}
chksz = min(size, (u32)MSDC_FIFO_SIZE);
if (MSDC_FIFO_SIZE - msdc_fifo_tx_bytes(host) >= chksz) {
msdc_fifo_write(host, ptr, chksz);
ptr += chksz;
size -= chksz;
}
}
return ret;
}
static int msdc_start_data(struct msdc_host *host, struct mmc_data *data)
{
u32 size;
int ret;
if (data->flags == MMC_DATA_WRITE)
host->last_data_write = 1;
size = data->blocks * data->blocksize;
if (data->flags == MMC_DATA_WRITE)
ret = msdc_pio_write(host, (const u8 *)data->src, size);
else
ret = msdc_pio_read(host, (u8 *)data->dest, size);
if (ret) {
msdc_reset_hw(host);
msdc_fifo_clr(host);
}
return ret;
}
static int msdc_ops_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct msdc_host *host = dev_get_priv(dev);
int cmd_ret, data_ret;
cmd_ret = msdc_start_command(host, cmd, data);
if (cmd_ret &&
!(cmd_ret == -EIO &&
(cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)))
return cmd_ret;
if (data) {
data_ret = msdc_start_data(host, data);
if (cmd_ret)
return cmd_ret;
else
return data_ret;
}
return 0;
}
static void msdc_set_timeout(struct msdc_host *host, u32 ns, u32 clks)
{
u32 timeout, clk_ns, shift = SCLK_CYCLES_SHIFT;
u32 mode = 0;
host->timeout_ns = ns;
host->timeout_clks = clks;
if (host->sclk == 0) {
timeout = 0;
} else {
clk_ns = 1000000000UL / host->sclk;
timeout = (ns + clk_ns - 1) / clk_ns + clks;
/* unit is 1048576 sclk cycles */
timeout = (timeout + (0x1 << shift) - 1) >> shift;
if (host->dev_comp->clk_div_bits == 8)
mode = (readl(&host->base->msdc_cfg) &
MSDC_CFG_CKMOD_M) >> MSDC_CFG_CKMOD_S;
else
mode = (readl(&host->base->msdc_cfg) &
MSDC_CFG_CKMOD_EXT_M) >> MSDC_CFG_CKMOD_EXT_S;
/* DDR mode will double the clk cycles for data timeout */
timeout = mode >= 2 ? timeout * 2 : timeout;
timeout = timeout > 1 ? timeout - 1 : 0;
timeout = timeout > 255 ? 255 : timeout;
}
clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M,
timeout << SDC_CFG_DTOC_S);
}
static void msdc_set_buswidth(struct msdc_host *host, u32 width)
{
u32 val = readl(&host->base->sdc_cfg);
val &= ~SDC_CFG_BUSWIDTH_M;
switch (width) {
default:
case 1:
val |= (MSDC_BUS_1BITS << SDC_CFG_BUSWIDTH_S);
break;
case 4:
val |= (MSDC_BUS_4BITS << SDC_CFG_BUSWIDTH_S);
break;
case 8:
val |= (MSDC_BUS_8BITS << SDC_CFG_BUSWIDTH_S);
break;
}
writel(val, &host->base->sdc_cfg);
}
static void msdc_set_mclk(struct udevice *dev,
struct msdc_host *host, enum bus_mode timing, u32 hz)
{
u32 mode;
u32 div;
u32 sclk;
u32 reg;
if (!hz) {
host->mclk = 0;
clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
return;
}
if (host->dev_comp->clk_div_bits == 8)
clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE);
else
clrbits_le32(&host->base->msdc_cfg,
MSDC_CFG_HS400_CK_MODE_EXT);
if (timing == UHS_DDR50 || timing == MMC_DDR_52 ||
timing == MMC_HS_400) {
if (timing == MMC_HS_400)
mode = 0x3;
else
mode = 0x2; /* ddr mode and use divisor */
if (hz >= (host->src_clk_freq >> 2)) {
div = 0; /* mean div = 1/4 */
sclk = host->src_clk_freq >> 2; /* sclk = clk / 4 */
} else {
div = (host->src_clk_freq + ((hz << 2) - 1)) /
(hz << 2);
sclk = (host->src_clk_freq >> 2) / div;
div = (div >> 1);
}
if (timing == MMC_HS_400 && hz >= (host->src_clk_freq >> 1)) {
if (host->dev_comp->clk_div_bits == 8)
setbits_le32(&host->base->msdc_cfg,
MSDC_CFG_HS400_CK_MODE);
else
setbits_le32(&host->base->msdc_cfg,
MSDC_CFG_HS400_CK_MODE_EXT);
sclk = host->src_clk_freq >> 1;
