u-boot-brain/drivers/ram/rockchip/sdram_px30.c
Simon Glass 41575d8e4c dm: treewide: Rename auto_alloc_size members to be shorter
This construct is quite long-winded. In earlier days it made some sense
since auto-allocation was a strange concept. But with driver model now
used pretty universally, we can shorten this to 'auto'. This reduces
verbosity and makes it easier to read.

Coincidentally it also ensures that every declaration is on one line,
thus making dtoc's job easier.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-12-13 08:00:25 -07:00

763 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2018 Rockchip Electronics Co., Ltd.
*/
#include <common.h>
#include <debug_uart.h>
#include <dm.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_px30.h>
#include <asm/arch-rockchip/grf_px30.h>
#include <asm/arch-rockchip/hardware.h>
#include <asm/arch-rockchip/sdram.h>
#include <asm/arch-rockchip/sdram_px30.h>
#include <linux/delay.h>
struct dram_info {
#ifdef CONFIG_TPL_BUILD
struct ddr_pctl_regs *pctl;
struct ddr_phy_regs *phy;
struct px30_cru *cru;
struct msch_regs *msch;
struct px30_ddr_grf_regs *ddr_grf;
struct px30_grf *grf;
#endif
struct ram_info info;
struct px30_pmugrf *pmugrf;
};
#ifdef CONFIG_TPL_BUILD
u8 ddr_cfg_2_rbc[] = {
/*
* [6:4] max row: 13+n
* [3] bank(0:4bank,1:8bank)
* [2:0] col(10+n)
*/
((5 << 4) | (1 << 3) | 0), /* 0 */
((5 << 4) | (1 << 3) | 1), /* 1 */
((4 << 4) | (1 << 3) | 2), /* 2 */
((3 << 4) | (1 << 3) | 3), /* 3 */
((2 << 4) | (1 << 3) | 4), /* 4 */
((5 << 4) | (0 << 3) | 2), /* 5 */
((4 << 4) | (1 << 3) | 2), /* 6 */
/*((0<<3)|3),*/ /* 12 for ddr4 */
/*((1<<3)|1),*/ /* 13 B,C exchange for rkvdec */
};
/*
* for ddr4 if ddrconfig=7, upctl should set 7 and noc should
* set to 1 for more efficient.
* noc ddrconf, upctl addrmap
* 1 7
* 2 8
* 3 9
* 12 10
* 5 11
*/
u8 d4_rbc_2_d3_rbc[] = {
1, /* 7 */
2, /* 8 */
3, /* 9 */
12, /* 10 */
5, /* 11 */
};
/*
* row higher than cs should be disabled by set to 0xf
* rank addrmap calculate by real cap.
*/
u32 addrmap[][8] = {
/* map0 map1, map2, map3, map4, map5
* map6, map7, map8
* -------------------------------------------------------
* bk2-0 col 5-2 col 9-6 col 11-10 row 11-0
* row 15-12 row 17-16 bg1,0
* -------------------------------------------------------
* 4,3,2 5-2 9-6 6
* 3,2
*/
{0x00060606, 0x00000000, 0x1f1f0000, 0x00001f1f, 0x05050505,
0x05050505, 0x00000505, 0x3f3f}, /* 0 */
{0x00070707, 0x00000000, 0x1f000000, 0x00001f1f, 0x06060606,
0x06060606, 0x06060606, 0x3f3f}, /* 1 */
{0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f3f}, /* 2 */
{0x00090909, 0x00000000, 0x00000000, 0x00001f00, 0x08080808,
0x08080808, 0x00000f0f, 0x3f3f}, /* 3 */
{0x000a0a0a, 0x00000000, 0x00000000, 0x00000000, 0x09090909,
0x0f090909, 0x00000f0f, 0x3f3f}, /* 4 */
{0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x3f3f}, /* 5 */
{0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f0f, 0x3f3f}, /* 6 */
{0x003f0808, 0x00000006, 0x1f1f0000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x0600}, /* 7 */
{0x003f0909, 0x00000007, 0x1f000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x0700}, /* 8 */
{0x003f0a0a, 0x01010100, 0x01010101, 0x00001f1f, 0x08080808,
0x08080808, 0x00000f0f, 0x0801}, /* 9 */
