u-boot-brain/fs/btrfs/ctree.c
Qu Wenruo 29c26ae8bc fs: btrfs: Crossport btrfs_search_slot() from btrfs-progs
This patch copies the core function, btrfs_search_slot(), from
btrfs-progs.

This version has the following functionality removed:
- The ability to COW tree block
  Related code is commented out, and can be enabled in the future.

- The readahead functionality
  This is abused in kernel. Remove it completely.

With the core function in place, btrfs developers should feel at home now.

This also crossports supporting code like btrfs_previous_item() to
ctree.[ch].

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Marek Behún <marek.behun@nic.cz>
2020-09-07 20:57:27 -04:00

1033 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* BTRFS filesystem implementation for U-Boot
*
* 2017 Marek Behun, CZ.NIC, marek.behun@nic.cz
*/
#include <linux/kernel.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include "btrfs.h"
#include "disk-io.h"
static const struct btrfs_csum {
u16 size;
const char name[14];
} btrfs_csums[] = {
[BTRFS_CSUM_TYPE_CRC32] = { 4, "crc32c" },
[BTRFS_CSUM_TYPE_XXHASH] = { 8, "xxhash64" },
[BTRFS_CSUM_TYPE_SHA256] = { 32, "sha256" },
[BTRFS_CSUM_TYPE_BLAKE2] = { 32, "blake2" },
};
u16 btrfs_super_csum_size(const struct btrfs_super_block *sb)
{
const u16 csum_type = btrfs_super_csum_type(sb);
return btrfs_csums[csum_type].size;
}
const char *btrfs_super_csum_name(u16 csum_type)
{
return btrfs_csums[csum_type].name;
}
size_t btrfs_super_num_csums(void)
{
return ARRAY_SIZE(btrfs_csums);
}
u16 btrfs_csum_type_size(u16 csum_type)
{
return btrfs_csums[csum_type].size;
}
struct btrfs_path *btrfs_alloc_path(void)
{
struct btrfs_path *path;
path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
return path;
}
void btrfs_free_path(struct btrfs_path *p)
{
if (!p)
return;
btrfs_release_path(p);
kfree(p);
}
void btrfs_release_path(struct btrfs_path *p)
{
int i;
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
if (!p->nodes[i])
continue;
free_extent_buffer(p->nodes[i]);
}
memset(p, 0, sizeof(*p));
}
int __btrfs_comp_keys(struct btrfs_key *a, struct btrfs_key *b)
{
if (a->objectid > b->objectid)
return 1;
if (a->objectid < b->objectid)
return -1;
if (a->type > b->type)
return 1;
if (a->type < b->type)
return -1;
if (a->offset > b->offset)
return 1;
if (a->offset < b->offset)
return -1;
return 0;
}
int btrfs_comp_keys_type(struct btrfs_key *a, struct btrfs_key *b)
{
if (a->objectid > b->objectid)
return 1;
if (a->objectid < b->objectid)
return -1;
if (a->type > b->type)
return 1;
if (a->type < b->type)
return -1;
return 0;
}
/*
* search for key in the extent_buffer. The items start at offset p,
* and they are item_size apart. There are 'max' items in p.
*
* the slot in the array is returned via slot, and it points to
* the place where you would insert key if it is not found in
* the array.