div = 0; /* div is ignore when bit18 is set */
}
} else if (hz >= host->src_clk_freq) {
mode = 0x1; /* no divisor */
div = 0;
sclk = host->src_clk_freq;
} else {
mode = 0x0; /* use divisor */
if (hz >= (host->src_clk_freq >> 1)) {
div = 0; /* mean div = 1/2 */
sclk = host->src_clk_freq >> 1; /* sclk = clk / 2 */
} else {
div = (host->src_clk_freq + ((hz << 2) - 1)) /
(hz << 2);
sclk = (host->src_clk_freq >> 2) / div;
}
}
clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
if (host->dev_comp->clk_div_bits == 8) {
div = min(div, (u32)(MSDC_CFG_CKDIV_M >> MSDC_CFG_CKDIV_S));
clrsetbits_le32(&host->base->msdc_cfg,
MSDC_CFG_CKMOD_M | MSDC_CFG_CKDIV_M,
(mode << MSDC_CFG_CKMOD_S) |
(div << MSDC_CFG_CKDIV_S));
} else {
div = min(div, (u32)(MSDC_CFG_CKDIV_EXT_M >>
MSDC_CFG_CKDIV_EXT_S));
clrsetbits_le32(&host->base->msdc_cfg,
MSDC_CFG_CKMOD_EXT_M | MSDC_CFG_CKDIV_EXT_M,
(mode << MSDC_CFG_CKMOD_EXT_S) |
(div << MSDC_CFG_CKDIV_EXT_S));
}
readl_poll_timeout(&host->base->msdc_cfg, reg,
reg & MSDC_CFG_CKSTB, 1000000);
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
host->sclk = sclk;
host->mclk = hz;
host->timing = timing;
/* needed because clk changed. */
msdc_set_timeout(host, host->timeout_ns, host->timeout_clks);
/*
* mmc_select_hs400() will drop to 50Mhz and High speed mode,
* tune result of hs200/200Mhz is not suitable for 50Mhz
*/
if (host->sclk <= 52000000) {
writel(host->def_tune_para.iocon, &host->base->msdc_iocon);
writel(host->def_tune_para.pad_tune,
&host->base->pad_tune);
} else {
writel(host->saved_tune_para.iocon, &host->base->msdc_iocon);
writel(host->saved_tune_para.pad_tune,
&host->base->pad_tune);
}
dev_dbg(dev, "sclk: %d, timing: %d\n", host->sclk, timing);
}
static int msdc_ops_set_ios(struct udevice *dev)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
uint clock = mmc->clock;
msdc_set_buswidth(host, mmc->bus_width);
if (mmc->clk_disable)
clock = 0;
else if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
if (host->mclk != clock || host->timing != mmc->selected_mode)
msdc_set_mclk(dev, host, mmc->selected_mode, clock);
return 0;
}
static int msdc_ops_get_cd(struct udevice *dev)
{
struct msdc_host *host = dev_get_priv(dev);
u32 val;
if (host->builtin_cd) {
val = readl(&host->base->msdc_ps);
val = !!(val & MSDC_PS_CDSTS);
return !val ^ host->cd_active_high;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
if (!host->gpio_cd.dev)
return 1;
return dm_gpio_get_value(&host->gpio_cd);
#else
return 1;
#endif
}
static int msdc_ops_get_wp(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(DM_GPIO)
struct msdc_host *host = dev_get_priv(dev);
if (!host->gpio_wp.dev)
return 0;
return !dm_gpio_get_value(&host->gpio_wp);
#else
return 0;
#endif
}
#ifdef MMC_SUPPORTS_TUNING
static u32 test_delay_bit(u32 delay, u32 bit)
{
bit %= PAD_DELAY_MAX;
return delay & (1 << bit);
}
static int get_delay_len(u32 delay, u32 start_bit)
{
int i;
for (i = 0; i < (PAD_DELAY_MAX - start_bit); i++) {
if (test_delay_bit(delay, start_bit + i) == 0)
return i;
}
return PAD_DELAY_MAX - start_bit;
}
static struct msdc_delay_phase get_best_delay(struct udevice *dev,
struct msdc_host *host, u32 delay)
{
int start = 0, len = 0;
int start_final = 0, len_final = 0;
u8 final_phase = 0xff;
struct msdc_delay_phase delay_phase = { 0, };
if (delay == 0) {
dev_err(dev, "phase error: [map:%x]\n", delay);