{0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f01}, /* 10 */
{0x003f0808, 0x00000007, 0x1f000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x3f00}, /* 11 */
/* when ddr4 12 map to 10, when ddr3 12 unused */
{0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f01}, /* 10 */
{0x00070706, 0x00000000, 0x1f010000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x3f3f}, /* 13 */
};
#define PMUGRF_BASE_ADDR 0xFF010000
#define CRU_BASE_ADDR 0xFF2B0000
#define GRF_BASE_ADDR 0xFF140000
#define DDRC_BASE_ADDR 0xFF600000
#define DDR_PHY_BASE_ADDR 0xFF2A0000
#define SERVER_MSCH0_BASE_ADDR 0xFF530000
#define DDR_GRF_BASE_ADDR 0xff630000
struct dram_info dram_info;
struct px30_sdram_params sdram_configs[] = {
#if defined(CONFIG_RAM_PX30_DDR4)
#include "sdram-px30-ddr4-detect-333.inc"
#elif defined(CONFIG_RAM_PX30_LPDDR2)
#include "sdram-px30-lpddr2-detect-333.inc"
#elif defined(CONFIG_RAM_PX30_LPDDR3)
#include "sdram-px30-lpddr3-detect-333.inc"
#else
#include "sdram-px30-ddr3-detect-333.inc"
#endif
};
struct ddr_phy_skew skew = {
#include "sdram-px30-ddr_skew.inc"
};
static void rkclk_ddr_reset(struct dram_info *dram,
u32 ctl_srstn, u32 ctl_psrstn,
u32 phy_srstn, u32 phy_psrstn)
{
writel(upctl2_srstn_req(ctl_srstn) | upctl2_psrstn_req(ctl_psrstn) |
upctl2_asrstn_req(ctl_srstn),
&dram->cru->softrst_con[1]);
writel(ddrphy_srstn_req(phy_srstn) | ddrphy_psrstn_req(phy_psrstn),
&dram->cru->softrst_con[2]);
}
static void rkclk_set_dpll(struct dram_info *dram, unsigned int hz)
{
unsigned int refdiv, postdiv1, postdiv2, fbdiv;
int delay = 1000;
u32 mhz = hz / MHz;
refdiv = 1;
if (mhz <= 300) {
postdiv1 = 4;
postdiv2 = 2;
} else if (mhz <= 400) {
postdiv1 = 6;
postdiv2 = 1;
} else if (mhz <= 600) {
postdiv1 = 4;
postdiv2 = 1;
} else if (mhz <= 800) {
postdiv1 = 3;
postdiv2 = 1;
} else if (mhz <= 1600) {
postdiv1 = 2;
postdiv2 = 1;
} else {
postdiv1 = 1;
postdiv2 = 1;
}
fbdiv = (mhz * refdiv * postdiv1 * postdiv2) / 24;
writel(DPLL_MODE(CLOCK_FROM_XIN_OSC), &dram->cru->mode);
writel(POSTDIV1(postdiv1) | FBDIV(fbdiv), &dram->cru->pll[1].con0);
writel(DSMPD(1) | POSTDIV2(postdiv2) | REFDIV(refdiv),
&dram->cru->pll[1].con1);
while (delay > 0) {
udelay(1);
if (LOCK(readl(&dram->cru->pll[1].con1)))
break;
delay--;
}
writel(DPLL_MODE(CLOCK_FROM_PLL), &dram->cru->mode);
}
static void rkclk_configure_ddr(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
/* for inno ddr phy need 2*freq */
rkclk_set_dpll(dram, sdram_params->base.ddr_freq * MHz * 2);
}
/* return ddrconfig value
* (-1), find ddrconfig fail
* other, the ddrconfig value
* only support cs0_row >= cs1_row
*/
static unsigned int calculate_ddrconfig(struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 bw, die_bw, col, bank;
u32 i, tmp;
u32 ddrconf = -1;
bw = cap_info->bw;
die_bw = cap_info->dbw;
col = cap_info->col;
bank = cap_info->bk;
if (sdram_params->base.dramtype == DDR4) {
if (die_bw == 0)
ddrconf = 7 + bw;
else
ddrconf = 12 - bw;
ddrconf = d4_rbc_2_d3_rbc[ddrconf - 7];
} else {
tmp = ((bank - 2) << 3) | (col + bw - 10);
for (i = 0; i < 7; i++)
if ((ddr_cfg_2_rbc[i] & 0xf) == tmp) {
ddrconf = i;
break;
}
if (i > 6)
printascii("calculate ddrconfig error\n");
}
return ddrconf;
}
/*
* calculate controller dram address map, and setting to register.
