u-boot-brain/drivers/mtd/nand/raw/cortina_nand.c
Kate Liu 161df94b3c mtd: rawnand: cortina_nand: Add Cortina CAxxxx SoC support
Add Cortina Access parallel Nand support for CAxxxx SOCs

Signed-off-by: Kate Liu <kate.liu@cortina-access.com>
Signed-off-by: Alex Nemirovsky <alex.nemirovsky@cortina-access.com>
CC: Tom Rini <trini@konsulko.com>
CC: Scott Wood <oss@buserror.net>
Reviewed-by: Tom Rini <trini@konsulko.com>
2021-01-18 15:14:34 -05:00

1391 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2020, Cortina Access Inc..
*/
#include <common.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/sizes.h>
#include <log.h>
#include <asm/io.h>
#include <memalign.h>
#include <nand.h>
#include <dm/device_compat.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/errno.h>
#include <asm/gpio.h>
#include <fdtdec.h>
#include <bouncebuf.h>
#include <dm.h>
#include "cortina_nand.h"
static unsigned int *pread, *pwrite;
static const struct udevice_id cortina_nand_dt_ids[] = {
{
.compatible = "cortina,ca-nand",
},
{ /* sentinel */ }
};
static struct nand_ecclayout eccoob;
/* Information about an attached NAND chip */
struct fdt_nand {
int enabled; /* 1 to enable, 0 to disable */
s32 width; /* bit width, must be 8 */
u32 nand_ecc_strength;
};
struct nand_drv {
u32 fifo_index;
struct nand_ctlr *reg;
struct dma_global *dma_glb;
struct dma_ssp *dma_nand;
struct tx_descriptor_t *tx_desc;
struct rx_descriptor_t *rx_desc;
struct fdt_nand config;
unsigned int flash_base;
};
struct ca_nand_info {
struct udevice *dev;
struct nand_drv nand_ctrl;
struct nand_chip nand_chip;
};
/**
* Wait for command completion
*
* @param reg nand_ctlr structure
* @return
* 1 - Command completed
* 0 - Timeout
*/
static int nand_waitfor_cmd_completion(struct nand_ctlr *reg, unsigned int mask)
{
unsigned int reg_v = 0;
if (readl_poll_timeout(&reg->flash_flash_access_start, reg_v,
!(reg_v & mask), (FLASH_LONG_DELAY << 2))) {
pr_err("Nand CMD timeout!\n");
return 0;
}
return 1;
}
/**
* Read one byte from the chip
*
* @param mtd MTD device structure
* @return data byte
*
* Read function for 8bit bus-width
*/
static uint8_t read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info;
u8 ret_v;
info = (struct nand_drv *)nand_get_controller_data(chip);
clrsetbits_le32(&info->reg->flash_flash_access_start, GENMASK(31, 0),
NFLASH_GO | NFLASH_RD);
if (!nand_waitfor_cmd_completion(info->reg, NFLASH_GO))
printf("%s: Command timeout\n", __func__);
ret_v = readl(&info->reg->flash_nf_data) >> (8 * info->fifo_index++);
info->fifo_index %= 4;
return (uint8_t)ret_v;
}
/**
* Read len bytes from the chip into a buffer
*
* @param mtd MTD device structure
* @param buf buffer to store data to
* @param len number of bytes to read
*
* Read function for 8bit bus-width
*/
static void read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
int i;
unsigned int reg;
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
for (i = 0; i < len; i++) {
clrsetbits_le32(&info->reg->flash_flash_access_start,
GENMASK(31, 0), NFLASH_GO | NFLASH_RD);
if (!nand_waitfor_cmd_completion(info->reg, NFLASH_GO))
printf("%s: Command timeout\n", __func__);
reg = readl(&info->reg->flash_nf_data) >>
(8 * info->fifo_index++);
memcpy(buf + i, &reg, 1);
info->fifo_index %= 4;
}
}
/**
* Check READY pin status to see if it is ready or not
*
* @param mtd MTD device structure
* @return
* 1 - ready
* 0 - not ready
*/
static int nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int reg_val;
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
reg_val = readl(&info->reg->flash_status);
if (reg_val & NFLASH_READY)
return 1;
else
return 0;
}
/* Dummy implementation: we don't support multiple chips */
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
{
switch (chipnr) {
case -1:
case 0:
break;
default:
WARN_ON(chipnr);
}
}
int init_nand_dma(struct nand_chip *nand)
{
int i;
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(nand);
setbits_le32(&info->dma_glb->dma_glb_dma_lso_ctrl, TX_DMA_ENABLE);
setbits_le32(&info->dma_glb->dma_glb_dma_ssp_rx_ctrl,
TX_DMA_ENABLE | DMA_CHECK_OWNER);
setbits_le32(&info->dma_glb->dma_glb_dma_ssp_tx_ctrl,
RX_DMA_ENABLE | DMA_CHECK_OWNER);
info->tx_desc = malloc_cache_aligned((sizeof(struct tx_descriptor_t) *
CA_DMA_DESC_NUM));
info->rx_desc = malloc_cache_aligned((sizeof(struct rx_descriptor_t) *
