u-boot-brain/arch/arm/cpu/armv8/fsl-layerscape/cpu.c
Alison Wang acb8f5e914 armv8: fsl-layerscape: Remove unnecessary flushing dcache
As the issue about the stack will get corrupted when switching between
the early and final mmu tables is fixed by commit 70e21b064, the
workaround to flush dcache is unnecessary and should be removed.

Signed-off-by: Alison Wang <alison.wang@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
2016-05-18 08:51:44 -07:00

692 lines
17 KiB
C

/*
* Copyright 2014-2015 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/errno.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch/fsl_serdes.h>
#include <asm/arch/soc.h>
#include <asm/arch/cpu.h>
#include <asm/arch/speed.h>
#ifdef CONFIG_MP
#include <asm/arch/mp.h>
#endif
#include <fm_eth.h>
#include <fsl_debug_server.h>
#include <fsl-mc/fsl_mc.h>
#ifdef CONFIG_FSL_ESDHC
#include <fsl_esdhc.h>
#endif
DECLARE_GLOBAL_DATA_PTR;
static struct mm_region layerscape_mem_map[] = {
{
/* List terminator */
0,
}
};
struct mm_region *mem_map = layerscape_mem_map;
void cpu_name(char *name)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
unsigned int i, svr, ver;
svr = gur_in32(&gur->svr);
ver = SVR_SOC_VER(svr);
for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++)
if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) {
strcpy(name, cpu_type_list[i].name);
if (IS_E_PROCESSOR(svr))
strcat(name, "E");
break;
}
if (i == ARRAY_SIZE(cpu_type_list))
strcpy(name, "unknown");
}
#ifndef CONFIG_SYS_DCACHE_OFF
static void set_pgtable_section(u64 *page_table, u64 index, u64 section,
u64 memory_type, u64 attribute)
{
u64 value;
value = section | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
value |= PMD_ATTRINDX(memory_type);
value |= attribute;
page_table[index] = value;
}
static void set_pgtable_table(u64 *page_table, u64 index, u64 *table_addr)
{
u64 value;
value = (u64)table_addr | PTE_TYPE_TABLE;
page_table[index] = value;
}
/*
* Set the block entries according to the information of the table.
*/
static int set_block_entry(const struct sys_mmu_table *list,
struct table_info *table)
{
u64 block_size = 0, block_shift = 0;
u64 block_addr, index;
int j;
if (table->entry_size == BLOCK_SIZE_L1) {
block_size = BLOCK_SIZE_L1;
block_shift = SECTION_SHIFT_L1;
} else if (table->entry_size == BLOCK_SIZE_L2) {
block_size = BLOCK_SIZE_L2;
block_shift = SECTION_SHIFT_L2;
} else {
return -EINVAL;
}
block_addr = list->phys_addr;
index = (list->virt_addr - table->table_base) >> block_shift;
for (j = 0; j < (list->size >> block_shift); j++) {
set_pgtable_section(table->ptr,
index,
block_addr,
list->memory_type,
list->attribute);
block_addr += block_size;
index++;
}
return 0;
}
/*
* Find the corresponding table entry for the list.
*/
static int find_table(const struct sys_mmu_table *list,
struct table_info *table, u64 *level0_table)
{
u64 index = 0, level = 0;
u64 *level_table = level0_table;
u64 temp_base = 0, block_size = 0, block_shift = 0;
while (level < 3) {
if (level == 0) {
block_size = BLOCK_SIZE_L0;
block_shift = SECTION_SHIFT_L0;
} else if (level == 1) {
block_size = BLOCK_SIZE_L1;
block_shift = SECTION_SHIFT_L1;
} else if (level == 2) {
block_size = BLOCK_SIZE_L2;
block_shift = SECTION_SHIFT_L2;
}
index = 0;
while (list->virt_addr >= temp_base) {
index++;
temp_base += block_size;
}
temp_base -= block_size;
if ((level_table[index - 1] & PTE_TYPE_MASK) ==
PTE_TYPE_TABLE) {
level_table = (u64 *)(level_table[index - 1] &
~PTE_TYPE_MASK);
level++;
continue;
} else {
if (level == 0)
return -EINVAL;
if ((list->phys_addr + list->size) >
(temp_base + block_size * NUM_OF_ENTRY))
return -EINVAL;
/*
* Check the address and size of the list member is
* aligned with the block size.
