u-boot-brain/drivers/video/rockchip/rk_mipi.c
Eric Gao 1c3984041c rockchip: video: Add mipi driver support for rockchip soc
Add basic driver for mipi display on rockchip soc platform.

Signed-off-by: Eric Gao <eric.gao@rock-chips.com>
Acked-by: Simon Glass <sjg@chromium.org>
2017-05-10 13:37:22 -06:00

492 lines
14 KiB
C

/*
* Copyright (c) 2017, Fuzhou Rockchip Electronics Co., Ltd
* Author: Eric Gao <eric.gao@rock-chips.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <clk.h>
#include <display.h>
#include <dm.h>
#include <fdtdec.h>
#include <panel.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/gpio.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <dm/uclass-internal.h>
#include <linux/kernel.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3399.h>
#include <asm/arch/grf_rk3399.h>
#include <asm/arch/rockchip_mipi_dsi.h>
#include <dt-bindings/clock/rk3288-cru.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Private information for rk mipi
*
* @regs: mipi controller address
* @grf: GRF register
* @panel: panel assined by device tree
* @ref_clk: reference clock for mipi dsi pll
* @sysclk: config clock for mipi dsi register
* @pix_clk: pixel clock for vop->dsi data transmission
* @phy_clk: mipi dphy output clock
* @txbyte_clk: clock for dsi->dphy high speed data transmission
* @txesc_clk: clock for tx esc mode
*/
struct rk_mipi_priv {
void __iomem *regs;
struct rk3399_grf_regs *grf;
struct udevice *panel;
struct mipi_dsi *dsi;
u32 ref_clk;
u32 sys_clk;
u32 pix_clk;
u32 phy_clk;
u32 txbyte_clk;
u32 txesc_clk;
};
static int rk_mipi_read_timing(struct udevice *dev,
struct display_timing *timing)
{
int ret;
ret = fdtdec_decode_display_timing(gd->fdt_blob, dev_of_offset(dev),
0, timing);
if (ret) {
debug("%s: Failed to decode display timing (ret=%d)\n",
__func__, ret);
return -EINVAL;
}
return 0;
}
/*
* Register write function used only for mipi dsi controller.
* Parameter:
* @regs: mipi controller address
* @reg: combination of regaddr(16bit)|bitswidth(8bit)|offset(8bit) you can
* use define in rk_mipi.h directly for this parameter
* @val: value that will be write to specified bits of register
*/
static void rk_mipi_dsi_write(u32 regs, u32 reg, u32 val)
{
u32 dat;
u32 mask;
u32 offset = (reg >> OFFSET_SHIFT) & 0xff;
u32 bits = (reg >> BITS_SHIFT) & 0xff;
u64 addr = (reg >> ADDR_SHIFT) + regs;
/* Mask for specifiled bits,the corresponding bits will be clear */
mask = ~((0xffffffff << offset) & (0xffffffff >> (32 - offset - bits)));
/* Make sure val in the available range */
val &= ~(0xffffffff << bits);
/* Get register's original val */
dat = readl(addr);
/* Clear specified bits */
dat &= mask;
/* Fill specified bits */
dat |= val << offset;
writel(dat, addr);
}
static int rk_mipi_dsi_enable(struct udevice *dev,
const struct display_timing *timing)
{
int node, timing_node;
int val;
struct rk_mipi_priv *priv = dev_get_priv(dev);
u64 regs = (u64)priv->regs;
struct display_plat *disp_uc_plat = dev_get_uclass_platdata(dev);