CA_DMA_DESC_NUM));
if (!info->rx_desc && info->tx_desc) {
printf("Fail to alloc DMA descript!\n");
kfree(info->tx_desc);
return -ENOMEM;
} else if (info->rx_desc && !info->tx_desc) {
printf("Fail to alloc DMA descript!\n");
kfree(info->tx_desc);
return -ENOMEM;
}
/* set RX DMA base address and depth */
clrsetbits_le32(&info->dma_nand->dma_q_rxq_base_depth,
GENMASK(31, 4), (uintptr_t)info->rx_desc);
clrsetbits_le32(&info->dma_nand->dma_q_rxq_base_depth,
GENMASK(3, 0), CA_DMA_DEPTH);
/* set TX DMA base address and depth */
clrsetbits_le32(&info->dma_nand->dma_q_txq_base_depth,
GENMASK(31, 4), (uintptr_t)info->tx_desc);
clrsetbits_le32(&info->dma_nand->dma_q_txq_base_depth,
GENMASK(3, 0), CA_DMA_DEPTH);
memset((unsigned char *)info->tx_desc, 0,
(sizeof(struct tx_descriptor_t) * CA_DMA_DESC_NUM));
memset((unsigned char *)info->rx_desc, 0,
(sizeof(struct rx_descriptor_t) * CA_DMA_DESC_NUM));
for (i = 0; i < CA_DMA_DESC_NUM; i++) {
/* set owner bit as SW */
info->tx_desc[i].own = 1;
/* enable Scatter-Gather memory copy */
info->tx_desc[i].sgm = 0x1;
}
return 0;
}
/**
* Send command to NAND device
*
* @param mtd MTD device structure
* @param command the command to be sent
* @param column the column address for this command, -1 if none
* @param page_addr the page address for this command, -1 if none
*/
static void ca_nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info;
unsigned int reg_v = 0;
u32 cmd = 0, cnt = 0, addr1 = 0, addr2 = 0;
int ret;
info = (struct nand_drv *)nand_get_controller_data(chip);
/*
* Write out the command to the device.
*
* Only command NAND_CMD_RESET or NAND_CMD_READID will come
* here before mtd->writesize is initialized.
*/
/* Emulate NAND_CMD_READOOB */
if (command == NAND_CMD_READOOB) {
assert(mtd->writesize != 0);
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* Reset FIFO before issue new command */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
ECC_RESET_ALL);
ret =
readl_poll_timeout(&info->reg->flash_nf_ecc_reset, reg_v,
!(reg_v & RESET_NFLASH_FIFO), FLASH_SHORT_DELAY);
if (ret) {
printf("FIFO reset timeout\n");
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
ECC_RESET_ALL);
udelay(10);
}
/* Reset FIFO index
* Next read start from flash_nf_data[0]
*/
info->fifo_index = 0;
clrsetbits_le32(&info->reg->flash_nf_access, GENMASK(11, 10),
NFLASH_REG_WIDTH_8);
/*
* Program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_READID:
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_READID);
/* 1 byte CMD cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(1, 0),
REG_CMD_COUNT_1TOGO);
/* 1 byte CMD cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(6, 4),
REG_ADDR_COUNT_1);
/* Data cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8),
REG_DATA_COUNT_DATA_4);
/* 0 OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
REG_OOB_COUNT_EMPTY);
/* addresses */
clrsetbits_le32(&info->reg->flash_nf_address_1, GENMASK(31, 0),
column & ADDR1_MASK2);
clrsetbits_le32(&info->reg->flash_nf_address_2, GENMASK(31, 0),
0);
/* clear FLASH_NF_ACCESS */
clrsetbits_le32(&info->reg->flash_nf_access, GENMASK(31, 0),
DISABLE_AUTO_RESET);
break;
case NAND_CMD_PARAM:
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_PARAM);
/* 1 byte CMD cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(1, 0),
REG_CMD_COUNT_1TOGO);
/* 1 byte ADDR cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(6, 4),
REG_ADDR_COUNT_1);
/* Data cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8),
(SZ_4K - 1) << 8);
/* 0 OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
REG_OOB_COUNT_EMPTY);
/* addresses */
clrsetbits_le32(&info->reg->flash_nf_address_1, GENMASK(31, 0),
column & ADDR1_MASK2);
clrsetbits_le32(&info->reg->flash_nf_address_2, GENMASK(31, 0),
0);
break;
case NAND_CMD_READ0:
if (chip->chipsize < SZ_32M) {
cmd = NAND_CMD_READ0;
cnt = REG_CMD_COUNT_1TOGO | REG_ADDR_COUNT_3;
addr1 = (((page_addr & ADDR1_MASK0) << 8));
addr2 = ((page_addr & ADDR2_MASK0) >> 24);
} else if (chip->chipsize >= SZ_32M &&
(chip->chipsize <= SZ_128M)) {
cmd = NAND_CMD_READ0;
cnt = REG_ADDR_COUNT_4;
if (mtd->writesize > (REG_DATA_COUNT_512_DATA >> 8)) {
cmd |= (NAND_CMD_READSTART << 8);
cnt |= REG_CMD_COUNT_2TOGO;
} else {
cnt |= REG_CMD_COUNT_1TOGO;
}
