u-boot-brain/cpu/ixp/npe/npe.c
Mike Frysinger 740e8ba7d4 npe: get mac address from environment
The environment is the canonical storage location of the mac address, so
we're killing off the global data location and moving everything to
querying the env directly.

The resulting code can also be simplified even further.

Signed-off-by: Mike Frysinger <vapier@gentoo.org>
CC: Stefan Roese <sr@denx.de>
CC: Ben Warren <biggerbadderben@gmail.com>
2009-03-20 22:39:11 +01:00

677 lines
17 KiB
C

/*
* (C) Copyright 2005-2006
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#if 0
#define DEBUG /* define for debug output */
#endif
#include <config.h>
#include <common.h>
#include <net.h>
#include <miiphy.h>
#include <malloc.h>
#include <asm/processor.h>
#include <asm/arch-ixp/ixp425.h>
#include <IxOsal.h>
#include <IxEthAcc.h>
#include <IxEthDB.h>
#include <IxNpeDl.h>
#include <IxQMgr.h>
#include <IxNpeMh.h>
#include <ix_ossl.h>
#include <IxFeatureCtrl.h>
#include <npe.h>
static IxQMgrDispatcherFuncPtr qDispatcherFunc = NULL;
static int npe_exists[NPE_NUM_PORTS];
static int npe_used[NPE_NUM_PORTS];
/* A little extra so we can align to cacheline. */
static u8 npe_alloc_pool[NPE_MEM_POOL_SIZE + CONFIG_SYS_CACHELINE_SIZE - 1];
static u8 *npe_alloc_end;
static u8 *npe_alloc_free;
static void *npe_alloc(int size)
{
static int count = 0;
void *p = NULL;
size = (size + (CONFIG_SYS_CACHELINE_SIZE-1)) & ~(CONFIG_SYS_CACHELINE_SIZE-1);
count++;
if ((npe_alloc_free + size) < npe_alloc_end) {
p = npe_alloc_free;
npe_alloc_free += size;
} else {
printf("npe_alloc: failed (count=%d, size=%d)!\n", count, size);
}
return p;
}
/* Not interrupt safe! */
static void mbuf_enqueue(IX_OSAL_MBUF **q, IX_OSAL_MBUF *new)
{
IX_OSAL_MBUF *m = *q;
IX_OSAL_MBUF_NEXT_PKT_IN_CHAIN_PTR(new) = NULL;
if (m) {
while(IX_OSAL_MBUF_NEXT_PKT_IN_CHAIN_PTR(m))
m = IX_OSAL_MBUF_NEXT_PKT_IN_CHAIN_PTR(m);
IX_OSAL_MBUF_NEXT_PKT_IN_CHAIN_PTR(m) = new;
} else
*q = new;
}
/* Not interrupt safe! */
static IX_OSAL_MBUF *mbuf_dequeue(IX_OSAL_MBUF **q)
{
IX_OSAL_MBUF *m = *q;
if (m)
*q = IX_OSAL_MBUF_NEXT_PKT_IN_CHAIN_PTR(m);
return m;
}
static void reset_tx_mbufs(struct npe* p_npe)
{
IX_OSAL_MBUF *m;
int i;
p_npe->txQHead = NULL;
for (i = 0; i < CONFIG_DEVS_ETH_INTEL_NPE_MAX_TX_DESCRIPTORS; i++) {
m = &p_npe->tx_mbufs[i];
memset(m, 0, sizeof(*m));
IX_OSAL_MBUF_MDATA(m) = (void *)&p_npe->tx_pkts[i * NPE_PKT_SIZE];
IX_OSAL_MBUF_MLEN(m) = IX_OSAL_MBUF_PKT_LEN(m) = NPE_PKT_SIZE;
mbuf_enqueue(&p_npe->txQHead, m);
}
}
static void reset_rx_mbufs(struct npe* p_npe)
{
IX_OSAL_MBUF *m;
int i;
p_npe->rxQHead = NULL;
HAL_DCACHE_INVALIDATE(p_npe->rx_pkts, NPE_PKT_SIZE *