delay_phase.final_phase = final_phase;
return delay_phase;
}
while (start < PAD_DELAY_MAX) {
len = get_delay_len(delay, start);
if (len_final < len) {
start_final = start;
len_final = len;
}
start += len ? len : 1;
if (len >= 12 && start_final < 4)
break;
}
/* The rule is to find the smallest delay cell */
if (start_final == 0)
final_phase = (start_final + len_final / 3) % PAD_DELAY_MAX;
else
final_phase = (start_final + len_final / 2) % PAD_DELAY_MAX;
dev_info(dev, "phase: [map:%x] [maxlen:%d] [final:%d]\n",
delay, len_final, final_phase);
delay_phase.maxlen = len_final;
delay_phase.start = start_final;
delay_phase.final_phase = final_phase;
return delay_phase;
}
static inline void msdc_set_cmd_delay(struct msdc_host *host, u32 value)
{
void __iomem *tune_reg = &host->base->pad_tune;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
if (host->top_base)
clrsetbits_le32(&host->top_base->emmc_top_cmd, PAD_CMD_RXDLY,
value << PAD_CMD_RXDLY_S);
else
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
value << MSDC_PAD_TUNE_CMDRDLY_S);
}
static inline void msdc_set_data_delay(struct msdc_host *host, u32 value)
{
void __iomem *tune_reg = &host->base->pad_tune;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
if (host->top_base)
clrsetbits_le32(&host->top_base->emmc_top_control,
PAD_DAT_RD_RXDLY, value << PAD_DAT_RD_RXDLY_S);
else
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
value << MSDC_PAD_TUNE_DATRRDLY_S);
}
static int hs400_tune_response(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 cmd_delay = 0;
struct msdc_delay_phase final_cmd_delay = { 0, };
u8 final_delay;
void __iomem *tune_reg = &host->base->pad_cmd_tune;
int cmd_err;
int i, j;
setbits_le32(&host->base->pad_cmd_tune, BIT(0));
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == UHS_SDR104)
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
host->hs200_cmd_int_delay <<
MSDC_PAD_TUNE_CMDRRDLY_S);
if (host->r_smpl)
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
else
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3,
i << PAD_CMD_TUNE_RX_DLY3_S);
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
cmd_delay |= (1 << i);
} else {
cmd_delay &= ~(1 << i);
break;
}
}
}
final_cmd_delay = get_best_delay(dev, host, cmd_delay);
clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3,
final_cmd_delay.final_phase <<
PAD_CMD_TUNE_RX_DLY3_S);
final_delay = final_cmd_delay.final_phase;
dev_info(dev, "Final cmd pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_tune_response(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
struct msdc_delay_phase internal_delay_phase;
u8 final_delay, final_maxlen;
u32 internal_delay = 0;
void __iomem *tune_reg = &host->base->pad_tune;
int cmd_err;
int i, j;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == UHS_SDR104)
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
host->hs200_cmd_int_delay <<
MSDC_PAD_TUNE_CMDRRDLY_S);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
i << MSDC_PAD_TUNE_CMDRDLY_S);
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
rise_delay |= (1 << i);
} else {
rise_delay &= ~(1 << i);
break;
}
}
}
final_rise_delay = get_best_delay(dev, host, rise_delay);
/* if rising edge has enough margin, do not scan falling edge */
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
i << MSDC_PAD_TUNE_CMDRDLY_S);
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