addr1 = ((page_addr << 16) | (column & ADDR1_MASK1));
addr2 = (page_addr >> 16);
} else {
cmd = NAND_CMD_READ0 | (NAND_CMD_READSTART << 8);
cnt = REG_CMD_COUNT_2TOGO | REG_ADDR_COUNT_5;
addr1 = ((page_addr << 16) | (column & ADDR1_MASK1));
addr2 = (page_addr >> 16);
}
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
cmd);
/* CMD & ADDR cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(7, 0), cnt);
/* Data cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8),
(mtd->writesize - 1) << 8);
/* OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
(mtd->oobsize - 1) << 22);
/* addresses */
clrsetbits_le32(&info->reg->flash_nf_address_1, GENMASK(31, 0),
addr1);
clrsetbits_le32(&info->reg->flash_nf_address_2, GENMASK(31, 0),
addr2);
return;
case NAND_CMD_SEQIN:
if (chip->chipsize < SZ_32M) {
cnt = REG_CMD_COUNT_2TOGO | REG_ADDR_COUNT_3;
addr1 = (((page_addr & ADDR1_MASK0) << 8));
addr2 = ((page_addr & ADDR2_MASK0) >> 24);
} else if (chip->chipsize >= SZ_32M &&
(chip->chipsize <= SZ_128M)) {
cnt = REG_CMD_COUNT_2TOGO | REG_ADDR_COUNT_4;
addr1 = ((page_addr << 16) | (column & ADDR1_MASK1));
addr2 = (page_addr >> 16);
} else {
cnt = REG_CMD_COUNT_2TOGO | REG_ADDR_COUNT_5;
addr1 = ((page_addr << 16) | (column & ADDR1_MASK1));
addr2 = (page_addr >> 16);
}
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_SEQIN | (NAND_CMD_PAGEPROG << 8));
/* CMD cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(7, 0), cnt);
/* Data cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8),
(mtd->writesize - 1) << 8);
/* OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
(mtd->oobsize - 1) << 22);
/* addresses */
clrsetbits_le32(&info->reg->flash_nf_address_1, GENMASK(31, 0),
addr1);
clrsetbits_le32(&info->reg->flash_nf_address_2, GENMASK(31, 0),
addr2);
return;
case NAND_CMD_PAGEPROG:
return;
case NAND_CMD_ERASE1:
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8));
/* 2 byte CMD cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(1, 0),
REG_CMD_COUNT_2TOGO);
/* 3 byte ADDR cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(6, 4),
REG_ADDR_COUNT_3);
/* 0 Data cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8),
REG_DATA_COUNT_EMPTY);
/* 0 OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
REG_OOB_COUNT_EMPTY);
/* addresses */
clrsetbits_le32(&info->reg->flash_nf_address_1, GENMASK(31, 0),
page_addr);
clrsetbits_le32(&info->reg->flash_nf_address_2, GENMASK(31, 0),
0);
/* Issue command */
clrsetbits_le32(&info->reg->flash_flash_access_start,
GENMASK(31, 0), NFLASH_GO | NFLASH_RD);
break;
case NAND_CMD_ERASE2:
return;
case NAND_CMD_STATUS:
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_STATUS);
/* 1 byte CMD cycle */
clrbits_le32(&info->reg->flash_nf_count, GENMASK(1, 0));
/* 0 byte Addr cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(6, 4),
REG_ADDR_COUNT_EMPTY);
/* 1 Data cycle */
clrbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8));
/* 0 OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
REG_OOB_COUNT_EMPTY);
break;
case NAND_CMD_RESET:
/* Command */
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_RESET);
/* 1 byte CMD cycle */
clrbits_le32(&info->reg->flash_nf_count, GENMASK(1, 0));
/* 0 byte Addr cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(6, 4),
REG_ADDR_COUNT_EMPTY);
/* 0 Data cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(21, 8),
REG_DATA_COUNT_EMPTY);
/* 0 OOB cycle */
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(31, 22),
REG_OOB_COUNT_EMPTY);
/* addresses */
clrsetbits_le32(&info->reg->flash_nf_address_1, GENMASK(31, 0),
column & ADDR1_MASK2);
clrsetbits_le32(&info->reg->flash_nf_address_2, GENMASK(31, 0),
0);
/* Issue command */
clrsetbits_le32(&info->reg->flash_flash_access_start,
GENMASK(31, 0), NFLASH_GO | NFLASH_WT);
break;
case NAND_CMD_RNDOUT:
default:
printf("%s: Unsupported command %d\n", __func__, command);
return;
}
if (!nand_waitfor_cmd_completion(info->reg, NFLASH_GO))
printf("Command 0x%02X timeout\n", command);
}
/**
* Set up NAND bus width and page size
*
* @param info nand_info structure
* @return 0 if ok, -1 on error
*/
static int set_bus_width_page_size(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
if (info->config.width == SZ_8) {
clrsetbits_le32(&info->reg->flash_nf_access, GENMASK(31, 0),
NFLASH_REG_WIDTH_8);
