u-boot-brain/drivers/mtd/nand/raw/mxs_nand_spl.c
Shyam Saini 1d43e24b94 i.MX6: nand: add nandbcb command for imx
Writing/updating boot image in nand device is not
straight forward in i.MX6 platform and it requires
boot control block(BCB) to be configured.

It becomes difficult to use uboot 'nand' command to
write BCB since it requires platform specific attributes
need to be taken care of.

It is even difficult to use existing msx-nand.c driver by
incorporating BCB attributes like mxs_dma_desc does
because it requires change in mtd and nand command.

So, cmd_nandbcb implemented in arch/arm/mach-imx

BCB contains two data structures, Firmware Configuration Block(FCB)
and Discovered Bad Block Table(DBBT). FCB has nand timings,
DBBT search area, page address of firmware.

On summary, nandbcb update will
- erase the entire partition
- create BCB by creating 2 FCB/DBBT block followed by
  1 FW block based on partition size and erasesize.
- fill FCB/DBBT structures
- write FW/SPL on FW1
- write FCB/DBBT in first 2 blocks

for nand boot, up on reset bootrom look for FCB structure in
first block's if FCB found the nand timings are loaded for
further reads. once FCB read done, DTTB will load and finally
firmware will be loaded which is boot image.

Refer section "NAND Boot" from doc/imx/common/imx6.txt for more usage
information.

Reviewed-by: Stefano Babic <sbabic@denx.de>
Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
Signed-off-by: Sergey Kubushyn <ksi@koi8.net>
Signed-off-by: Shyam Saini <shyam.saini@amarulasolutions.com>
2019-07-19 14:51:25 +02:00