fall_delay |= (1 << i);
} else {
fall_delay &= ~(1 << i);
break;
}
}
}
final_fall_delay = get_best_delay(dev, host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
final_rise_delay.final_phase <<
MSDC_PAD_TUNE_CMDRDLY_S);
final_delay = final_rise_delay.final_phase;
} else {
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
final_fall_delay.final_phase <<
MSDC_PAD_TUNE_CMDRDLY_S);
final_delay = final_fall_delay.final_phase;
}
if (host->dev_comp->async_fifo || host->hs200_cmd_int_delay)
goto skip_internal;
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
i << MSDC_PAD_TUNE_CMDRRDLY_S);
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err)
internal_delay |= (1 << i);
}
dev_dbg(dev, "Final internal delay: 0x%x\n", internal_delay);
internal_delay_phase = get_best_delay(dev, host, internal_delay);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
internal_delay_phase.final_phase <<
MSDC_PAD_TUNE_CMDRRDLY_S);
skip_internal:
dev_dbg(dev, "Final cmd pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_tune_data(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
u8 final_delay, final_maxlen;
void __iomem *tune_reg = &host->base->pad_tune;
int cmd_err;
int i, ret;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
i << MSDC_PAD_TUNE_DATRRDLY_S);
ret = mmc_send_tuning(mmc, opcode, &cmd_err);
if (!ret) {
rise_delay |= (1 << i);
} else if (cmd_err) {
/* in this case, retune response is needed */
ret = msdc_tune_response(dev, opcode);
if (ret)
break;
}
}
final_rise_delay = get_best_delay(dev, host, rise_delay);
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
i << MSDC_PAD_TUNE_DATRRDLY_S);
ret = mmc_send_tuning(mmc, opcode, &cmd_err);
if (!ret) {
fall_delay |= (1 << i);
} else if (cmd_err) {
/* in this case, retune response is needed */
ret = msdc_tune_response(dev, opcode);
if (ret)
break;
}
}
final_fall_delay = get_best_delay(dev, host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
final_rise_delay.final_phase <<
MSDC_PAD_TUNE_DATRRDLY_S);
final_delay = final_rise_delay.final_phase;
} else {
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
final_fall_delay.final_phase <<
MSDC_PAD_TUNE_DATRRDLY_S);
final_delay = final_fall_delay.final_phase;
}
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == UHS_SDR104)
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATWRDLY_M,
host->hs200_write_int_delay <<
MSDC_PAD_TUNE_DATWRDLY_S);
dev_dbg(dev, "Final data pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
/*
* MSDC IP which supports data tune + async fifo can do CMD/DAT tune
* together, which can save the tuning time.
*/
static int msdc_tune_together(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
u8 final_delay, final_maxlen;
int i, ret;
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
rise_delay |= (1 << i);
}
final_rise_delay = get_best_delay(dev, host, rise_delay);
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
fall_delay |= (1 << i);
}
final_fall_delay = get_best_delay(dev, host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
final_delay = final_rise_delay.final_phase;
} else {
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
final_delay = final_fall_delay.final_phase;
}
msdc_set_cmd_delay(host, final_delay);
msdc_set_data_delay(host, final_delay);