} else if (info->config.width == SZ_16) {
clrsetbits_le32(&info->reg->flash_nf_access, GENMASK(31, 0),
NFLASH_REG_WIDTH_16);
} else {
debug("%s: Unsupported bus width %d\n", __func__,
info->config.width);
return -1;
}
if (mtd->writesize == SZ_512) {
setbits_le32(&info->reg->flash_type, FLASH_TYPE_512);
} else if (mtd->writesize == SZ_2K) {
setbits_le32(&info->reg->flash_type, FLASH_TYPE_2K);
} else if (mtd->writesize == SZ_4K) {
setbits_le32(&info->reg->flash_type, FLASH_TYPE_4K);
} else if (mtd->writesize == SZ_8K) {
setbits_le32(&info->reg->flash_type, FLASH_TYPE_8K);
} else {
debug("%s: Unsupported page size %d\n", __func__,
mtd->writesize);
return -1;
}
return 0;
}
static int ca_do_bch_correction(struct nand_chip *chip,
unsigned int err_num, u8 *buff_ptr, int i)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
unsigned int reg_v, err_loc0, err_loc1;
int k, max_bitflips;
for (k = 0; k < (err_num + 1) / 2; k++) {
reg_v = readl(&info->reg->flash_nf_bch_error_loc01 + k);
err_loc0 = reg_v & BCH_ERR_LOC_MASK;
err_loc1 = (reg_v >> 16) & BCH_ERR_LOC_MASK;
if (err_loc0 / 8 < BCH_DATA_UNIT) {
printf("pdata[%x]:%x =>", ((i / chip->ecc.bytes) *
chip->ecc.size + ((reg_v & 0x1fff) >> 3)),
buff_ptr[(reg_v & 0x1fff) >> 3]);
buff_ptr[err_loc0 / 8] ^=
(1 << (reg_v & BCH_CORRECT_LOC_MASK));
printf("%x\n", buff_ptr[(reg_v & 0x1fff) >> 3]);
max_bitflips++;
}
if (((k + 1) * 2) <= err_num && ((err_loc1 / 8) <
BCH_DATA_UNIT)) {
printf("pdata[%x]:%x =>", ((i / chip->ecc.bytes) *
chip->ecc.size + (((reg_v >> 16) & 0x1fff) >>
3)), buff_ptr[((reg_v >> 16) & 0x1fff) >> 3]);
buff_ptr[err_loc1 / 8] ^= (1 << ((reg_v >> 16) &
BCH_CORRECT_LOC_MASK));
printf("%x\n", buff_ptr[((reg_v >> 16) & 0x1fff) >> 3]);
max_bitflips++;
}
}
return max_bitflips;
}
static int ca_do_bch_decode(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int page, unsigned int addr)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
unsigned int reg_v, err_num;
unsigned char *ecc_code = chip->buffers->ecccode;
unsigned char *ecc_end_pos;
int ret, i, j, k, n, step, eccsteps, max_bitflips = 0;
u8 *buff_ptr = (u8 *)buf;
for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccoob.eccpos[i]];
for (i = 0, eccsteps = chip->ecc.steps; eccsteps;
i += chip->ecc.bytes, eccsteps--) {
ecc_end_pos = ecc_code + chip->ecc.bytes;
for (j = 0, k = 0; j < chip->ecc.bytes; j += 4, k++) {
reg_v = 0;
for (n = 0; n < 4 && ecc_code != ecc_end_pos;
++n, ++ecc_code) {
reg_v |= *ecc_code << (8 * n);
}
clrsetbits_le32(&info->reg->flash_nf_bch_oob0 + k,
GENMASK(31, 0), reg_v);
}
/* Clear ECC buffer */
setbits_le32(&info->reg->flash_nf_ecc_reset, RESET_NFLASH_ECC);
ret = readl_poll_timeout(&info->reg->flash_nf_ecc_reset, reg_v,
!(reg_v & RESET_NFLASH_ECC),
FLASH_SHORT_DELAY);
if (ret)
pr_err("Reset ECC buffer fail\n");
clrsetbits_le32(&info->reg->flash_nf_bch_control, GENMASK(8, 8),
BCH_DISABLE);
/* Start BCH */
step = i / chip->ecc.bytes;
clrsetbits_le32(&info->reg->flash_nf_bch_control,
GENMASK(6, 4), step << 4);
setbits_le32(&info->reg->flash_nf_bch_control, BCH_ENABLE);
udelay(10);
setbits_le32(&info->reg->flash_nf_bch_control, BCH_COMPARE);
ret = readl_poll_timeout(&info->reg->flash_nf_bch_status, reg_v,
(reg_v & BCH_DECO_DONE),
FLASH_SHORT_DELAY);
if (ret)
pr_err("ECC Decode timeout\n");
/* Stop compare */
clrbits_le32(&info->reg->flash_nf_bch_control, BCH_COMPARE);
reg_v = readl(&info->reg->flash_nf_bch_status);
err_num = (reg_v >> 8) & BCH_ERR_NUM_MASK;
reg_v &= BCH_ERR_MASK;
/* Uncorrectable */
if (reg_v == BCH_UNCORRECTABLE) {
max_bitflips =
nand_check_erased_ecc_chunk(buff_ptr,
chip->ecc.size,
&chip->buffers->ecccode[i],
chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
if (max_bitflips) {
mtd->ecc_stats.failed++;
pr_err("Uncorrectable error\n");
pr_err(" Page:%x step:%d\n", page, step);
return -1;
}
} else if (reg_v == BCH_CORRECTABLE_ERR) {
printf("Correctable error(%x)!! addr:%lx\n",
err_num, (unsigned long)addr - mtd->writesize);
printf("Dst buf: %p [ColSel:%x ]\n",
buff_ptr + reg_v * BCH_DATA_UNIT, step);
max_bitflips =
ca_do_bch_correction(chip, err_num, buff_ptr, i);
}
buff_ptr += BCH_DATA_UNIT;
}
/* Disable BCH */
clrsetbits_le32(&info->reg->flash_nf_bch_control, GENMASK(31, 0),
BCH_DISABLE);
return max_bitflips;
}
static int ca_do_bch_encode(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct nand_drv *info;