* argument sdram_params->ch.ddrconf must be right value before
* call this function.
*/
static void set_ctl_address_map(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
u32 cs_pst, bg, max_row, ddrconf;
u32 i;
if (sdram_params->base.dramtype == DDR4)
/*
* DDR4 8bit dram BG = 2(4bank groups),
* 16bit dram BG = 1 (2 bank groups)
*/
bg = (cap_info->dbw == 0) ? 2 : 1;
else
bg = 0;
cs_pst = cap_info->bw + cap_info->col +
bg + cap_info->bk + cap_info->cs0_row;
if (cs_pst >= 32 || cap_info->rank == 1)
writel(0x1f, pctl_base + DDR_PCTL2_ADDRMAP0);
else
writel(cs_pst - 8, pctl_base + DDR_PCTL2_ADDRMAP0);
ddrconf = cap_info->ddrconfig;
if (sdram_params->base.dramtype == DDR4) {
for (i = 0; i < ARRAY_SIZE(d4_rbc_2_d3_rbc); i++) {
if (d4_rbc_2_d3_rbc[i] == ddrconf) {
ddrconf = 7 + i;
break;
}
}
}
sdram_copy_to_reg((u32 *)(pctl_base + DDR_PCTL2_ADDRMAP1),
&addrmap[ddrconf][0], 8 * 4);
max_row = cs_pst - 1 - 8 - (addrmap[ddrconf][5] & 0xf);
if (max_row < 12)
printascii("set addrmap fail\n");
/* need to disable row ahead of rank by set to 0xf */
for (i = 17; i > max_row; i--)
clrsetbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6 +
((i - 12) * 8 / 32) * 4,
0xf << ((i - 12) * 8 % 32),
0xf << ((i - 12) * 8 % 32));
if ((sdram_params->base.dramtype == LPDDR3 ||
sdram_params->base.dramtype == LPDDR2) &&
cap_info->row_3_4)
setbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6, 1 << 31);
if (sdram_params->base.dramtype == DDR4 && cap_info->bw != 0x2)
setbits_le32(pctl_base + DDR_PCTL2_PCCFG, 1 << 8);
}
/*
* rank = 1: cs0
* rank = 2: cs1
*/
int read_mr(struct dram_info *dram, u32 rank, u32 mr_num)
{
void __iomem *ddr_grf_base = dram->ddr_grf;
pctl_read_mr(dram->pctl, rank, mr_num);
return (readl(ddr_grf_base + DDR_GRF_STATUS(0)) & 0xff);
}
#define MIN(a, b) (((a) > (b)) ? (b) : (a))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
static u32 check_rd_gate(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
u32 max_val = 0;
u32 min_val = 0xff;
u32 gate[4];
u32 i, bw;
bw = (readl(PHY_REG(phy_base, 0x0)) >> 4) & 0xf;
switch (bw) {
case 0x1:
bw = 1;
break;
case 0x3:
bw = 2;
break;
case 0xf:
default:
bw = 4;
break;
}
for (i = 0; i < bw; i++) {
gate[i] = readl(PHY_REG(phy_base, 0xfb + i));
max_val = MAX(max_val, gate[i]);
min_val = MIN(min_val, gate[i]);
}
if (max_val > 0x80 || min_val < 0x20)
return -1;
else
return 0;
}
static int data_training(struct dram_info *dram, u32 cs, u32 dramtype)
{
void __iomem *pctl_base = dram->pctl;
u32 dis_auto_zq = 0;
u32 pwrctl;
u32 ret;
/* disable auto low-power */
pwrctl = readl(pctl_base + DDR_PCTL2_PWRCTL);
writel(0, pctl_base + DDR_PCTL2_PWRCTL);
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
ret = phy_data_training(dram->phy, cs, dramtype);
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
/* restore auto low-power */
writel(pwrctl, pctl_base + DDR_PCTL2_PWRCTL);
return ret;
}
static void dram_set_bw(struct dram_info *dram, u32 bw)
{
phy_dram_set_bw(dram->phy, bw);
}