*/
if (((list->phys_addr & (block_size - 1)) != 0) ||
((list->size & (block_size - 1)) != 0))
return -EINVAL;
table->ptr = level_table;
table->table_base = temp_base -
((index - 1) << block_shift);
table->entry_size = block_size;
return 0;
}
}
return -EINVAL;
}
/*
* To start MMU before DDR is available, we create MMU table in SRAM.
* The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
* levels of translation tables here to cover 40-bit address space.
* We use 4KB granule size, with 40 bits physical address, T0SZ=24
* Level 0 IA[39], table address @0
* Level 1 IA[38:30], table address @0x1000, 0x2000
* Level 2 IA[29:21], table address @0x3000, 0x4000
* Address above 0x5000 is free for other purpose.
*/
static inline void early_mmu_setup(void)
{
unsigned int el, i;
u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000);
struct table_info table = {level0_table, 0, BLOCK_SIZE_L0};
/* Invalidate all table entries */
memset(level0_table, 0, 0x5000);
/* Fill in the table entries */
set_pgtable_table(level0_table, 0, level1_table0);
set_pgtable_table(level0_table, 1, level1_table1);
set_pgtable_table(level1_table0, 0, level2_table0);
#ifdef CONFIG_FSL_LSCH3
set_pgtable_table(level1_table0,
CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1,
level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
set_pgtable_table(level1_table0, 1, level2_table1);
#endif
/* Find the table and fill in the block entries */
for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) {
if (find_table(&early_mmu_table[i],
&table, level0_table) == 0) {
/*
* If find_table() returns error, it cannot be dealt
* with here. Breakpoint can be added for debugging.
*/
set_block_entry(&early_mmu_table[i], &table);
/*
* If set_block_entry() returns error, it cannot be
* dealt with here too.
*/
}
}
el = current_el();
set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR,
MEMORY_ATTRIBUTES);
set_sctlr(get_sctlr() | CR_M);
}
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
/*
* Called from final mmu setup. The phys_addr is new, non-existing
* address. A new sub table is created @level2_table_secure to cover
* size of CONFIG_SYS_MEM_RESERVE_SECURE memory.
*/
static inline int final_secure_ddr(u64 *level0_table,
u64 *level2_table_secure,
phys_addr_t phys_addr)
{
int ret = -EINVAL;
struct table_info table = {};
struct sys_mmu_table ddr_entry = {
0, 0, BLOCK_SIZE_L1, MT_NORMAL,
PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS
};
u64 index;
/* Need to create a new table */
ddr_entry.virt_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1);
ddr_entry.phys_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1);
ret = find_table(&ddr_entry, &table, level0_table);
if (ret)
return ret;
index = (ddr_entry.virt_addr - table.table_base) >> SECTION_SHIFT_L1;
set_pgtable_table(table.ptr, index, level2_table_secure);
table.ptr = level2_table_secure;
table.table_base = ddr_entry.virt_addr;
table.entry_size = BLOCK_SIZE_L2;
ret = set_block_entry(&ddr_entry, &table);
if (ret) {
printf("MMU error: could not fill non-secure ddr block entries\n");
return ret;
}
ddr_entry.virt_addr = phys_addr;
ddr_entry.phys_addr = phys_addr;
ddr_entry.size = CONFIG_SYS_MEM_RESERVE_SECURE;
ddr_entry.attribute = PTE_BLOCK_OUTER_SHARE;
ret = find_table(&ddr_entry, &table, level0_table);
if (ret) {
printf("MMU error: could not find secure ddr table\n");
return ret;
}
ret = set_block_entry(&ddr_entry, &table);
if (ret)
printf("MMU error: could not set secure ddr block entry\n");
return ret;
}
#endif
/*
* The final tables look similar to early tables, but different in detail.
* These tables are in DRAM. Sub tables are added to enable cache for
* QBMan and OCRAM.
*
* Put the MMU table in secure memory if gd->secure_ram is valid.
* OCRAM will be not used for this purpose so gd->secure_ram can't be 0.
*
* Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB.
* Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB.
* Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB.
*
* For LSCH3:
* Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB.
* For LSCH2:
* Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB.
* Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB.