unsigned int reg_v;
int i, j, n, eccsteps, gen_index;
info = (struct nand_drv *)nand_get_controller_data(chip);
for (i = 0, n = 0, eccsteps = chip->ecc.steps; eccsteps;
i += chip->ecc.bytes, eccsteps--, n++) {
gen_index = 0;
for (j = 0; j < chip->ecc.bytes; j += 4, gen_index++) {
reg_v =
readl(&info->reg->flash_nf_bch_gen0_0 + gen_index +
18 * n);
chip->oob_poi[eccoob.eccpos[i + j]] = reg_v & OOB_MASK;
chip->oob_poi[eccoob.eccpos[i + j + 1]] =
(reg_v >> 8) & OOB_MASK;
chip->oob_poi[eccoob.eccpos[i + j + 2]] =
(reg_v >> 16) & OOB_MASK;
chip->oob_poi[eccoob.eccpos[i + j + 3]] =
(reg_v >> 24) & OOB_MASK;
}
}
/* Disable BCH */
clrsetbits_le32(&info->reg->flash_nf_bch_control, GENMASK(8, 8),
BCH_DISABLE);
return 0;
}
/**
* Page read/write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf data buffer
* @param page page number
* @param with_ecc 1 to enable ECC, 0 to disable ECC
* @param is_writing 0 for read, 1 for write
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_rw_page(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int page, int with_ecc, int is_writing)
{
unsigned int reg_v, ext_addr, addr, dma_index;
struct tx_descriptor_t *tx_desc;
struct rx_descriptor_t *rx_desc;
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
/* reset ecc control */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
RESET_NFLASH_ECC);
/* flash interrupt */
clrsetbits_le32(&info->reg->flash_flash_interrupt, GENMASK(0, 0),
REGIRQ_CLEAR);
/* reset ecc control */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
RESET_NFLASH_ECC);
/* Disable TXQ */
clrbits_le32(&info->dma_nand->dma_q_txq_control, GENMASK(0, 0));
/* Clear interrupt */
setbits_le32(&info->dma_nand->dma_q_rxq_coal_interrupt, GENMASK(0, 0));
setbits_le32(&info->dma_nand->dma_q_txq_coal_interrupt, GENMASK(0, 0));
if (with_ecc == 1) {
switch (info->config.nand_ecc_strength) {
case ECC_STRENGTH_8:
reg_v = BCH_ERR_CAP_8;
break;
case ECC_STRENGTH_16:
reg_v = BCH_ERR_CAP_16;
break;
case ECC_STRENGTH_24:
reg_v = BCH_ERR_CAP_24;
break;
case ECC_STRENGTH_40:
reg_v = BCH_ERR_CAP_40;
break;
default:
reg_v = BCH_ERR_CAP_16;
break;
}
reg_v |= BCH_ENABLE;
/* BCH decode for flash read */
if (is_writing == 0)
reg_v |= BCH_DECODE;
clrsetbits_le32(&info->reg->flash_nf_bch_control,
GENMASK(31, 0), reg_v);
} else {
clrsetbits_le32(&info->reg->flash_nf_bch_control,
GENMASK(31, 0), 0);
}
/* Fill Extend address */
ext_addr = ((page << chip->page_shift) / EXT_ADDR_MASK);
clrsetbits_le32(&info->reg->flash_nf_access,
GENMASK(7, 0), (uintptr_t)ext_addr);
addr = (uintptr_t)((page << chip->page_shift) % EXT_ADDR_MASK);
addr = (uintptr_t)(addr + info->flash_base);
dma_index = readl(&info->dma_nand->dma_q_txq_wptr) & CA_DMA_Q_PTR_MASK;
tx_desc = info->tx_desc;
rx_desc = info->rx_desc;
/* TX/RX descriptor for page data */
tx_desc[dma_index].own = OWN_DMA;
tx_desc[dma_index].buf_len = mtd->writesize;
rx_desc[dma_index].own = OWN_DMA;
rx_desc[dma_index].buf_len = mtd->writesize;
if (is_writing == 0) {
tx_desc[dma_index].buf_adr = (uintptr_t)addr;
rx_desc[dma_index].buf_adr = (uintptr_t)(buf);
} else {
tx_desc[dma_index].buf_adr = (uintptr_t)buf;
rx_desc[dma_index].buf_adr = (uintptr_t)(addr);
}
dma_index++;
dma_index %= CA_DMA_DESC_NUM;
/* TX/RX descriptor for OOB area */
addr = (uintptr_t)(addr + mtd->writesize);
tx_desc[dma_index].own = OWN_DMA;
tx_desc[dma_index].buf_len = mtd->oobsize;
rx_desc[dma_index].own = OWN_DMA;
rx_desc[dma_index].buf_len = mtd->oobsize;
if (is_writing) {
tx_desc[dma_index].buf_adr = (uintptr_t)(chip->oob_poi);
rx_desc[dma_index].buf_adr = (uintptr_t)addr;
} else {
tx_desc[dma_index].buf_adr = (uintptr_t)addr;
rx_desc[dma_index].buf_adr = (uintptr_t)(chip->oob_poi);
dma_index++;
dma_index %= CA_DMA_DESC_NUM;
}
if (is_writing == 1) {
clrsetbits_le32(&info->reg->flash_fifo_control, GENMASK(1, 0),
FIFO_WRITE);
} else {
clrsetbits_le32(&info->reg->flash_fifo_control, GENMASK(1, 0),
FIFO_READ);
}
/* Start FIFO request */
clrsetbits_le32(&info->reg->flash_flash_access_start, GENMASK(2, 2),
NFLASH_FIFO_REQ);
/* Update DMA write pointer */
clrsetbits_le32(&info->dma_nand->dma_q_txq_wptr, GENMASK(12, 0),
dma_index);
/* Start DMA */
clrsetbits_le32(&info->dma_nand->dma_q_txq_control, GENMASK(0, 0),
TX_DMA_ENABLE);