*
* slot may point to max if the key is bigger than all of the keys
*/
static int __generic_bin_search(void *addr, int item_size, struct btrfs_key *key,
int max, int *slot)
{
int low = 0, high = max, mid, ret;
struct btrfs_key *tmp;
while (low < high) {
mid = (low + high) / 2;
tmp = (struct btrfs_key *) ((u8 *) addr + mid*item_size);
ret = __btrfs_comp_keys(tmp, key);
if (ret < 0) {
low = mid + 1;
} else if (ret > 0) {
high = mid;
} else {
*slot = mid;
return 0;
}
}
*slot = low;
return 1;
}
int __btrfs_bin_search(union btrfs_tree_node *p, struct btrfs_key *key,
int *slot)
{
void *addr;
unsigned long size;
if (p->header.level) {
addr = p->node.ptrs;
size = sizeof(struct btrfs_key_ptr);
} else {
addr = p->leaf.items;
size = sizeof(struct btrfs_item);
}
return __generic_bin_search(addr, size, key, p->header.nritems, slot);
}
static void clear_path(struct __btrfs_path *p)
{
int i;
for (i = 0; i < BTRFS_MAX_LEVEL; ++i) {
p->nodes[i] = NULL;
p->slots[i] = 0;
}
}
void __btrfs_free_path(struct __btrfs_path *p)
{
int i;
for (i = 0; i < BTRFS_MAX_LEVEL; ++i) {
if (p->nodes[i])
free(p->nodes[i]);
}
clear_path(p);
}
static int read_tree_node(u64 physical, union btrfs_tree_node **buf)
{
ALLOC_CACHE_ALIGN_BUFFER(struct btrfs_header, hdr,
sizeof(struct btrfs_header));
unsigned long size, offset = sizeof(*hdr);
union btrfs_tree_node *res;
u32 i;
if (!btrfs_devread(physical, sizeof(*hdr), hdr))
return -1;
btrfs_header_to_cpu(hdr);
if (hdr->level)
size = sizeof(struct btrfs_node)
+ hdr->nritems * sizeof(struct btrfs_key_ptr);
else
size = btrfs_info.sb.nodesize;
res = malloc_cache_aligned(size);
if (!res) {
debug("%s: malloc failed\n", __func__);
return -1;
}
if (!btrfs_devread(physical + offset, size - offset,
((u8 *) res) + offset)) {
free(res);
return -1;
}
memcpy(&res->header, hdr, sizeof(*hdr));
if (hdr->level)
for (i = 0; i < hdr->nritems; ++i)
btrfs_key_ptr_to_cpu(&res->node.ptrs[i]);
else
for (i = 0; i < hdr->nritems; ++i)
btrfs_item_to_cpu(&res->leaf.items[i]);
*buf = res;
return 0;
}
int btrfs_search_tree(const struct __btrfs_root *root, struct btrfs_key *key,
struct __btrfs_path *p)
{
u8 lvl, prev_lvl;
int i, slot, ret;
u64 logical, physical;
union btrfs_tree_node *buf;
clear_path(p);
logical = root->bytenr;
for (i = 0; i < BTRFS_MAX_LEVEL; ++i) {
physical = btrfs_map_logical_to_physical(logical);
if (physical == -1ULL)
goto err;
if (read_tree_node(physical, &buf))
goto err;
lvl = buf->header.level;
if (i && prev_lvl != lvl + 1) {
printf("%s: invalid level in header at %llu\n",
__func__, logical);
goto err;
}
prev_lvl = lvl;
ret = __btrfs_bin_search(buf, key, &slot);
if (ret < 0)
goto err;
if (ret && slot > 0 && lvl)
slot -= 1;
p->slots[lvl] = slot;
p->nodes[lvl] = buf;
if (lvl) {
logical = buf->node.ptrs[slot].blockptr;
} else {
/*
* The path might be invalid if:
* cur leaf max < searched value < next leaf min
*
* Jump to the next valid element if it exists.
*/
if (slot >= buf->header.nritems)
if (btrfs_next_slot(p) < 0)
goto err;
break;
}
}
return 0;
err:
__btrfs_free_path(p);
return -1;
}
static int jump_leaf(struct __btrfs_path *path, int dir)
{
struct __btrfs_path p;
u32 slot;
int level = 1, from_level, i;
dir = dir >= 0 ? 1 : -1;
p = *path;
while (level < BTRFS_MAX_LEVEL) {
if (!p.nodes[level])
return 1;
slot = p.slots[level];
if ((dir > 0 && slot + dir >= p.nodes[level]->header.nritems)
|| (dir < 0 && !slot))
level++;
else
break;
}
if (level == BTRFS_MAX_LEVEL)
return 1;
p.slots[level] = slot + dir;
level--;
from_level = level;
while (level >= 0) {
u64 logical, physical;
slot = p.slots[level + 1];
logical = p.nodes[level + 1]->node.ptrs[slot].blockptr;
physical = btrfs_map_logical_to_physical(logical);
if (physical == -1ULL)
goto err;
if (read_tree_node(physical, &p.nodes[level]))
goto err;
if (dir > 0)
p.slots[level] = 0;
else
p.slots[level] = p.nodes[level]->header.nritems - 1;
level--;
}
/* Free rewritten nodes in path */
for (i = 0; i <= from_level; ++i)
free(path->nodes[i]);
*path = p;
return 0;
err:
/* Free rewritten nodes in p */
for (i = level + 1; i <= from_level; ++i)
free(p.nodes[i]);
return -1;
}
int btrfs_prev_slot(struct __btrfs_path *p)
{
if (!p->slots[0])
return jump_leaf(p, -1);
p->slots[0]--;
return 0;
}
int btrfs_next_slot(struct __btrfs_path *p)
{
struct btrfs_leaf *leaf = &p->nodes[0]->leaf;