*/
static inline void final_mmu_setup(void)
{
unsigned int el = current_el();
unsigned int i;
u64 *level0_table = (u64 *)gd->arch.tlb_addr;
u64 *level1_table0;
u64 *level1_table1;
u64 *level2_table0;
u64 *level2_table1;
#ifdef CONFIG_FSL_LSCH2
u64 *level2_table2;
#endif
struct table_info table = {NULL, 0, BLOCK_SIZE_L0};
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
u64 *level2_table_secure;
if (el == 3) {
/*
* Only use gd->secure_ram if the address is recalculated
* Align to 4KB for MMU table
*/
if (gd->secure_ram & MEM_RESERVE_SECURE_MAINTAINED)
level0_table = (u64 *)(gd->secure_ram & ~0xfff);
else
printf("MMU warning: gd->secure_ram is not maintained, disabled.\n");
}
#endif
level1_table0 = level0_table + 512;
level1_table1 = level1_table0 + 512;
level2_table0 = level1_table1 + 512;
level2_table1 = level2_table0 + 512;
#ifdef CONFIG_FSL_LSCH2
level2_table2 = level2_table1 + 512;
#endif
table.ptr = level0_table;
/* Invalidate all table entries */
memset(level0_table, 0, PGTABLE_SIZE);
/* Fill in the table entries */
set_pgtable_table(level0_table, 0, level1_table0);
set_pgtable_table(level0_table, 1, level1_table1);
set_pgtable_table(level1_table0, 0, level2_table0);
#ifdef CONFIG_FSL_LSCH3
set_pgtable_table(level1_table0,
CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
level2_table1);
#elif defined(CONFIG_FSL_LSCH2)
set_pgtable_table(level1_table0, 1, level2_table1);
set_pgtable_table(level1_table0,
CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1,
level2_table2);
#endif
/* Find the table and fill in the block entries */
for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) {
if (find_table(&final_mmu_table[i],
&table, level0_table) == 0) {
if (set_block_entry(&final_mmu_table[i],
&table) != 0) {
printf("MMU error: could not set block entry for %p\n",
&final_mmu_table[i]);
}
} else {
printf("MMU error: could not find the table for %p\n",
&final_mmu_table[i]);
}
}
/* Set the secure memory to secure in MMU */
#ifdef CONFIG_SYS_MEM_RESERVE_SECURE
if (el == 3 && gd->secure_ram & MEM_RESERVE_SECURE_MAINTAINED) {
#ifdef CONFIG_FSL_LSCH3
level2_table_secure = level2_table1 + 512;
#elif defined(CONFIG_FSL_LSCH2)
level2_table_secure = level2_table2 + 512;
#endif
if (!final_secure_ddr(level0_table,
level2_table_secure,
gd->secure_ram & ~0x3)) {
gd->secure_ram |= MEM_RESERVE_SECURE_SECURED;
debug("Now MMU table is in secured memory at 0x%llx\n",
gd->secure_ram & ~0x3);
} else {
printf("MMU warning: Failed to secure DDR\n");
}
}
#endif
/* flush new MMU table */
flush_dcache_range((ulong)level0_table,
(ulong)level0_table + gd->arch.tlb_size);
/* point TTBR to the new table */
set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL,
MEMORY_ATTRIBUTES);
/*
* MMU is already enabled, just need to invalidate TLB to load the
* new table. The new table is compatible with the current table, if
* MMU somehow walks through the new table before invalidation TLB,
* it still works. So we don't need to turn off MMU here.
*/
}
u64 get_page_table_size(void)
{
return 0x10000;
}
int arch_cpu_init(void)
{
icache_enable();
__asm_invalidate_dcache_all();
__asm_invalidate_tlb_all();
early_mmu_setup();
set_sctlr(get_sctlr() | CR_C);
return 0;
}
/*
* This function is called from lib/board.c.
* It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
* There is no need to disable d-cache for this operation.