CONFIG_DEVS_ETH_INTEL_NPE_MAX_RX_DESCRIPTORS);
for (i = 0; i < CONFIG_DEVS_ETH_INTEL_NPE_MAX_RX_DESCRIPTORS; i++) {
m = &p_npe->rx_mbufs[i];
memset(m, 0, sizeof(*m));
IX_OSAL_MBUF_MDATA(m) = (void *)&p_npe->rx_pkts[i * NPE_PKT_SIZE];
IX_OSAL_MBUF_MLEN(m) = IX_OSAL_MBUF_PKT_LEN(m) = NPE_PKT_SIZE;
if(ixEthAccPortRxFreeReplenish(p_npe->eth_id, m) != IX_SUCCESS) {
printf("ixEthAccPortRxFreeReplenish failed for port %d\n", p_npe->eth_id);
break;
}
}
}
static void init_rx_mbufs(struct npe* p_npe)
{
p_npe->rxQHead = NULL;
p_npe->rx_pkts = npe_alloc(NPE_PKT_SIZE *
CONFIG_DEVS_ETH_INTEL_NPE_MAX_RX_DESCRIPTORS);
if (p_npe->rx_pkts == NULL) {
printf("alloc of packets failed.\n");
return;
}
p_npe->rx_mbufs = (IX_OSAL_MBUF *)
npe_alloc(sizeof(IX_OSAL_MBUF) *
CONFIG_DEVS_ETH_INTEL_NPE_MAX_RX_DESCRIPTORS);
if (p_npe->rx_mbufs == NULL) {
printf("alloc of mbufs failed.\n");
return;
}
reset_rx_mbufs(p_npe);
}
static void init_tx_mbufs(struct npe* p_npe)
{
p_npe->tx_pkts = npe_alloc(NPE_PKT_SIZE *
CONFIG_DEVS_ETH_INTEL_NPE_MAX_TX_DESCRIPTORS);
if (p_npe->tx_pkts == NULL) {
printf("alloc of packets failed.\n");
return;
}
p_npe->tx_mbufs = (IX_OSAL_MBUF *)
npe_alloc(sizeof(IX_OSAL_MBUF) *
CONFIG_DEVS_ETH_INTEL_NPE_MAX_TX_DESCRIPTORS);
if (p_npe->tx_mbufs == NULL) {
printf("alloc of mbufs failed.\n");
return;
}
reset_tx_mbufs(p_npe);
}
/* Convert IX_ETH_PORT_n to IX_NPEMH_NPEID_NPEx */
static int __eth_to_npe(int eth_id)
{
switch(eth_id) {
case IX_ETH_PORT_1:
return IX_NPEMH_NPEID_NPEB;
case IX_ETH_PORT_2:
return IX_NPEMH_NPEID_NPEC;
case IX_ETH_PORT_3:
return IX_NPEMH_NPEID_NPEA;
}
return 0;
}
/* Poll the CSR machinery. */
static void npe_poll(int eth_id)
{
if (qDispatcherFunc != NULL) {
ixNpeMhMessagesReceive(__eth_to_npe(eth_id));
(*qDispatcherFunc)(IX_QMGR_QUELOW_GROUP);
}
}
/* ethAcc RX callback */
static void npe_rx_callback(u32 cbTag, IX_OSAL_MBUF *m, IxEthAccPortId portid)
{
struct npe* p_npe = (struct npe *)cbTag;
if (IX_OSAL_MBUF_MLEN(m) > 0) {
mbuf_enqueue(&p_npe->rxQHead, m);
if (p_npe->rx_write == ((p_npe->rx_read-1) & (PKTBUFSRX-1))) {
debug("Rx overflow: rx_write=%d rx_read=%d\n",
p_npe->rx_write, p_npe->rx_read);
} else {
debug("Received message #%d (len=%d)\n", p_npe->rx_write,
IX_OSAL_MBUF_MLEN(m));
memcpy((void *)NetRxPackets[p_npe->rx_write], IX_OSAL_MBUF_MDATA(m),
IX_OSAL_MBUF_MLEN(m));
p_npe->rx_len[p_npe->rx_write] = IX_OSAL_MBUF_MLEN(m);
p_npe->rx_write++;
if (p_npe->rx_write == PKTBUFSRX)
p_npe->rx_write = 0;
#ifdef CONFIG_PRINT_RX_FRAMES
{
u8 *ptr = IX_OSAL_MBUF_MDATA(m);
int i;
for (i=0; i<60; i++) {
debug("%02x ", *ptr++);
}
debug("\n");
}
#endif
}
m = mbuf_dequeue(&p_npe->rxQHead);
} else {
debug("Received frame with length 0!!!\n");