262 lines
6.7 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2014 Gateworks Corporation
* Author: Tim Harvey <tharvey@gateworks.com>
*/
#include <common.h>
#include <nand.h>
#include <malloc.h>
#include <mxs_nand.h>
static struct mtd_info *mtd;
static struct nand_chip nand_chip;
static void mxs_nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
u32 timeo, time_start;
/* write out the command to the device */
chip->cmd_ctrl(mtd, command, NAND_CLE);
/* Serially input address */
if (column != -1) {
chip->cmd_ctrl(mtd, column, NAND_ALE);
chip->cmd_ctrl(mtd, column >> 8, NAND_ALE);
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, NAND_ALE);
chip->cmd_ctrl(mtd, page_addr >> 8, NAND_ALE);
/* One more address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20))
chip->cmd_ctrl(mtd, page_addr >> 16, NAND_ALE);
}
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0);
if (command == NAND_CMD_READ0) {
chip->cmd_ctrl(mtd, NAND_CMD_READSTART, NAND_CLE);
chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0);
}
/* wait for nand ready */
ndelay(100);
timeo = (CONFIG_SYS_HZ * 20) / 1000;
time_start = get_timer(0);
while (get_timer(time_start) < timeo) {
if (chip->dev_ready(mtd))
break;
}
}
#if defined (CONFIG_SPL_NAND_IDENT)
/* Trying to detect the NAND flash using ONFi, JEDEC, and (extended) IDs */
static int mxs_flash_full_ident(struct mtd_info *mtd)
{
int nand_maf_id, nand_dev_id;
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_flash_dev *type;
type = nand_get_flash_type(mtd, chip, &nand_maf_id, &nand_dev_id, NULL);
if (IS_ERR(type)) {
chip->select_chip(mtd, -1);
return PTR_ERR(type);
}
return 0;
}
#else
/* Trying to detect the NAND flash using ONFi only */
static int mxs_flash_onfi_ident(struct mtd_info *mtd)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
int i;
u8 mfg_id, dev_id;
u8 id_data[8];
struct nand_onfi_params *p = &chip->onfi_params;
/* Reset the chip */
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
mfg_id = chip->read_byte(mtd);
dev_id = chip->read_byte(mtd);
/* Try again to make sure */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
for (i = 0; i < 8; i++)
id_data[i] = chip->read_byte(mtd);
if (id_data[0] != mfg_id || id_data[1] != dev_id) {
printf("second ID read did not match");
return -1;
}
debug("0x%02x:0x%02x ", mfg_id, dev_id);
/* read ONFI */
chip->onfi_version = 0;
chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') {
return -2;
}
/* we have ONFI, probe it */
chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
mtd->name = p->model;
mtd->writesize = le32_to_cpu(p->byte_per_page);
mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
chip->chipsize = le32_to_cpu(p->blocks_per_lun);
chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
/* Calculate the address shift from the page size */
chip->page_shift = ffs(mtd->writesize) - 1;
chip->phys_erase_shift = ffs(mtd->erasesize) - 1;
/* Convert chipsize to number of pages per chip -1 */
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
chip->badblockbits = 8;
debug("erasesize=%d (>>%d)\n", mtd->erasesize, chip->phys_erase_shift);
debug("writesize=%d (>>%d)\n", mtd->writesize, chip->page_shift);
debug("oobsize=%d\n", mtd->oobsize);
debug("chipsize=%lld\n", chip->chipsize);
return 0;
}
#endif /* CONFIG_SPL_NAND_IDENT */
static int mxs_flash_ident(struct mtd_info *mtd)
{
int ret;
#if defined (CONFIG_SPL_NAND_IDENT)
ret = mxs_flash_full_ident(mtd);
#else
ret = mxs_flash_onfi_ident(mtd);
#endif
return ret;
}
static int mxs_read_page_ecc(struct mtd_info *mtd, void *buf, unsigned int page)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
int ret;
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x0, page);
ret = nand_chip.ecc.read_page(mtd, chip, buf, 1, page);
if (ret < 0) {
printf("read_page failed %d\n", ret);
return -1;
}
return 0;
}
static int is_badblock(struct mtd_info *mtd, loff_t offs, int allowbbt)
{
register struct nand_chip *chip = mtd_to_nand(mtd);
unsigned int block = offs >> chip->phys_erase_shift;
unsigned int page = offs >> chip->page_shift;
debug("%s offs=0x%08x block:%d page:%d\n", __func__, (int)offs, block,
page);
chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
memset(chip->oob_poi, 0, mtd->oobsize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return chip->oob_poi[0] != 0xff;
}
/* setup mtd and nand structs and init mxs_nand driver */
void nand_init(void)
{
/* return if already initalized */
if (nand_chip.numchips)
return;
/* init mxs nand driver */
mxs_nand_init_spl(&nand_chip);
mtd = nand_to_mtd(&nand_chip);
/* set mtd functions */
nand_chip.cmdfunc = mxs_nand_command;
nand_chip.scan_bbt = nand_default_bbt;
nand_chip.numchips = 1;
/* identify flash device */
if (mxs_flash_ident(mtd)) {
printf("Failed to identify\n");
nand_chip.numchips = 0; /* If fail, don't use nand */
return;
}
/* allocate and initialize buffers */
nand_chip.buffers = memalign(ARCH_DMA_MINALIGN,
sizeof(*nand_chip.buffers));
nand_chip.oob_poi = nand_chip.buffers->databuf + mtd->writesize;
/* setup flash layout (does not scan as we override that) */
mtd->size = nand_chip.chipsize;
nand_chip.scan_bbt(mtd);
mxs_nand_setup_ecc(mtd);
}
int nand_spl_load_image(uint32_t offs, unsigned int size, void *buf)
{
struct nand_chip *chip;
unsigned int page;
unsigned int nand_page_per_block;
unsigned int sz = 0;
chip = mtd_to_nand(mtd);
if (!chip->numchips)
return -ENODEV;
page = offs >> chip->page_shift;
nand_page_per_block = mtd->erasesize / mtd->writesize;
debug("%s offset:0x%08x len:%d page:%d\n", __func__, offs, size, page);
size = roundup(size, mtd->writesize);
while (sz < size) {
if (mxs_read_page_ecc(mtd, buf, page) < 0)
return -1;
sz += mtd->writesize;
offs += mtd->writesize;
page++;
buf += mtd->writesize;
/*
* Check if we have crossed a block boundary, and if so
* check for bad block.
*/
if (!(page % nand_page_per_block)) {
/*
* Yes, new block. See if this block is good. If not,
* loop until we find a good block.
*/
while (is_badblock(mtd, offs, 1)) {
page = page + nand_page_per_block;
/* Check i we've reached the end of flash. */
if (page >= mtd->size >> chip->page_shift)
return -ENOMEM;
}
}
}
return 0;
}
int nand_default_bbt(struct mtd_info *mtd)
{
return 0;
}
void nand_deselect(void)
{
}