*/
void enable_caches(void)
{
final_mmu_setup();
__asm_invalidate_tlb_all();
}
#endif
static inline u32 initiator_type(u32 cluster, int init_id)
{
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
u32 type = 0;
type = gur_in32(&gur->tp_ityp[idx]);
if (type & TP_ITYP_AV)
return type;
return 0;
}
u32 cpu_mask(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return mask;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
return hweight32(cpu_mask());
}
int fsl_qoriq_core_to_cluster(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (initiator_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return -1; /* cannot identify the cluster */
}
u32 fsl_qoriq_core_to_type(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type;
do {
int j;
cluster = gur_in32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (count == core)
return type;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) == 0x0);
return -1; /* cannot identify the cluster */
}
#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
struct sys_info sysinfo;
char buf[32];
unsigned int i, core;
u32 type, rcw, svr = gur_in32(&gur->svr);
puts("SoC: ");
cpu_name(buf);
printf(" %s (0x%x)\n", buf, svr);
memset((u8 *)buf, 0x00, ARRAY_SIZE(buf));
get_sys_info(&sysinfo);
puts("Clock Configuration:");
for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
if (!(i % 3))
puts("\n ");
type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
printf("CPU%d(%s):%-4s MHz ", core,
type == TY_ITYP_VER_A7 ? "A7 " :
(type == TY_ITYP_VER_A53 ? "A53" :
(type == TY_ITYP_VER_A57 ? "A57" : " ")),
strmhz(buf, sysinfo.freq_processor[core]));
}
printf("\n Bus: %-4s MHz ",
strmhz(buf, sysinfo.freq_systembus));
printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus));
#ifdef CONFIG_SYS_DPAA_FMAN
printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0]));
#endif
#ifdef CONFIG_SYS_FSL_HAS_DP_DDR
if (soc_has_dp_ddr()) {
printf(" DP-DDR: %-4s MT/s",
strmhz(buf, sysinfo.freq_ddrbus2));
}
#endif
puts("\n");
/*
* Display the RCW, so that no one gets confused as to what RCW
* we're actually using for this boot.
*/
puts("Reset Configuration Word (RCW):");
for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) {
rcw = gur_in32(&gur->rcwsr[i]);
if ((i % 4) == 0)
printf("\n %08x:", i * 4);
printf(" %08x", rcw);
}
puts("\n");
return 0;
}
#endif
#ifdef CONFIG_FSL_ESDHC
int cpu_mmc_init(bd_t *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
int cpu_eth_init(bd_t *bis)
{
int error = 0;
#ifdef CONFIG_FSL_MC_ENET
error = fsl_mc_ldpaa_init(bis);
#endif
#ifdef CONFIG_FMAN_ENET
fm_standard_init(bis);
#endif
return error;
}
int arch_early_init_r(void)
{
#ifdef CONFIG_MP
int rv = 1;
#endif
#ifdef CONFIG_SYS_FSL_ERRATUM_A009635
erratum_a009635();
#endif
#ifdef CONFIG_MP
rv = fsl_layerscape_wake_seconday_cores();
if (rv)
printf("Did not wake secondary cores\n");
#endif
#ifdef CONFIG_SYS_HAS_SERDES
fsl_serdes_init();
#endif
#ifdef CONFIG_FMAN_ENET
fman_enet_init();
#endif
return 0;
}
int timer_init(void)
{
u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR;
#ifdef CONFIG_FSL_LSCH3
u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR;
#endif
#ifdef COUNTER_FREQUENCY_REAL
unsigned long cntfrq = COUNTER_FREQUENCY_REAL;
/* Update with accurate clock frequency */
asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory");
#endif
#ifdef CONFIG_FSL_LSCH3
/* Enable timebase for all clusters.
* It is safe to do so even some clusters are not enabled.
*/
out_le32(cltbenr, 0xf);
#endif
/* Enable clock for timer
* This is a global setting.
*/
out_le32(cntcr, 0x1);
return 0;
}
void reset_cpu(ulong addr)
{
u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR;
u32 val;
/* Raise RESET_REQ_B */
val = scfg_in32(rstcr);
val |= 0x02;
scfg_out32(rstcr, val);
}
phys_size_t board_reserve_ram_top(phys_size_t ram_size)
{
phys_size_t ram_top = ram_size;
#ifdef CONFIG_SYS_MEM_TOP_HIDE
#error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function
#endif
/* Carve the Debug Server private DRAM block from the end of DRAM */
#ifdef CONFIG_FSL_DEBUG_SERVER
ram_top -= debug_server_get_dram_block_size();
#endif
/* Carve the MC private DRAM block from the end of DRAM */
#ifdef CONFIG_FSL_MC_ENET
ram_top -= mc_get_dram_block_size();
ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1);
#endif
return ram_top;
}