u32 txbyte_clk = priv->txbyte_clk;
u32 txesc_clk = priv->txesc_clk;
txesc_clk = txbyte_clk/(txbyte_clk/txesc_clk + 1);
/* Select the video source */
switch (disp_uc_plat->source_id) {
case VOP_B:
rk_clrsetreg(&priv->grf->soc_con20, GRF_DSI0_VOP_SEL_MASK,
GRF_DSI0_VOP_SEL_B << GRF_DSI0_VOP_SEL_SHIFT);
break;
case VOP_L:
rk_clrsetreg(&priv->grf->soc_con20, GRF_DSI0_VOP_SEL_MASK,
GRF_DSI0_VOP_SEL_L << GRF_DSI0_VOP_SEL_SHIFT);
break;
default:
debug("%s: Invalid VOP id\n", __func__);
return -EINVAL;
}
/* Set Controller as TX mode */
val = GRF_DPHY_TX0_RXMODE_DIS << GRF_DPHY_TX0_RXMODE_SHIFT;
rk_clrsetreg(&priv->grf->soc_con22, GRF_DPHY_TX0_RXMODE_MASK, val);
/* Exit tx stop mode */
val |= GRF_DPHY_TX0_TXSTOPMODE_DIS << GRF_DPHY_TX0_TXSTOPMODE_SHIFT;
rk_clrsetreg(&priv->grf->soc_con22, GRF_DPHY_TX0_TXSTOPMODE_MASK, val);
/* Disable turnequest */
val |= GRF_DPHY_TX0_TURNREQUEST_DIS << GRF_DPHY_TX0_TURNREQUEST_SHIFT;
rk_clrsetreg(&priv->grf->soc_con22, GRF_DPHY_TX0_TURNREQUEST_MASK, val);
/* Set Display timing parameter */
rk_mipi_dsi_write(regs, VID_HSA_TIME, timing->hsync_len.typ);
rk_mipi_dsi_write(regs, VID_HBP_TIME, timing->hback_porch.typ);
rk_mipi_dsi_write(regs, VID_HLINE_TIME, (timing->hsync_len.typ
+ timing->hback_porch.typ + timing->hactive.typ
+ timing->hfront_porch.typ));
rk_mipi_dsi_write(regs, VID_VSA_LINES, timing->vsync_len.typ);
rk_mipi_dsi_write(regs, VID_VBP_LINES, timing->vback_porch.typ);
rk_mipi_dsi_write(regs, VID_VFP_LINES, timing->vfront_porch.typ);
rk_mipi_dsi_write(regs, VID_ACTIVE_LINES, timing->vactive.typ);
/* Set Signal Polarity */
val = (timing->flags & DISPLAY_FLAGS_HSYNC_LOW) ? 1 : 0;
rk_mipi_dsi_write(regs, HSYNC_ACTIVE_LOW, val);
val = (timing->flags & DISPLAY_FLAGS_VSYNC_LOW) ? 1 : 0;
rk_mipi_dsi_write(regs, VSYNC_ACTIVE_LOW, val);
val = (timing->flags & DISPLAY_FLAGS_DE_LOW) ? 1 : 0;
rk_mipi_dsi_write(regs, DISPLAY_FLAGS_DE_LOW, val);
val = (timing->flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) ? 1 : 0;
rk_mipi_dsi_write(regs, COLORM_ACTIVE_LOW, val);
/* Set video mode */
rk_mipi_dsi_write(regs, CMD_VIDEO_MODE, VIDEO_MODE);
/* Set video mode transmission type as burst mode */
rk_mipi_dsi_write(regs, VID_MODE_TYPE, BURST_MODE);
/* Set pix num in a video package */
rk_mipi_dsi_write(regs, VID_PKT_SIZE, 0x4b0);
/* Set dpi color coding depth 24 bit */
timing_node = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev),
"display-timings");
node = fdt_first_subnode(gd->fdt_blob, timing_node);
val = fdtdec_get_int(gd->fdt_blob, node, "bits-per-pixel", -1);
switch (val) {
case 16:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_16BIT_CFG_1);
break;
case 24:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
break;
case 30:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_30BIT);
break;
default:
rk_mipi_dsi_write(regs, DPI_COLOR_CODING, DPI_24BIT);
}
/* Enable low power mode */
rk_mipi_dsi_write(regs, LP_CMD_EN, 1);