/* Wait TX DMA done */
ret =
readl_poll_timeout(&info->dma_nand->dma_q_txq_coal_interrupt,
reg_v, (reg_v & 1), FLASH_LONG_DELAY);
if (ret) {
pr_err("TX DMA timeout\n");
return -ETIMEDOUT;
}
/* clear tx interrupt */
setbits_le32(&info->dma_nand->dma_q_txq_coal_interrupt, 1);
/* Wait RX DMA done */
ret =
readl_poll_timeout(&info->dma_nand->dma_q_rxq_coal_interrupt, reg_v,
(reg_v & 1), FLASH_LONG_DELAY);
if (ret) {
pr_err("RX DMA timeout\n");
return -ETIMEDOUT;
}
/* clear rx interrupt */
setbits_le32(&info->dma_nand->dma_q_rxq_coal_interrupt, 1);
/* wait NAND CMD done */
if (is_writing == 0) {
if (!nand_waitfor_cmd_completion(info->reg, NFLASH_FIFO_REQ))
printf("%s: Command timeout\n", __func__);
}
/* Update DMA read pointer */
clrsetbits_le32(&info->dma_nand->dma_q_rxq_rptr, GENMASK(12, 0),
dma_index);
/* ECC correction */
if (with_ecc == 1) {
ret =
readl_poll_timeout(&info->reg->flash_nf_bch_status,
reg_v, (reg_v & BCH_GEN_DONE),
FLASH_LONG_DELAY);
if (ret) {
pr_err("BCH_GEN timeout! flash_nf_bch_status=[0x%x]\n",
reg_v);
return -ETIMEDOUT;
}
if (is_writing == 0)
ca_do_bch_decode(mtd, chip, buf, page, addr);
else
ca_do_bch_encode(mtd, chip, page);
}
if (is_writing) {
dma_index++;
dma_index %= CA_DMA_DESC_NUM;
/* Update DMA R/W pointer */
clrsetbits_le32(&info->dma_nand->dma_q_txq_wptr, GENMASK(12, 0),
dma_index);
/* Wait TX DMA done */
ret =
readl_poll_timeout(&info->dma_nand->dma_q_txq_coal_interrupt,
reg_v, (reg_v & 1), FLASH_LONG_DELAY);
if (ret) {
pr_err("TX DMA timeout\n");
return -ETIMEDOUT;
}
/* clear tx interrupt */
setbits_le32(&info->dma_nand->dma_q_txq_coal_interrupt, 1);
/* Wait RX DMA done */
ret =
readl_poll_timeout(&info->dma_nand->dma_q_rxq_coal_interrupt,
reg_v, (reg_v & 1), FLASH_LONG_DELAY);
if (ret) {
pr_err("RX DMA timeout\n");
return -ETIMEDOUT;
}
/* clear rx interrupt */
setbits_le32(&info->dma_nand->dma_q_rxq_coal_interrupt, 1);
/* wait NAND CMD done */
if (!nand_waitfor_cmd_completion(info->reg, NFLASH_FIFO_REQ))
printf("%s: Command timeout\n", __func__);
/* Update DMA R/W pointer */
clrsetbits_le32(&info->dma_nand->dma_q_rxq_rptr, GENMASK(12, 0),
dma_index);
}
return 0;
}
/**
* Hardware ecc based page read function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf buffer to store read data
* @param page page number to read
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
ret = nand_rw_page(mtd, chip, buf, page, 1, 0);
if (ret)
return ret;
/* Reset FIFO */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
ECC_RESET_ALL);
return 0;
}
/**
* Hardware ecc based page write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf data buffer
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
ret = nand_rw_page(mtd, chip, (uint8_t *)buf, page, 1, 1);
if (ret)
return ret;
/* Reset FIFO */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
ECC_RESET_ALL);
return 0;
}
/**
* Read raw page data without ecc
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf buffer to store read data
* @param page page number to read
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
ret = nand_rw_page(mtd, chip, buf, page, 0, 0);
if (ret)
return ret;
/* Reset FIFO */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
ECC_RESET_ALL);
return 0;
}
/**
* Raw page write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param buf data buffer
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
ret = nand_rw_page(mtd, chip, buf, page, 0, 1);
if (ret)
return ret;
/* Reset FIFO */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset, GENMASK(31, 0),
ECC_RESET_ALL);
return 0;
}
/**
* OOB data read/write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param page page number to read
* @param with_ecc 1 to enable ECC, 0 to disable ECC
* @param is_writing 0 for read, 1 for write
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_rw_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int with_ecc, int is_writing)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
u32 reg_val;
int rw_index;
if (is_writing) {
reg_val = NFLASH_GO | NFLASH_WT;
pwrite = (unsigned int *)chip->oob_poi;
} else {
reg_val = NFLASH_GO | NFLASH_RD;
pread = (unsigned int *)chip->oob_poi;
}
for (rw_index = 0; rw_index < mtd->oobsize / 4; rw_index++) {
clrsetbits_le32(&info->reg->flash_nf_access, GENMASK(31, 0),
NFLASH_REG_WIDTH_32);