dev_info(dev, "Final pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_execute_tuning(struct udevice *dev, uint opcode)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
int ret = 0;
if (host->dev_comp->data_tune && host->dev_comp->async_fifo) {
ret = msdc_tune_together(dev, opcode);
if (ret == -EIO) {
dev_err(dev, "Tune fail!\n");
return ret;
}
if (mmc->selected_mode == MMC_HS_400) {
clrbits_le32(&host->base->msdc_iocon,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
clrsetbits_le32(&host->base->pad_tune,
MSDC_PAD_TUNE_DATRRDLY_M, 0);
writel(host->hs400_ds_delay, &host->base->pad_ds_tune);
/* for hs400 mode it must be set to 0 */
clrbits_le32(&host->base->patch_bit2,
MSDC_PB2_CFGCRCSTS);
host->hs400_mode = true;
}
goto tune_done;
}
if (mmc->selected_mode == MMC_HS_400)
ret = hs400_tune_response(dev, opcode);
else
ret = msdc_tune_response(dev, opcode);
if (ret == -EIO) {
dev_err(dev, "Tune response fail!\n");
return ret;
}
if (mmc->selected_mode != MMC_HS_400) {
ret = msdc_tune_data(dev, opcode);
if (ret == -EIO) {
dev_err(dev, "Tune data fail!\n");
return ret;
}
}
tune_done:
host->saved_tune_para.iocon = readl(&host->base->msdc_iocon);
host->saved_tune_para.pad_tune = readl(&host->base->pad_tune);
host->saved_tune_para.pad_cmd_tune = readl(&host->base->pad_cmd_tune);
return ret;
}
#endif
static void msdc_init_hw(struct msdc_host *host)
{
u32 val;
void __iomem *tune_reg = &host->base->pad_tune;
void __iomem *rd_dly0_reg = &host->base->pad_tune0;
void __iomem *rd_dly1_reg = &host->base->pad_tune1;
if (host->dev_comp->pad_tune0) {
tune_reg = &host->base->pad_tune0;
rd_dly0_reg = &host->base->dat_rd_dly[0];
rd_dly1_reg = &host->base->dat_rd_dly[1];
}
/* Configure to MMC/SD mode, clock free running */
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_MODE);
/* Use PIO mode */
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_PIO);
/* Reset */
msdc_reset_hw(host);
/* Enable/disable hw card detection according to fdt option */
if (host->builtin_cd)
clrsetbits_le32(&host->base->msdc_ps,
MSDC_PS_CDDBCE_M,
(DEFAULT_CD_DEBOUNCE << MSDC_PS_CDDBCE_S) |
MSDC_PS_CDEN);
else
clrbits_le32(&host->base->msdc_ps, MSDC_PS_CDEN);
/* Clear all interrupts */
val = readl(&host->base->msdc_int);
writel(val, &host->base->msdc_int);
/* Enable data & cmd interrupts */
writel(DATA_INTS_MASK | CMD_INTS_MASK, &host->base->msdc_inten);
writel(0, tune_reg);
writel(0, &host->base->msdc_iocon);
if (host->r_smpl)
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
else
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
writel(0x403c0046, &host->base->patch_bit0);
writel(0xffff4089, &host->base->patch_bit1);
if (host->dev_comp->stop_clk_fix)
clrsetbits_le32(&host->base->patch_bit1, MSDC_PB1_STOP_DLY_M,
3 << MSDC_PB1_STOP_DLY_S);
if (host->dev_comp->busy_check)
clrbits_le32(&host->base->patch_bit1, (1 << 7));
setbits_le32(&host->base->emmc50_cfg0, EMMC50_CFG_CFCSTS_SEL);
if (host->dev_comp->async_fifo) {
clrsetbits_le32(&host->base->patch_bit2, MSDC_PB2_RESPWAIT_M,
3 << MSDC_PB2_RESPWAIT_S);
if (host->dev_comp->enhance_rx) {
if (host->top_base)
setbits_le32(&host->top_base->emmc_top_control,
SDC_RX_ENH_EN);
else
setbits_le32(&host->base->sdc_adv_cfg0,
SDC_RX_ENHANCE_EN);
} else {
clrsetbits_le32(&host->base->patch_bit2,
MSDC_PB2_RESPSTSENSEL_M,
2 << MSDC_PB2_RESPSTSENSEL_S);
clrsetbits_le32(&host->base->patch_bit2,
MSDC_PB2_CRCSTSENSEL_M,
2 << MSDC_PB2_CRCSTSENSEL_S);
}