m = mbuf_dequeue(&p_npe->rxQHead);
}
/* Now return mbuf to NPE */
IX_OSAL_MBUF_MLEN(m) = IX_OSAL_MBUF_PKT_LEN(m) = NPE_PKT_SIZE;
IX_OSAL_MBUF_NEXT_BUFFER_IN_PKT_PTR(m) = NULL;
IX_OSAL_MBUF_FLAGS(m) = 0;
if(ixEthAccPortRxFreeReplenish(p_npe->eth_id, m) != IX_SUCCESS) {
debug("npe_rx_callback: Error returning mbuf.\n");
}
}
/* ethAcc TX callback */
static void npe_tx_callback(u32 cbTag, IX_OSAL_MBUF *m)
{
struct npe* p_npe = (struct npe *)cbTag;
debug("%s\n", __FUNCTION__);
IX_OSAL_MBUF_MLEN(m) = IX_OSAL_MBUF_PKT_LEN(m) = NPE_PKT_SIZE;
IX_OSAL_MBUF_NEXT_BUFFER_IN_PKT_PTR(m) = NULL;
IX_OSAL_MBUF_FLAGS(m) = 0;
mbuf_enqueue(&p_npe->txQHead, m);
}
static int npe_set_mac_address(struct eth_device *dev)
{
struct npe *p_npe = (struct npe *)dev->priv;
IxEthAccMacAddr npeMac;
debug("%s\n", __FUNCTION__);
/* Set MAC address */
memcpy(npeMac.macAddress, dev->enetaddr, 6);
if (ixEthAccPortUnicastMacAddressSet(p_npe->eth_id, &npeMac) != IX_ETH_ACC_SUCCESS) {
printf("Error setting unicast address! %02x:%02x:%02x:%02x:%02x:%02x\n",
npeMac.macAddress[0], npeMac.macAddress[1],
npeMac.macAddress[2], npeMac.macAddress[3],
npeMac.macAddress[4], npeMac.macAddress[5]);
return 0;
}
return 1;
}
/* Boot-time CSR library initialization. */
static int npe_csr_load(void)
{
int i;
if (ixQMgrInit() != IX_SUCCESS) {
debug("Error initialising queue manager!\n");
return 0;
}
ixQMgrDispatcherLoopGet(&qDispatcherFunc);
if(ixNpeMhInitialize(IX_NPEMH_NPEINTERRUPTS_YES) != IX_SUCCESS) {
printf("Error initialising NPE Message handler!\n");
return 0;
}
if (npe_used[IX_ETH_PORT_1] && npe_exists[IX_ETH_PORT_1] &&
ixNpeDlNpeInitAndStart(IX_NPEDL_NPEIMAGE_NPEB_ETH_LEARN_FILTER_SPAN_FIREWALL_VLAN_QOS)
!= IX_SUCCESS) {
printf("Error downloading firmware to NPE-B!\n");
return 0;
}
if (npe_used[IX_ETH_PORT_2] && npe_exists[IX_ETH_PORT_2] &&
ixNpeDlNpeInitAndStart(IX_NPEDL_NPEIMAGE_NPEC_ETH_LEARN_FILTER_SPAN_FIREWALL_VLAN_QOS)
!= IX_SUCCESS) {
printf("Error downloading firmware to NPE-C!\n");
return 0;
}
/* don't need this for U-Boot */
ixFeatureCtrlSwConfigurationWrite(IX_FEATURECTRL_ETH_LEARNING, FALSE);
if (ixEthAccInit() != IX_ETH_ACC_SUCCESS) {
printf("Error initialising Ethernet access driver!\n");
return 0;
}
for (i = 0; i < IX_ETH_ACC_NUMBER_OF_PORTS; i++) {
if (!npe_used[i] || !npe_exists[i])
continue;
if (ixEthAccPortInit(i) != IX_ETH_ACC_SUCCESS) {
printf("Error initialising Ethernet port%d!\n", i);
}
if (ixEthAccTxSchedulingDisciplineSet(i, FIFO_NO_PRIORITY) != IX_ETH_ACC_SUCCESS) {
printf("Error setting scheduling discipline for port %d.\n", i);
}
if (ixEthAccPortRxFrameAppendFCSDisable(i) != IX_ETH_ACC_SUCCESS) {