rk_mipi_dsi_write(regs, LP_HFP_EN, 1);
rk_mipi_dsi_write(regs, LP_VACT_EN, 1);
rk_mipi_dsi_write(regs, LP_VFP_EN, 1);
rk_mipi_dsi_write(regs, LP_VBP_EN, 1);
rk_mipi_dsi_write(regs, LP_VSA_EN, 1);
/* Division for timeout counter clk */
rk_mipi_dsi_write(regs, TO_CLK_DIVISION, 0x0a);
/* Tx esc clk division from txbyte clk */
rk_mipi_dsi_write(regs, TX_ESC_CLK_DIVISION, txbyte_clk/txesc_clk);
/* Timeout count for hs<->lp transation between Line period */
rk_mipi_dsi_write(regs, HSTX_TO_CNT, 0x3e8);
/* Phy State transfer timing */
rk_mipi_dsi_write(regs, PHY_STOP_WAIT_TIME, 32);
rk_mipi_dsi_write(regs, PHY_TXREQUESTCLKHS, 1);
rk_mipi_dsi_write(regs, PHY_HS2LP_TIME, 0x14);
rk_mipi_dsi_write(regs, PHY_LP2HS_TIME, 0x10);
rk_mipi_dsi_write(regs, MAX_RD_TIME, 0x2710);
/* Power on */
rk_mipi_dsi_write(regs, SHUTDOWNZ, 1);
return 0;
}
/* rk mipi dphy write function. It is used to write test data to dphy */
static void rk_mipi_phy_write(u32 regs, unsigned char test_code,
unsigned char *test_data, unsigned char size)
{
int i = 0;
/* Write Test code */
rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
rk_mipi_dsi_write(regs, PHY_TESTDIN, test_code);
rk_mipi_dsi_write(regs, PHY_TESTEN, 1);
rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
rk_mipi_dsi_write(regs, PHY_TESTEN, 0);
/* Write Test data */
for (i = 0; i < size; i++) {
rk_mipi_dsi_write(regs, PHY_TESTCLK, 0);
rk_mipi_dsi_write(regs, PHY_TESTDIN, test_data[i]);
rk_mipi_dsi_write(regs, PHY_TESTCLK, 1);
}
}
/*
* Mipi dphy config function. Calculate the suitable prediv, feedback div,
* fsfreqrang value ,cap ,lpf and so on according to the given pix clk rate,
* and then enable phy.
*/
static int rk_mipi_phy_enable(struct udevice *dev)
{
int i;
struct rk_mipi_priv *priv = dev_get_priv(dev);
u64 regs = (u64)priv->regs;
u64 fbdiv;
u64 prediv = 1;
u32 max_fbdiv = 512;
u32 max_prediv, min_prediv;
u64 ddr_clk = priv->phy_clk;
u32 refclk = priv->ref_clk;
u32 remain = refclk;
unsigned char test_data[2] = {0};
int freq_rang[][2] = {
{90, 0x01}, {100, 0x10}, {110, 0x20}, {130, 0x01},
{140, 0x11}, {150, 0x21}, {170, 0x02}, {180, 0x12},
{200, 0x22}, {220, 0x03}, {240, 0x13}, {250, 0x23},
{270, 0x04}, {300, 0x14}, {330, 0x05}, {360, 0x15},
{400, 0x25}, {450, 0x06}, {500, 0x16}, {550, 0x07},
{600, 0x17}, {650, 0x08}, {700, 0x18}, {750, 0x09},
{800, 0x19}, {850, 0x29}, {900, 0x39}, {950, 0x0a},
{1000, 0x1a}, {1050, 0x2a}, {1100, 0x3a}, {1150, 0x0b},
{1200, 0x1b}, {1250, 0x2b}, {1300, 0x3b}, {1350, 0x0c},
{1400, 0x1c}, {1450, 0x2c}, {1500, 0x3c}
};
/* Shutdown mode */
rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 0);
rk_mipi_dsi_write(regs, PHY_RSTZ, 0);
rk_mipi_dsi_write(regs, PHY_TESTCLR, 1);
/* Pll locking */
rk_mipi_dsi_write(regs, PHY_TESTCLR, 0);
/* config cp and lfp */
test_data[0] = 0x80 | (ddr_clk / (200 * MHz)) << 3 | 0x3;
rk_mipi_phy_write(regs, CODE_PLL_VCORANGE_VCOCAP, test_data, 1);
test_data[0] = 0x8;
rk_mipi_phy_write(regs, CODE_PLL_CPCTRL, test_data, 1);