static void set_ddrconfig(struct dram_info *dram, u32 ddrconfig)
{
writel(ddrconfig | (ddrconfig << 8), &dram->msch->deviceconf);
rk_clrsetreg(&dram->grf->soc_noc_con[1], 0x3 << 14, 0 << 14);
}
static void sdram_msch_config(struct msch_regs *msch,
struct sdram_msch_timings *noc_timings,
struct sdram_cap_info *cap_info,
struct sdram_base_params *base)
{
u64 cs_cap[2];
cs_cap[0] = sdram_get_cs_cap(cap_info, 0, base->dramtype);
cs_cap[1] = sdram_get_cs_cap(cap_info, 1, base->dramtype);
writel(((((cs_cap[1] >> 20) / 64) & 0xff) << 8) |
(((cs_cap[0] >> 20) / 64) & 0xff),
&msch->devicesize);
writel(noc_timings->ddrtiminga0.d32,
&msch->ddrtiminga0);
writel(noc_timings->ddrtimingb0.d32,
&msch->ddrtimingb0);
writel(noc_timings->ddrtimingc0.d32,
&msch->ddrtimingc0);
writel(noc_timings->devtodev0.d32,
&msch->devtodev0);
writel(noc_timings->ddrmode.d32, &msch->ddrmode);
writel(noc_timings->ddr4timing.d32,
&msch->ddr4timing);
writel(noc_timings->agingx0, &msch->agingx0);
writel(noc_timings->agingx0, &msch->aging0);
writel(noc_timings->agingx0, &msch->aging1);
writel(noc_timings->agingx0, &msch->aging2);
writel(noc_timings->agingx0, &msch->aging3);
}
static void dram_all_config(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 sys_reg2 = 0;
u32 sys_reg3 = 0;
set_ddrconfig(dram, cap_info->ddrconfig);
sdram_org_config(cap_info, &sdram_params->base, &sys_reg2,
&sys_reg3, 0);
writel(sys_reg2, &dram->pmugrf->os_reg[2]);
writel(sys_reg3, &dram->pmugrf->os_reg[3]);
sdram_msch_config(dram->msch, &sdram_params->ch.noc_timings, cap_info,
&sdram_params->base);
}
static void enable_low_power(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
void __iomem *ddr_grf_base = dram->ddr_grf;
u32 grf_lp_con;
/*
* bit0: grf_upctl_axi_cg_en = 1 enable upctl2 axi clk auto gating
* bit1: grf_upctl_apb_cg_en = 1 ungated axi,core clk for apb access
* bit2: grf_upctl_core_cg_en = 1 enable upctl2 core clk auto gating
* bit3: grf_selfref_type2_en = 0 disable core clk gating when type2 sr
* bit4: grf_upctl_syscreq_cg_en = 1
* ungating coreclk when c_sysreq assert
* bit8-11: grf_auto_sr_dly = 6
*/
writel(0x1f1f0617, &dram->ddr_grf->ddr_grf_con[1]);
if (sdram_params->base.dramtype == DDR4)
grf_lp_con = (0x7 << 16) | (1 << 1);
else if (sdram_params->base.dramtype == DDR3)
grf_lp_con = (0x7 << 16) | (1 << 0);
else
grf_lp_con = (0x7 << 16) | (1 << 2);
/* en lpckdis_en */
grf_lp_con = grf_lp_con | (0x1 << (9 + 16)) | (0x1 << 9);
writel(grf_lp_con, ddr_grf_base + DDR_GRF_LP_CON);
/* off digit module clock when enter power down */
setbits_le32(PHY_REG(phy_base, 7), 1 << 7);
/* enable sr, pd */
if (PD_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
if (SR_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 3));
}
/*
* pre_init: 0: pre init for dram cap detect
* 1: detect correct cap(except cs1 row)info, than reinit
* 2: after reinit, we detect cs1_row, if cs1_row not equal
* to cs0_row and cs is in middle on ddrconf map, we need
* to reinit dram, than set the correct ddrconf.