if (p->slots[0] + 1 >= leaf->header.nritems)
return jump_leaf(p, 1);
p->slots[0]++;
return 0;
}
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
{
if (k1->objectid > k2->objectid)
return 1;
if (k1->objectid < k2->objectid)
return -1;
if (k1->type > k2->type)
return 1;
if (k1->type < k2->type)
return -1;
if (k1->offset > k2->offset)
return 1;
if (k1->offset < k2->offset)
return -1;
return 0;
}
static int btrfs_comp_keys(struct btrfs_disk_key *disk,
const struct btrfs_key *k2)
{
struct btrfs_key k1;
btrfs_disk_key_to_cpu(&k1, disk);
return btrfs_comp_cpu_keys(&k1, k2);
}
enum btrfs_tree_block_status
btrfs_check_node(struct btrfs_fs_info *fs_info,
struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
{
int i;
struct btrfs_key cpukey;
struct btrfs_disk_key key;
u32 nritems = btrfs_header_nritems(buf);
enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(fs_info))
goto fail;
ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
if (parent_key && parent_key->type) {
btrfs_node_key(buf, &key, 0);
if (memcmp(parent_key, &key, sizeof(key)))
goto fail;
}
ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
btrfs_node_key(buf, &key, i);
btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
if (btrfs_comp_keys(&key, &cpukey) >= 0)
goto fail;
}
return BTRFS_TREE_BLOCK_CLEAN;
fail:
return ret;
}
enum btrfs_tree_block_status
btrfs_check_leaf(struct btrfs_fs_info *fs_info,
struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
{
int i;
struct btrfs_key cpukey;
struct btrfs_disk_key key;
u32 nritems = btrfs_header_nritems(buf);
enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
if (nritems * sizeof(struct btrfs_item) > buf->len) {
fprintf(stderr, "invalid number of items %llu\n",
(unsigned long long)buf->start);
goto fail;
}
if (btrfs_header_level(buf) != 0) {
ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
fprintf(stderr, "leaf is not a leaf %llu\n",
(unsigned long long)btrfs_header_bytenr(buf));
goto fail;
}
if (btrfs_leaf_free_space(buf) < 0) {
ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
fprintf(stderr, "leaf free space incorrect %llu %d\n",
(unsigned long long)btrfs_header_bytenr(buf),
btrfs_leaf_free_space(buf));
goto fail;
}
if (nritems == 0)
return BTRFS_TREE_BLOCK_CLEAN;
btrfs_item_key(buf, &key, 0);
if (parent_key && parent_key->type &&
memcmp(parent_key, &key, sizeof(key))) {
ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
fprintf(stderr, "leaf parent key incorrect %llu\n",
(unsigned long long)btrfs_header_bytenr(buf));
goto fail;
}
for (i = 0; nritems > 1 && i < nritems - 1; i++) {
btrfs_item_key(buf, &key, i);
btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
if (btrfs_comp_keys(&key, &cpukey) >= 0) {
ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
goto fail;
}
if (btrfs_item_offset_nr(buf, i) !=
btrfs_item_end_nr(buf, i + 1)) {
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
fprintf(stderr, "incorrect offsets %u %u\n",
btrfs_item_offset_nr(buf, i),
btrfs_item_end_nr(buf, i + 1));
goto fail;
}
if (i == 0 && btrfs_item_end_nr(buf, i) !=
BTRFS_LEAF_DATA_SIZE(fs_info)) {
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
fprintf(stderr, "bad item end %u wanted %u\n",
btrfs_item_end_nr(buf, i),
(unsigned)BTRFS_LEAF_DATA_SIZE(fs_info));
goto fail;
}
}
for (i = 0; i < nritems; i++) {
if (btrfs_item_end_nr(buf, i) >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
btrfs_item_key(buf, &key, 0);
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
(unsigned long long)btrfs_item_end_nr(buf, i),
(unsigned long long)BTRFS_LEAF_DATA_SIZE(
fs_info));
goto fail;
}
}
return BTRFS_TREE_BLOCK_CLEAN;
fail:
return ret;
}
static int noinline check_block(struct btrfs_fs_info *fs_info,
struct btrfs_path *path, int level)
{
struct btrfs_disk_key key;
struct btrfs_disk_key *key_ptr = NULL;
struct extent_buffer *parent;
enum btrfs_tree_block_status ret;
if (path->nodes[level + 1]) {
parent = path->nodes[level + 1];
btrfs_node_key(parent, &key, path->slots[level + 1]);
key_ptr = &key;
}
if (level == 0)
ret = btrfs_check_leaf(fs_info, key_ptr, path->nodes[0]);
else
ret = btrfs_check_node(fs_info, key_ptr, path->nodes[level]);
if (ret == BTRFS_TREE_BLOCK_CLEAN)
return 0;
return -EIO;
}
/*
* search for key in the extent_buffer. The items start at offset p,
* and they are item_size apart. There are 'max' items in p.