test_data[0] = 0x80 | 0x40;
rk_mipi_phy_write(regs, CODE_PLL_LPF_CP, test_data, 1);
/* select the suitable value for fsfreqrang reg */
for (i = 0; i < ARRAY_SIZE(freq_rang); i++) {
if (ddr_clk / (MHz) >= freq_rang[i][0])
break;
}
if (i == ARRAY_SIZE(freq_rang)) {
debug("%s: Dphy freq out of range!\n", __func__);
return -EINVAL;
}
test_data[0] = freq_rang[i][1] << 1;
rk_mipi_phy_write(regs, CODE_HS_RX_LANE0, test_data, 1);
/*
* Calculate the best ddrclk and it's corresponding div value. If the
* given pixelclock is great than 250M, ddrclk will be fix 1500M.
* Otherwise,
* it's equal to ddr_clk= pixclk * 6. 40MHz >= refclk / prediv >= 5MHz
* according to spec.
*/
max_prediv = (refclk / (5 * MHz));
min_prediv = ((refclk / (40 * MHz)) ? (refclk / (40 * MHz) + 1) : 1);
debug("%s: DEBUG: max_prediv=%u, min_prediv=%u\n", __func__, max_prediv,
min_prediv);
if (max_prediv < min_prediv) {
debug("%s: Invalid refclk value\n", __func__);
return -EINVAL;
}
/* Calculate the best refclk and feedback division value for dphy pll */
for (i = min_prediv; i < max_prediv; i++) {
if ((ddr_clk * i % refclk < remain) &&
(ddr_clk * i / refclk) < max_fbdiv) {
prediv = i;
remain = ddr_clk * i % refclk;
}
}
fbdiv = ddr_clk * prediv / refclk;
ddr_clk = refclk * fbdiv / prediv;
priv->phy_clk = ddr_clk;
debug("%s: DEBUG: refclk=%u, refclk=%llu, fbdiv=%llu, phyclk=%llu\n",
__func__, refclk, prediv, fbdiv, ddr_clk);
/* config prediv and feedback reg */
test_data[0] = prediv - 1;
rk_mipi_phy_write(regs, CODE_PLL_INPUT_DIV_RAT, test_data, 1);
test_data[0] = (fbdiv - 1) & 0x1f;
rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
test_data[0] = (fbdiv - 1) >> 5 | 0x80;
rk_mipi_phy_write(regs, CODE_PLL_LOOP_DIV_RAT, test_data, 1);
test_data[0] = 0x30;
rk_mipi_phy_write(regs, CODE_PLL_INPUT_LOOP_DIV_RAT, test_data, 1);
/* rest config */
test_data[0] = 0x4d;
rk_mipi_phy_write(regs, CODE_BANDGAP_BIAS_CTRL, test_data, 1);
test_data[0] = 0x3d;
rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
test_data[0] = 0xdf;
rk_mipi_phy_write(regs, CODE_TERMINATION_CTRL, test_data, 1);
test_data[0] = 0x7;
rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
test_data[0] = 0x80 | 0x7;
rk_mipi_phy_write(regs, CODE_AFE_BIAS_BANDGAP_ANOLOG, test_data, 1);
test_data[0] = 0x80 | 15;
rk_mipi_phy_write(regs, CODE_HSTXDATALANEREQUSETSTATETIME,
test_data, 1);
test_data[0] = 0x80 | 85;
rk_mipi_phy_write(regs, CODE_HSTXDATALANEPREPARESTATETIME,
test_data, 1);
test_data[0] = 0x40 | 10;
rk_mipi_phy_write(regs, CODE_HSTXDATALANEHSZEROSTATETIME,
test_data, 1);
/* enter into stop mode */
rk_mipi_dsi_write(regs, N_LANES, 0x03);
rk_mipi_dsi_write(regs, PHY_ENABLECLK, 1);
rk_mipi_dsi_write(regs, PHY_FORCEPLL, 1);
rk_mipi_dsi_write(regs, PHY_SHUTDOWNZ, 1);
rk_mipi_dsi_write(regs, PHY_RSTZ, 1);
return 0;
}
/*
* This function is called by rk_display_init() using rk_mipi_dsi_enable() and
* rk_mipi_phy_enable() to initialize mipi controller and dphy. If success,
* enable backlight.