*/
static int sdram_init_(struct dram_info *dram,
struct px30_sdram_params *sdram_params, u32 pre_init)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
rkclk_ddr_reset(dram, 1, 1, 1, 1);
udelay(10);
/*
* dereset ddr phy psrstn to config pll,
* if using phy pll psrstn must be dereset
* before config pll
*/
rkclk_ddr_reset(dram, 1, 1, 1, 0);
rkclk_configure_ddr(dram, sdram_params);
/* release phy srst to provide clk to ctrl */
rkclk_ddr_reset(dram, 1, 1, 0, 0);
udelay(10);
phy_soft_reset(dram->phy);
/* release ctrl presetn, and config ctl registers */
rkclk_ddr_reset(dram, 1, 0, 0, 0);
pctl_cfg(dram->pctl, &sdram_params->pctl_regs, SR_IDLE, PD_IDLE);
cap_info->ddrconfig = calculate_ddrconfig(sdram_params);
set_ctl_address_map(dram, sdram_params);
phy_cfg(dram->phy, &sdram_params->phy_regs, sdram_params->skew,
&sdram_params->base, cap_info->bw);
/* enable dfi_init_start to init phy after ctl srstn deassert */
setbits_le32(pctl_base + DDR_PCTL2_DFIMISC, (1 << 5) | (1 << 4));
rkclk_ddr_reset(dram, 0, 0, 0, 0);
/* wait for dfi_init_done and dram init complete */
while ((readl(pctl_base + DDR_PCTL2_STAT) & 0x7) == 0)
continue;
if (sdram_params->base.dramtype == LPDDR3)
pctl_write_mr(dram->pctl, 3, 11, 3, LPDDR3);
/* do ddr gate training */
redo_cs0_training:
if (data_training(dram, 0, sdram_params->base.dramtype) != 0) {
if (pre_init != 0)
printascii("DTT cs0 error\n");
return -1;
}
if (check_rd_gate(dram)) {
printascii("re training cs0");
goto redo_cs0_training;
}
if (sdram_params->base.dramtype == LPDDR3) {
if ((read_mr(dram, 1, 8) & 0x3) != 0x3)
return -1;
} else if (sdram_params->base.dramtype == LPDDR2) {
if ((read_mr(dram, 1, 8) & 0x3) != 0x0)
return -1;
}
/* for px30: when 2cs, both 2 cs should be training */
if (pre_init != 0 && cap_info->rank == 2) {
redo_cs1_training:
if (data_training(dram, 1, sdram_params->base.dramtype) != 0) {
printascii("DTT cs1 error\n");
return -1;
}
if (check_rd_gate(dram)) {
printascii("re training cs1");
goto redo_cs1_training;
}
}
if (sdram_params->base.dramtype == DDR4)
pctl_write_vrefdq(dram->pctl, 0x3, 5670,
sdram_params->base.dramtype);
dram_all_config(dram, sdram_params);
enable_low_power(dram, sdram_params);
return 0;
}
static int dram_detect_cap(struct dram_info *dram,
struct px30_sdram_params *sdram_params,
unsigned char channel)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
/*
* for ddr3: ddrconf = 3
* for ddr4: ddrconf = 12
* for lpddr3: ddrconf = 3
* default bw = 1
*/
u32 bk, bktmp;
u32 col, coltmp;