printf("Error disabling RX FCS for port %d.\n", i);
}
if (ixEthAccPortTxFrameAppendFCSEnable(i) != IX_ETH_ACC_SUCCESS) {
printf("Error enabling TX FCS for port %d.\n", i);
}
}
return 1;
}
static int npe_init(struct eth_device *dev, bd_t * bis)
{
struct npe *p_npe = (struct npe *)dev->priv;
int i;
u16 reg_short;
int speed;
int duplex;
debug("%s: 1\n", __FUNCTION__);
miiphy_read (dev->name, p_npe->phy_no, PHY_BMSR, &reg_short);
/*
* Wait if PHY is capable of autonegotiation and autonegotiation is not complete
*/
if ((reg_short & PHY_BMSR_AUTN_ABLE) && !(reg_short & PHY_BMSR_AUTN_COMP)) {
puts ("Waiting for PHY auto negotiation to complete");
i = 0;
while (!(reg_short & PHY_BMSR_AUTN_COMP)) {
/*
* Timeout reached ?
*/
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts (" TIMEOUT !\n");
break;
}
if ((i++ % 1000) == 0) {
putc ('.');
miiphy_read (dev->name, p_npe->phy_no, PHY_BMSR, &reg_short);
}
udelay (1000); /* 1 ms */
}
puts (" done\n");
udelay (500000); /* another 500 ms (results in faster booting) */
}
speed = miiphy_speed (dev->name, p_npe->phy_no);
duplex = miiphy_duplex (dev->name, p_npe->phy_no);
if (p_npe->print_speed) {
p_npe->print_speed = 0;
printf ("ENET Speed is %d Mbps - %s duplex connection\n",
(int) speed, (duplex == HALF) ? "HALF" : "FULL");
}
npe_alloc_end = npe_alloc_pool + sizeof(npe_alloc_pool);
npe_alloc_free = (u8 *)(((unsigned)npe_alloc_pool +
CONFIG_SYS_CACHELINE_SIZE - 1) & ~(CONFIG_SYS_CACHELINE_SIZE - 1));
/* initialize mbuf pool */
init_rx_mbufs(p_npe);
init_tx_mbufs(p_npe);
if (ixEthAccPortRxCallbackRegister(p_npe->eth_id, npe_rx_callback,
(u32)p_npe) != IX_ETH_ACC_SUCCESS) {
printf("can't register RX callback!\n");
return -1;
}
if (ixEthAccPortTxDoneCallbackRegister(p_npe->eth_id, npe_tx_callback,
(u32)p_npe) != IX_ETH_ACC_SUCCESS) {
printf("can't register TX callback!\n");
return -1;
}
npe_set_mac_address(dev);
if (ixEthAccPortEnable(p_npe->eth_id) != IX_ETH_ACC_SUCCESS) {
printf("can't enable port!\n");
return -1;
}
p_npe->active = 1;
return 0;
}
#if 0 /* test-only: probably have to deal with it when booting linux (for a clean state) */
/* Uninitialize CSR library. */
static void npe_csr_unload(void)
{
ixEthAccUnload();
ixEthDBUnload();
ixNpeMhUnload();
ixQMgrUnload();
}
/* callback which is used by ethAcc to recover RX buffers when stopping */
static void npe_rx_stop_callback(u32 cbTag, IX_OSAL_MBUF *m, IxEthAccPortId portid)
{
debug("%s\n", __FUNCTION__);
}
/* callback which is used by ethAcc to recover TX buffers when stopping */
static void npe_tx_stop_callback(u32 cbTag, IX_OSAL_MBUF *m)
{
debug("%s\n", __FUNCTION__);
}
#endif
static void npe_halt(struct eth_device *dev)
{
struct npe *p_npe = (struct npe *)dev->priv;