*
* the slot in the array is returned via slot, and it points to
* the place where you would insert key if it is not found in
* the array.
*
* slot may point to max if the key is bigger than all of the keys
*/
static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
int item_size, const struct btrfs_key *key,
int max, int *slot)
{
int low = 0;
int high = max;
int mid;
int ret;
unsigned long offset;
struct btrfs_disk_key *tmp;
while(low < high) {
mid = (low + high) / 2;
offset = p + mid * item_size;
tmp = (struct btrfs_disk_key *)(eb->data + offset);
ret = btrfs_comp_keys(tmp, key);
if (ret < 0)
low = mid + 1;
else if (ret > 0)
high = mid;
else {
*slot = mid;
return 0;
}
}
*slot = low;
return 1;
}
/*
* simple bin_search frontend that does the right thing for
* leaves vs nodes
*/
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
int *slot)
{
if (btrfs_header_level(eb) == 0)
return generic_bin_search(eb,
offsetof(struct btrfs_leaf, items),
sizeof(struct btrfs_item),
key, btrfs_header_nritems(eb),
slot);
else
return generic_bin_search(eb,
offsetof(struct btrfs_node, ptrs),
sizeof(struct btrfs_key_ptr),
key, btrfs_header_nritems(eb),
slot);
}
struct extent_buffer *read_node_slot(struct btrfs_fs_info *fs_info,
struct extent_buffer *parent, int slot)
{
struct extent_buffer *ret;
int level = btrfs_header_level(parent);
if (slot < 0)
return NULL;
if (slot >= btrfs_header_nritems(parent))
return NULL;
if (level == 0)
return NULL;
ret = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
btrfs_node_ptr_generation(parent, slot));
if (!extent_buffer_uptodate(ret))
return ERR_PTR(-EIO);
if (btrfs_header_level(ret) != level - 1) {
error("child eb corrupted: parent bytenr=%llu item=%d parent level=%d child level=%d",
btrfs_header_bytenr(parent), slot,
btrfs_header_level(parent), btrfs_header_level(ret));
free_extent_buffer(ret);
return ERR_PTR(-EIO);
}
return ret;
}
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
u64 iobjectid, u64 ioff, u8 key_type,
struct btrfs_key *found_key)
{
int ret;
struct btrfs_key key;
struct extent_buffer *eb;
struct btrfs_path *path;
key.type = key_type;
key.objectid = iobjectid;
key.offset = ioff;
if (found_path == NULL) {
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
} else
path = found_path;
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
if ((ret < 0) || (found_key == NULL))
goto out;
eb = path->nodes[0];
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
ret = btrfs_next_leaf(fs_root, path);
if (ret)
goto out;
eb = path->nodes[0];
}
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
if (found_key->type != key.type ||
found_key->objectid != key.objectid) {
ret = 1;
goto out;
}
out:
if (path != found_path)
btrfs_free_path(path);
return ret;
}
/*
* look for key in the tree. path is filled in with nodes along the way
* if key is found, we return zero and you can find the item in the leaf
* level of the path (level 0)
*
* If the key isn't found, the path points to the slot where it should
* be inserted, and 1 is returned. If there are other errors during the
* search a negative error number is returned.
*
* if ins_len > 0, nodes and leaves will be split as we walk down the
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
* possible)
*
* NOTE: This version has no COW ability, thus we expect trans == NULL,
* ins_len == 0 and cow == 0.