if (is_writing)
clrsetbits_le32(&info->reg->flash_nf_data,
GENMASK(31, 0), pwrite[rw_index]);
clrsetbits_le32(&info->reg->flash_flash_access_start,
GENMASK(11, 10), reg_val);
if (!nand_waitfor_cmd_completion(info->reg, NFLASH_GO))
printf("%s: Command timeout\n", __func__);
if (!is_writing)
pread[rw_index] = readl(&info->reg->flash_nf_data);
}
return 0;
}
/**
* OOB data read function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param page page number to read
*/
static int nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
if (mtd->writesize <= (REG_DATA_COUNT_512_DATA >> 8))
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(7, 0),
NAND_CMD_READOOB);
ret = nand_rw_oob(mtd, chip, page, 0, 0);
/* Reset FIFO */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset,
GENMASK(31, 0), ECC_RESET_ALL);
return ret;
}
/**
* OOB data write function
*
* @param mtd mtd info structure
* @param chip nand chip info structure
* @param page page number to write
* @return 0 when successfully completed
* -ETIMEDOUT when command timeout
*/
static int nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(chip);
int ret;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
if (mtd->writesize <= (REG_DATA_COUNT_512_DATA >> 8)) {
clrsetbits_le32(&info->reg->flash_nf_command, GENMASK(31, 0),
NAND_CMD_READOOB | (NAND_CMD_SEQIN << 8) |
(NAND_CMD_PAGEPROG << 16));
clrsetbits_le32(&info->reg->flash_nf_count, GENMASK(1, 0),
REG_CMD_COUNT_3TOGO);
}
ret = nand_rw_oob(mtd, chip, page, 1, 1);
/* Reset FIFO */
clrsetbits_le32(&info->reg->flash_nf_ecc_reset,
GENMASK(31, 0), ECC_RESET_ALL);
return ret;
}
/**
* Decode NAND parameters from the device tree
*
* @param dev Driver model device
* @param config Device tree NAND configuration
*/
static int fdt_decode_nand(struct udevice *dev, struct nand_drv *info)
{
int ecc_strength;
info->reg = (struct nand_ctlr *)dev_read_addr(dev);
info->dma_glb = (struct dma_global *)dev_read_addr_index(dev, 1);
info->dma_nand = (struct dma_ssp *)dev_read_addr_index(dev, 2);
info->config.enabled = dev_read_enabled(dev);
ecc_strength = dev_read_u32_default(dev, "nand-ecc-strength", 16);
info->flash_base =
dev_read_u32_default(dev, "nand_flash_base_addr", NAND_BASE_ADDR);
switch (ecc_strength) {
case ECC_STRENGTH_8:
info->config.nand_ecc_strength = ECC_STRENGTH_8;
break;
case ECC_STRENGTH_16:
info->config.nand_ecc_strength = ECC_STRENGTH_16;
break;
case ECC_STRENGTH_24:
info->config.nand_ecc_strength = ECC_STRENGTH_24;
break;
case ECC_STRENGTH_40:
info->config.nand_ecc_strength = ECC_STRENGTH_40;
break;
default:
info->config.nand_ecc_strength = ECC_STRENGTH_16;
}
return 0;
}
/**
* config flash type
*
* @param chip nand chip info structure
*/
static void nand_config_flash_type(struct nand_chip *nand)
{
struct nand_drv *info =
(struct nand_drv *)nand_get_controller_data(nand);
struct mtd_info *mtd = nand_to_mtd(nand);
switch (mtd->writesize) {
case WRITE_SIZE_512:
clrsetbits_le32(&info->reg->flash_type, GENMASK(31, 0),
FLASH_PIN | FLASH_TYPE_512);
break;
case WRITE_SIZE_2048:
clrsetbits_le32(&info->reg->flash_type, GENMASK(31, 0),
FLASH_PIN | FLASH_TYPE_2K);
break;
case WRITE_SIZE_4096:
clrsetbits_le32(&info->reg->flash_type, GENMASK(31, 0),
FLASH_PIN | FLASH_TYPE_4K);
break;
case WRITE_SIZE_8192:
clrsetbits_le32(&info->reg->flash_type, GENMASK(31, 0),
FLASH_PIN | FLASH_TYPE_8K);
break;
default:
pr_err("Unsupported page size(0x%x)!", nand->ecc.size);
}
}
/**
* config oob layout
*
* @param chip nand chip info structure
* @return 0 when successfully completed
* -EINVAL when ECC bytes exceed OOB size
*/
static int nand_config_oob_layout(struct nand_chip *nand)
{
int i, ecc_start_offset;
struct mtd_info *mtd = nand_to_mtd(nand);
/* Calculate byte count for ECC */
eccoob.eccbytes = mtd->writesize / nand->ecc.size * nand->ecc.bytes;
if (mtd->oobsize < eccoob.eccbytes) {
pr_err("Spare area(%d) too small for BCH%d\n", nand->ecc.bytes,
nand->ecc.strength / 8);
pr_err("page_sz: %d\n", nand->ecc.size);
pr_err("oob_sz: %d\n", nand->ecc.bytes);
return -EINVAL;
}
/* Update OOB layout */
ecc_start_offset = mtd->oobsize - eccoob.eccbytes;
memset(eccoob.eccpos, 0, sizeof(eccoob.eccpos));
for (i = 0; i < eccoob.eccbytes; ++i)
eccoob.eccpos[i] = i + ecc_start_offset;
/* Unused spare area
* OOB[0] is bad block marker.