int i;
debug("%s\n", __FUNCTION__);
/* Delay to give time for recovery of mbufs */
for (i = 0; i < 100; i++) {
npe_poll(p_npe->eth_id);
udelay(100);
}
#if 0 /* test-only: probably have to deal with it when booting linux (for a clean state) */
if (ixEthAccPortRxCallbackRegister(p_npe->eth_id, npe_rx_stop_callback,
(u32)p_npe) != IX_ETH_ACC_SUCCESS) {
debug("Error registering rx callback!\n");
}
if (ixEthAccPortTxDoneCallbackRegister(p_npe->eth_id, npe_tx_stop_callback,
(u32)p_npe) != IX_ETH_ACC_SUCCESS) {
debug("Error registering tx callback!\n");
}
if (ixEthAccPortDisable(p_npe->eth_id) != IX_ETH_ACC_SUCCESS) {
debug("npe_stop: Error disabling NPEB!\n");
}
/* Delay to give time for recovery of mbufs */
for (i = 0; i < 100; i++) {
npe_poll(p_npe->eth_id);
udelay(10000);
}
/*
* For U-Boot only, we are probably launching Linux or other OS that
* needs a clean slate for its NPE library.
*/
#if 0 /* test-only */
for (i = 0; i < IX_ETH_ACC_NUMBER_OF_PORTS; i++) {
if (npe_used[i] && npe_exists[i])
if (ixNpeDlNpeStopAndReset(__eth_to_npe(i)) != IX_SUCCESS)
printf("Failed to stop and reset NPE B.\n");
}
#endif
#endif
p_npe->active = 0;
}
static int npe_send(struct eth_device *dev, volatile void *packet, int len)
{
struct npe *p_npe = (struct npe *)dev->priv;
u8 *dest;
int err;
IX_OSAL_MBUF *m;
debug("%s\n", __FUNCTION__);
m = mbuf_dequeue(&p_npe->txQHead);
dest = IX_OSAL_MBUF_MDATA(m);
IX_OSAL_MBUF_PKT_LEN(m) = IX_OSAL_MBUF_MLEN(m) = len;
IX_OSAL_MBUF_NEXT_PKT_IN_CHAIN_PTR(m) = NULL;
memcpy(dest, (char *)packet, len);
if ((err = ixEthAccPortTxFrameSubmit(p_npe->eth_id, m, IX_ETH_ACC_TX_DEFAULT_PRIORITY))
!= IX_ETH_ACC_SUCCESS) {
printf("npe_send: Can't submit frame. err[%d]\n", err);
mbuf_enqueue(&p_npe->txQHead, m);
return 0;
}
#ifdef DEBUG_PRINT_TX_FRAMES
{
u8 *ptr = IX_OSAL_MBUF_MDATA(m);
int i;
for (i=0; i<IX_OSAL_MBUF_MLEN(m); i++) {
printf("%02x ", *ptr++);
}
printf(" (tx-len=%d)\n", IX_OSAL_MBUF_MLEN(m));
}
#endif
npe_poll(p_npe->eth_id);
return len;
}
static int npe_rx(struct eth_device *dev)
{
struct npe *p_npe = (struct npe *)dev->priv;
debug("%s\n", __FUNCTION__);
npe_poll(p_npe->eth_id);
debug("%s: rx_write=%d rx_read=%d\n", __FUNCTION__, p_npe->rx_write, p_npe->rx_read);
while (p_npe->rx_write != p_npe->rx_read) {
debug("Reading message #%d\n", p_npe->rx_read);
NetReceive(NetRxPackets[p_npe->rx_read], p_npe->rx_len[p_npe->rx_read]);
p_npe->rx_read++;
if (p_npe->rx_read == PKTBUFSRX)
p_npe->rx_read = 0;
}
return 0;
}
int npe_initialize(bd_t * bis)
{
static int virgin = 0;
struct eth_device *dev;
int eth_num = 0;
struct npe *p_npe = NULL;
uchar enetaddr[6];
for (eth_num = 0; eth_num < CONFIG_SYS_NPE_NUMS; eth_num++) {