*/
int btrfs_search_slot(struct btrfs_trans_handle *trans,
struct btrfs_root *root, const struct btrfs_key *key,
struct btrfs_path *p, int ins_len, int cow)
{
struct extent_buffer *b;
int slot;
int ret;
int level;
struct btrfs_fs_info *fs_info = root->fs_info;
u8 lowest_level = 0;
assert(trans == NULL && ins_len == 0 && cow == 0);
lowest_level = p->lowest_level;
WARN_ON(lowest_level && ins_len > 0);
WARN_ON(p->nodes[0] != NULL);
b = root->node;
extent_buffer_get(b);
while (b) {
level = btrfs_header_level(b);
/*
if (cow) {
int wret;
wret = btrfs_cow_block(trans, root, b,
p->nodes[level + 1],
p->slots[level + 1],
&b);
if (wret) {
free_extent_buffer(b);
return wret;
}
}
*/
BUG_ON(!cow && ins_len);
if (level != btrfs_header_level(b))
WARN_ON(1);
level = btrfs_header_level(b);
p->nodes[level] = b;
ret = check_block(fs_info, p, level);
if (ret)
return -1;
ret = btrfs_bin_search(b, key, &slot);
if (level != 0) {
if (ret && slot > 0)
slot -= 1;
p->slots[level] = slot;
/*
if ((p->search_for_split || ins_len > 0) &&
btrfs_header_nritems(b) >=
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
int sret = split_node(trans, root, p, level);
BUG_ON(sret > 0);
if (sret)
return sret;
b = p->nodes[level];
slot = p->slots[level];
} else if (ins_len < 0) {
int sret = balance_level(trans, root, p,
level);
if (sret)
return sret;
b = p->nodes[level];
if (!b) {
btrfs_release_path(p);
goto again;
}
slot = p->slots[level];
BUG_ON(btrfs_header_nritems(b) == 1);
}
*/
/* this is only true while dropping a snapshot */
if (level == lowest_level)
break;
b = read_node_slot(fs_info, b, slot);
if (!extent_buffer_uptodate(b))
return -EIO;
} else {
p->slots[level] = slot;
/*
if (ins_len > 0 &&
ins_len > btrfs_leaf_free_space(b)) {
int sret = split_leaf(trans, root, key,
p, ins_len, ret == 0);
BUG_ON(sret > 0);
if (sret)
return sret;
}
*/
return ret;
}
}
return 1;
}
/*
* Helper to use instead of search slot if no exact match is needed but
* instead the next or previous item should be returned.
* When find_higher is true, the next higher item is returned, the next lower
* otherwise.
* When return_any and find_higher are both true, and no higher item is found,
* return the next lower instead.
* When return_any is true and find_higher is false, and no lower item is found,
* return the next higher instead.
* It returns 0 if any item is found, 1 if none is found (tree empty), and
* < 0 on error
*/
int btrfs_search_slot_for_read(struct btrfs_root *root,
const struct btrfs_key *key,
struct btrfs_path *p, int find_higher,
int return_any)
{
int ret;
struct extent_buffer *leaf;
again:
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
if (ret <= 0)
return ret;
/*
* A return value of 1 means the path is at the position where the item
* should be inserted. Normally this is the next bigger item, but in
* case the previous item is the last in a leaf, path points to the
* first free slot in the previous leaf, i.e. at an invalid item.