*/
static int rk_display_enable(struct udevice *dev, int panel_bpp,
const struct display_timing *timing)
{
int ret;
struct rk_mipi_priv *priv = dev_get_priv(dev);
/* Fill the mipi controller parameter */
priv->ref_clk = 24 * MHz;
priv->sys_clk = priv->ref_clk;
priv->pix_clk = timing->pixelclock.typ;
priv->phy_clk = priv->pix_clk * 6;
priv->txbyte_clk = priv->phy_clk / 8;
priv->txesc_clk = 20 * MHz;
/* Config and enable mipi dsi according to timing */
ret = rk_mipi_dsi_enable(dev, timing);
if (ret) {
debug("%s: rk_mipi_dsi_enable() failed (err=%d)\n",
__func__, ret);
return ret;
}
/* Config and enable mipi phy */
ret = rk_mipi_phy_enable(dev);
if (ret) {
debug("%s: rk_mipi_phy_enable() failed (err=%d)\n",
__func__, ret);
return ret;
}
/* Enable backlight */
ret = panel_enable_backlight(priv->panel);
if (ret) {
debug("%s: panel_enable_backlight() failed (err=%d)\n",
__func__, ret);
return ret;
}
return 0;
}
static int rk_mipi_ofdata_to_platdata(struct udevice *dev)
{
struct rk_mipi_priv *priv = dev_get_priv(dev);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
if (priv->grf <= 0) {
debug("%s: Get syscon grf failed (ret=%llu)\n",
__func__, (u64)priv->grf);
return -ENXIO;
}
priv->regs = (void *)dev_get_addr(dev);
if (priv->regs <= 0) {
debug("%s: Get MIPI dsi address failed (ret=%llu)\n", __func__,
(u64)priv->regs);
return -ENXIO;
}
return 0;
}
/*
* Probe function: check panel existence and readingit's timing. Then config
* mipi dsi controller and enable it according to the timing parameter.
*/
static int rk_mipi_probe(struct udevice *dev)
{
int ret;
struct rk_mipi_priv *priv = dev_get_priv(dev);
ret = uclass_get_device_by_phandle(UCLASS_PANEL, dev, "rockchip,panel",
&priv->panel);
if (ret) {
debug("%s: Can not find panel (err=%d)\n", __func__, ret);
return ret;
}
return 0;
}
static const struct dm_display_ops rk_mipi_dsi_ops = {
.read_timing = rk_mipi_read_timing,
.enable = rk_display_enable,
};
static const struct udevice_id rk_mipi_dsi_ids[] = {
{ .compatible = "rockchip,rk3399_mipi_dsi" },
{ }
};
U_BOOT_DRIVER(rk_mipi_dsi) = {
.name = "rk_mipi_dsi",
.id = UCLASS_DISPLAY,
.of_match = rk_mipi_dsi_ids,
.ofdata_to_platdata = rk_mipi_ofdata_to_platdata,
.probe = rk_mipi_probe,
.ops = &rk_mipi_dsi_ops,
.priv_auto_alloc_size = sizeof(struct rk_mipi_priv),
};