/* See if we can actually bring up the interface, otherwise, skip it */
#ifdef CONFIG_HAS_ETH1
if (eth_num == 1) {
if (!eth_getenv_enetaddr("eth1addr", enetaddr))
continue;
} else
#endif
if (!eth_getenv_enetaddr("ethaddr", enetaddr))
continue;
/* Allocate device structure */
dev = (struct eth_device *)malloc(sizeof(*dev));
if (dev == NULL) {
printf ("%s: Cannot allocate eth_device %d\n", __FUNCTION__, eth_num);
return -1;
}
memset(dev, 0, sizeof(*dev));
/* Allocate our private use data */
p_npe = (struct npe *)malloc(sizeof(struct npe));
if (p_npe == NULL) {
printf("%s: Cannot allocate private hw data for eth_device %d",
__FUNCTION__, eth_num);
free(dev);
return -1;
}
memset(p_npe, 0, sizeof(struct npe));
p_npe->eth_id = eth_num;
memcpy(dev->enetaddr, enetaddr, 6);
#ifdef CONFIG_HAS_ETH1
if (eth_num == 1)
p_npe->phy_no = CONFIG_PHY1_ADDR;
else
#endif
p_npe->phy_no = CONFIG_PHY_ADDR;
sprintf(dev->name, "NPE%d", eth_num);
dev->priv = (void *)p_npe;
dev->init = npe_init;
dev->halt = npe_halt;
dev->send = npe_send;
dev->recv = npe_rx;
p_npe->print_speed = 1;
if (0 == virgin) {
virgin = 1;
if (ixFeatureCtrlDeviceRead() == IX_FEATURE_CTRL_DEVICE_TYPE_IXP42X) {
switch (ixFeatureCtrlProductIdRead() & IX_FEATURE_CTRL_SILICON_STEPPING_MASK) {
case IX_FEATURE_CTRL_SILICON_TYPE_B0:
/*
* If it is B0 Silicon, we only enable port when its corresponding
* Eth Coprocessor is available.
*/
if (ixFeatureCtrlComponentCheck(IX_FEATURECTRL_ETH0) ==
IX_FEATURE_CTRL_COMPONENT_ENABLED)
npe_exists[IX_ETH_PORT_1] = TRUE;
if (ixFeatureCtrlComponentCheck(IX_FEATURECTRL_ETH1) ==
IX_FEATURE_CTRL_COMPONENT_ENABLED)
npe_exists[IX_ETH_PORT_2] = TRUE;
break;
case IX_FEATURE_CTRL_SILICON_TYPE_A0:
/*
* If it is A0 Silicon, we enable both as both Eth Coprocessors
* are available.
*/
npe_exists[IX_ETH_PORT_1] = TRUE;
npe_exists[IX_ETH_PORT_2] = TRUE;
break;
}
} else if (ixFeatureCtrlDeviceRead() == IX_FEATURE_CTRL_DEVICE_TYPE_IXP46X) {
if (ixFeatureCtrlComponentCheck(IX_FEATURECTRL_ETH0) ==
IX_FEATURE_CTRL_COMPONENT_ENABLED)
npe_exists[IX_ETH_PORT_1] = TRUE;
if (ixFeatureCtrlComponentCheck(IX_FEATURECTRL_ETH1) ==
IX_FEATURE_CTRL_COMPONENT_ENABLED)
npe_exists[IX_ETH_PORT_2] = TRUE;
}
npe_used[IX_ETH_PORT_1] = 1;
npe_used[IX_ETH_PORT_2] = 1;
npe_alloc_end = npe_alloc_pool + sizeof(npe_alloc_pool);
npe_alloc_free = (u8 *)(((unsigned)npe_alloc_pool +
CONFIG_SYS_CACHELINE_SIZE - 1)
& ~(CONFIG_SYS_CACHELINE_SIZE - 1));
if (!npe_csr_load())
return 0;
}
eth_register(dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
miiphy_register(dev->name, npe_miiphy_read, npe_miiphy_write);
#endif
} /* end for each supported device */
return 1;
}