*/
leaf = p->nodes[0];
if (find_higher) {
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, p);
if (ret <= 0)
return ret;
if (!return_any)
return 1;
/*
* No higher item found, return the next lower instead
*/
return_any = 0;
find_higher = 0;
btrfs_release_path(p);
goto again;
}
} else {
if (p->slots[0] == 0) {
ret = btrfs_prev_leaf(root, p);
if (ret < 0)
return ret;
if (!ret) {
leaf = p->nodes[0];
if (p->slots[0] == btrfs_header_nritems(leaf))
p->slots[0]--;
return 0;
}
if (!return_any)
return 1;
/*
* No lower item found, return the next higher instead
*/
return_any = 0;
find_higher = 1;
btrfs_release_path(p);
goto again;
} else {
--p->slots[0];
}
}
return 0;
}
/*
* how many bytes are required to store the items in a leaf. start
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
{
int data_len;
int nritems = btrfs_header_nritems(l);
int end = min(nritems, start + nr) - 1;
if (!nr)
return 0;
data_len = btrfs_item_end_nr(l, start);
data_len = data_len - btrfs_item_offset_nr(l, end);
data_len += sizeof(struct btrfs_item) * nr;
WARN_ON(data_len < 0);
return data_len;
}
/*
* The space between the end of the leaf items and
* the start of the leaf data. IOW, how much room
* the leaf has left for both items and data
*/
int btrfs_leaf_free_space(struct extent_buffer *leaf)
{
int nritems = btrfs_header_nritems(leaf);
u32 leaf_data_size;
int ret;
BUG_ON(leaf->fs_info && leaf->fs_info->nodesize != leaf->len);
leaf_data_size = __BTRFS_LEAF_DATA_SIZE(leaf->len);
ret = leaf_data_size - leaf_space_used(leaf, 0 ,nritems);
if (ret < 0) {
printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
ret, leaf_data_size, leaf_space_used(leaf, 0, nritems),
nritems);
}
return ret;
}
/*
* walk up the tree as far as required to find the previous leaf.
* returns 0 if it found something or 1 if there are no lesser leaves.
* returns < 0 on io errors.
*/
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
{
int slot;
int level = 1;
struct extent_buffer *c;
struct extent_buffer *next = NULL;
struct btrfs_fs_info *fs_info = root->fs_info;
while(level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level])
return 1;
slot = path->slots[level];
c = path->nodes[level];
if (slot == 0) {
level++;
if (level == BTRFS_MAX_LEVEL)
return 1;
continue;
}
slot--;
next = read_node_slot(fs_info, c, slot);
if (!extent_buffer_uptodate(next)) {
if (IS_ERR(next))
return PTR_ERR(next);
return -EIO;
}
break;
}
path->slots[level] = slot;
while(1) {
level--;
c = path->nodes[level];
free_extent_buffer(c);
slot = btrfs_header_nritems(next);
if (slot != 0)
slot--;
path->nodes[level] = next;
path->slots[level] = slot;
if (!level)
break;
next = read_node_slot(fs_info, next, slot);
if (!extent_buffer_uptodate(next)) {
if (IS_ERR(next))
return PTR_ERR(next);
return -EIO;
}
}
return 0;
}
/*
* Walk up the tree as far as necessary to find the next sibling tree block.
* More generic version of btrfs_next_leaf(), as it could find sibling nodes
* if @path->lowest_level is not 0.
*
* returns 0 if it found something or 1 if there are no greater leaves.
* returns < 0 on io errors.
*/
int btrfs_next_sibling_tree_block(struct btrfs_fs_info *fs_info,
struct btrfs_path *path)
{
int slot;
int level = path->lowest_level + 1;
struct extent_buffer *c;
struct extent_buffer *next = NULL;
BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL);
do {
if (!path->nodes[level])
return 1;
slot = path->slots[level] + 1;
c = path->nodes[level];
if (slot >= btrfs_header_nritems(c)) {
level++;
if (level == BTRFS_MAX_LEVEL)
return 1;
continue;
}
next = read_node_slot(fs_info, c, slot);
if (!extent_buffer_uptodate(next))
return -EIO;
break;
} while (level < BTRFS_MAX_LEVEL);
path->slots[level] = slot;
while(1) {
level--;
c = path->nodes[level];
free_extent_buffer(c);
path->nodes[level] = next;
path->slots[level] = 0;
if (level == path->lowest_level)
break;
next = read_node_slot(fs_info, next, 0);
if (!extent_buffer_uptodate(next))
return -EIO;
}
return 0;
}
int btrfs_previous_item(struct btrfs_root *root,
struct btrfs_path *path, u64 min_objectid,
int type)
{
struct btrfs_key found_key;
struct extent_buffer *leaf;
u32 nritems;
int ret;
while(1) {
if (path->slots[0] == 0) {
ret = btrfs_prev_leaf(root, path);
if (ret != 0)
return ret;
} else {
path->slots[0]--;
}
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
if (nritems == 0)
return 1;
if (path->slots[0] == nritems)
path->slots[0]--;
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
if (found_key.objectid < min_objectid)
break;
if (found_key.type == type)
return 0;
if (found_key.objectid == min_objectid &&
found_key.type < type)
break;
}
return 1;
}