/* use async fifo to avoid tune internal delay */
clrbits_le32(&host->base->patch_bit2,
MSDC_PB2_CFGRESP);
clrbits_le32(&host->base->patch_bit2,
MSDC_PB2_CFGCRCSTS);
}
if (host->dev_comp->data_tune) {
setbits_le32(tune_reg,
MSDC_PAD_TUNE_RD_SEL | MSDC_PAD_TUNE_CMD_SEL);
clrsetbits_le32(&host->base->patch_bit0,
MSDC_INT_DAT_LATCH_CK_SEL_M,
host->latch_ck <<
MSDC_INT_DAT_LATCH_CK_SEL_S);
} else {
/* choose clock tune */
setbits_le32(tune_reg, MSDC_PAD_TUNE_RXDLYSEL);
}
if (host->dev_comp->builtin_pad_ctrl) {
/* Set pins driving strength */
writel(MSDC_PAD_CTRL0_CLKPD | MSDC_PAD_CTRL0_CLKSMT |
MSDC_PAD_CTRL0_CLKIES | (4 << MSDC_PAD_CTRL0_CLKDRVN_S) |
(4 << MSDC_PAD_CTRL0_CLKDRVP_S), &host->base->pad_ctrl0);
writel(MSDC_PAD_CTRL1_CMDPU | MSDC_PAD_CTRL1_CMDSMT |
MSDC_PAD_CTRL1_CMDIES | (4 << MSDC_PAD_CTRL1_CMDDRVN_S) |
(4 << MSDC_PAD_CTRL1_CMDDRVP_S), &host->base->pad_ctrl1);
writel(MSDC_PAD_CTRL2_DATPU | MSDC_PAD_CTRL2_DATSMT |
MSDC_PAD_CTRL2_DATIES | (4 << MSDC_PAD_CTRL2_DATDRVN_S) |
(4 << MSDC_PAD_CTRL2_DATDRVP_S), &host->base->pad_ctrl2);
}
if (host->dev_comp->default_pad_dly) {
/* Default pad delay may be needed if tuning not enabled */
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CLKTDLY_M |
MSDC_PAD_TUNE_CMDRRDLY_M |
MSDC_PAD_TUNE_CMDRDLY_M |
MSDC_PAD_TUNE_DATRRDLY_M |
MSDC_PAD_TUNE_DATWRDLY_M,
(0x10 << MSDC_PAD_TUNE_CLKTDLY_S) |
(0x10 << MSDC_PAD_TUNE_CMDRRDLY_S) |
(0x10 << MSDC_PAD_TUNE_CMDRDLY_S) |
(0x10 << MSDC_PAD_TUNE_DATRRDLY_S) |
(0x10 << MSDC_PAD_TUNE_DATWRDLY_S));
writel((0x10 << MSDC_PAD_TUNE0_DAT0RDDLY_S) |
(0x10 << MSDC_PAD_TUNE0_DAT1RDDLY_S) |
(0x10 << MSDC_PAD_TUNE0_DAT2RDDLY_S) |
(0x10 << MSDC_PAD_TUNE0_DAT3RDDLY_S),
rd_dly0_reg);
writel((0x10 << MSDC_PAD_TUNE1_DAT4RDDLY_S) |
(0x10 << MSDC_PAD_TUNE1_DAT5RDDLY_S) |
(0x10 << MSDC_PAD_TUNE1_DAT6RDDLY_S) |
(0x10 << MSDC_PAD_TUNE1_DAT7RDDLY_S),
rd_dly1_reg);
}
/* Configure to enable SDIO mode otherwise sdio cmd5 won't work */
setbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIO);
/* disable detecting SDIO device interrupt function */
clrbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIOIDE);
/* Configure to default data timeout */
clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M,
3 << SDC_CFG_DTOC_S);
if (host->dev_comp->stop_clk_fix) {
clrbits_le32(&host->base->sdc_fifo_cfg,
SDC_FIFO_CFG_WRVALIDSEL);
clrbits_le32(&host->base->sdc_fifo_cfg,
SDC_FIFO_CFG_RDVALIDSEL);
}
host->def_tune_para.iocon = readl(&host->base->msdc_iocon);
host->def_tune_para.pad_tune = readl(&host->base->pad_tune);
}
static void msdc_ungate_clock(struct msdc_host *host)
{
clk_enable(&host->src_clk);
clk_enable(&host->h_clk);
if (host->src_clk_cg.dev)
clk_enable(&host->src_clk_cg);
}
static int msdc_drv_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc_config *cfg = &plat->cfg;
cfg->name = dev->name;
host->dev_comp = (struct msdc_compatible *)dev_get_driver_data(dev);
host->src_clk_freq = clk_get_rate(&host->src_clk);
if (host->dev_comp->clk_div_bits == 8)
cfg->f_min = host->src_clk_freq / (4 * 255);
else
cfg->f_min = host->src_clk_freq / (4 * 4095);
cfg->b_max = 1024;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
host->mmc = &plat->mmc;
host->timeout_ns = 100000000;
host->timeout_clks = 3 * (1 << SCLK_CYCLES_SHIFT);
#ifdef CONFIG_PINCTRL
pinctrl_select_state(dev, "default");
#endif
msdc_ungate_clock(host);
msdc_init_hw(host);