* Extra two byte is reserved as
* erase marker just right before ECC code.
*/
eccoob.oobavail = nand->ecc.bytes - eccoob.eccbytes - 2;
eccoob.oobfree[0].offset = 2;
eccoob.oobfree[0].length =
mtd->oobsize - eccoob.eccbytes - eccoob.oobfree[0].offset - 1;
return 0;
}
static int ca_nand_probe(struct udevice *dev)
{
struct ca_nand_info *ca_nand = dev_get_priv(dev);
struct nand_chip *nand = &ca_nand->nand_chip;
struct nand_drv *info = &ca_nand->nand_ctrl;
struct fdt_nand *config = &info->config;
struct mtd_info *our_mtd;
int ret;
if (fdt_decode_nand(dev, info)) {
printf("Could not decode nand-flash in device tree\n");
return -1;
}
if (!config->enabled)
return -1;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.layout = &eccoob;
nand->cmdfunc = ca_nand_command;
nand->read_byte = read_byte;
nand->read_buf = read_buf;
nand->ecc.read_page = nand_read_page_hwecc;
nand->ecc.write_page = nand_write_page_hwecc;
nand->ecc.read_page_raw = nand_read_page_raw;
nand->ecc.write_page_raw = nand_write_page_raw;
nand->ecc.read_oob = nand_read_oob;
nand->ecc.write_oob = nand_write_oob;
nand->ecc.strength = config->nand_ecc_strength;
nand->select_chip = nand_select_chip;
nand->dev_ready = nand_dev_ready;
nand_set_controller_data(nand, &ca_nand->nand_ctrl);
/* Disable subpage writes as we do not provide ecc->hwctl */
nand->options |= NAND_NO_SUBPAGE_WRITE | NAND_SKIP_BBTSCAN;
/* Configure flash type as P-NAND */
clrsetbits_le32(&info->reg->flash_type, FLASH_PIN,
FLASH_TYPE_4K | FLASH_SIZE_436OOB);
config->width = FLASH_WIDTH;
our_mtd = nand_to_mtd(nand);
ret = nand_scan_ident(our_mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
if (ret)
return ret;
nand->ecc.size = BCH_DATA_UNIT;
nand->ecc.bytes = BCH_GF_PARAM_M * (nand->ecc.strength / 8);
/* Reconfig flash type according to ONFI */
nand_config_flash_type(nand);
ret = set_bus_width_page_size(our_mtd);
if (ret)
return ret;
/* Set the bad block position */
nand->badblockpos =
our_mtd->writesize >
512 ? NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
/* Arrange OOB layout */
ret = nand_config_oob_layout(nand);
if (ret)
return ret;
/* Init DMA descriptor ring */
ret = init_nand_dma(nand);
if (ret)
return ret;
ret = nand_scan_tail(our_mtd);
if (ret)
return ret;
ret = nand_register(0, our_mtd);
if (ret) {
dev_err(dev, "Failed to register MTD: %d\n", ret);
return ret;
}
ret = set_bus_width_page_size(our_mtd);
if (ret)
return ret;
printf("P-NAND : %s\n", our_mtd->name);
printf("Chip Size: %lldMB\n", nand->chipsize / (1024 * 1024));
printf("Block Size: %dKB\n", our_mtd->erasesize / 1024);
printf("Page Size: %dB\n", our_mtd->writesize);
printf("OOB Size: %dB\n", our_mtd->oobsize);
return 0;
}
U_BOOT_DRIVER(cortina_nand) = {
.name = "CA-PNAND",
.id = UCLASS_MTD,
.of_match = cortina_nand_dt_ids,
.probe = ca_nand_probe,
.priv_auto = sizeof(struct ca_nand_info),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(cortina_nand), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize %s. (error %d)\n", dev->name, ret);
}