upriv->mmc = &plat->mmc;
return 0;
}
static int msdc_of_to_plat(struct udevice *dev)
{
struct msdc_plat *plat = dev_get_plat(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc_config *cfg = &plat->cfg;
fdt_addr_t base, top_base;
int ret;
base = dev_read_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
host->base = map_sysmem(base, 0);
top_base = dev_read_addr_index(dev, 1);
if (top_base == FDT_ADDR_T_NONE)
host->top_base = NULL;
else
host->top_base = map_sysmem(top_base, 0);
ret = mmc_of_parse(dev, cfg);
if (ret)
return ret;
ret = clk_get_by_name(dev, "source", &host->src_clk);
if (ret < 0)
return ret;
ret = clk_get_by_name(dev, "hclk", &host->h_clk);
if (ret < 0)
return ret;
clk_get_by_name(dev, "source_cg", &host->src_clk_cg); /* optional */
#if CONFIG_IS_ENABLED(DM_GPIO)
gpio_request_by_name(dev, "wp-gpios", 0, &host->gpio_wp, GPIOD_IS_IN);
gpio_request_by_name(dev, "cd-gpios", 0, &host->gpio_cd, GPIOD_IS_IN);
#endif
host->hs400_ds_delay = dev_read_u32_default(dev, "hs400-ds-delay", 0);
host->hs200_cmd_int_delay =
dev_read_u32_default(dev, "cmd_int_delay", 0);
host->hs200_write_int_delay =
dev_read_u32_default(dev, "write_int_delay", 0);
host->latch_ck = dev_read_u32_default(dev, "latch-ck", 0);
host->r_smpl = dev_read_u32_default(dev, "r_smpl", 0);
host->builtin_cd = dev_read_u32_default(dev, "builtin-cd", 0);
host->cd_active_high = dev_read_bool(dev, "cd-active-high");
return 0;
}
static int msdc_drv_bind(struct udevice *dev)
{
struct msdc_plat *plat = dev_get_plat(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct dm_mmc_ops msdc_ops = {
.send_cmd = msdc_ops_send_cmd,
.set_ios = msdc_ops_set_ios,
.get_cd = msdc_ops_get_cd,
.get_wp = msdc_ops_get_wp,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = msdc_execute_tuning,
#endif
};
static const struct msdc_compatible mt7620_compat = {
.clk_div_bits = 8,
.pad_tune0 = false,
.async_fifo = false,
.data_tune = false,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false,
.builtin_pad_ctrl = true,
.default_pad_dly = true,
};
static const struct msdc_compatible mt7622_compat = {
.clk_div_bits = 12,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct msdc_compatible mt7623_compat = {
.clk_div_bits = 12,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false
};
static const struct msdc_compatible mt8512_compat = {
.clk_div_bits = 12,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct msdc_compatible mt8516_compat = {
.clk_div_bits = 12,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct msdc_compatible mt8183_compat = {
.clk_div_bits = 12,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct udevice_id msdc_ids[] = {
{ .compatible = "mediatek,mt7620-mmc", .data = (ulong)&mt7620_compat },
{ .compatible = "mediatek,mt7622-mmc", .data = (ulong)&mt7622_compat },
{ .compatible = "mediatek,mt7623-mmc", .data = (ulong)&mt7623_compat },
{ .compatible = "mediatek,mt8512-mmc", .data = (ulong)&mt8512_compat },
{ .compatible = "mediatek,mt8516-mmc", .data = (ulong)&mt8516_compat },
{ .compatible = "mediatek,mt8183-mmc", .data = (ulong)&mt8183_compat },
{}
};
U_BOOT_DRIVER(mtk_sd_drv) = {
.name = "mtk_sd",
.id = UCLASS_MMC,
.of_match = msdc_ids,
.of_to_plat = msdc_of_to_plat,
.bind = msdc_drv_bind,
.probe = msdc_drv_probe,
.ops = &msdc_ops,
.plat_auto = sizeof(struct msdc_plat),
.priv_auto = sizeof(struct msdc_host),
};