u32 rowtmp;
u32 cs;
u32 bw = 1;
u32 dram_type = sdram_params->base.dramtype;
if (dram_type != DDR4) {
/* detect col and bk for ddr3/lpddr3 */
coltmp = 12;
bktmp = 3;
if (dram_type == LPDDR2)
rowtmp = 15;
else
rowtmp = 16;
if (sdram_detect_col(cap_info, coltmp) != 0)
goto cap_err;
sdram_detect_bank(cap_info, coltmp, bktmp);
sdram_detect_dbw(cap_info, dram_type);
} else {
/* detect bg for ddr4 */
coltmp = 10;
bktmp = 4;
rowtmp = 17;
col = 10;
bk = 2;
cap_info->col = col;
cap_info->bk = bk;
sdram_detect_bg(cap_info, coltmp);
}
/* detect row */
if (sdram_detect_row(cap_info, coltmp, bktmp, rowtmp) != 0)
goto cap_err;
/* detect row_3_4 */
sdram_detect_row_3_4(cap_info, coltmp, bktmp);
/* bw and cs detect using data training */
if (data_training(dram, 1, dram_type) == 0)
cs = 1;
else
cs = 0;
cap_info->rank = cs + 1;
dram_set_bw(dram, 2);
if (data_training(dram, 0, dram_type) == 0)
bw = 2;
else
bw = 1;
cap_info->bw = bw;
cap_info->cs0_high16bit_row = cap_info->cs0_row;
if (cs) {
cap_info->cs1_row = cap_info->cs0_row;
cap_info->cs1_high16bit_row = cap_info->cs0_row;
} else {
cap_info->cs1_row = 0;
cap_info->cs1_high16bit_row = 0;
}
return 0;
cap_err:
return -1;
}
/* return: 0 = success, other = fail */
static int sdram_init_detect(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 ret;
u32 sys_reg = 0;
u32 sys_reg3 = 0;
if (sdram_init_(dram, sdram_params, 0) != 0)
return -1;
if (dram_detect_cap(dram, sdram_params, 0) != 0)
return -1;
/* modify bw, cs related timing */
pctl_remodify_sdram_params(&sdram_params->pctl_regs, cap_info,
sdram_params->base.dramtype);
/* reinit sdram by real dram cap */
ret = sdram_init_(dram, sdram_params, 1);
if (ret != 0)
goto out;
/* redetect cs1 row */
sdram_detect_cs1_row(cap_info, sdram_params->base.dramtype);
if (cap_info->cs1_row) {
sys_reg = readl(&dram->pmugrf->os_reg[2]);
sys_reg3 = readl(&dram->pmugrf->os_reg[3]);
SYS_REG_ENC_CS1_ROW(cap_info->cs1_row,
sys_reg, sys_reg3, 0);
writel(sys_reg, &dram->pmugrf->os_reg[2]);
writel(sys_reg3, &dram->pmugrf->os_reg[3]);
}
ret = sdram_detect_high_row(cap_info);
out:
return ret;
}
struct px30_sdram_params
*get_default_sdram_config(void)
{
sdram_configs[0].skew = &skew;
return &sdram_configs[0];
}
/* return: 0 = success, other = fail */
int sdram_init(void)
{
struct px30_sdram_params *sdram_params;
int ret = 0;
dram_info.phy = (void *)DDR_PHY_BASE_ADDR;
dram_info.pctl = (void *)DDRC_BASE_ADDR;
dram_info.grf = (void *)GRF_BASE_ADDR;
dram_info.cru = (void *)CRU_BASE_ADDR;
dram_info.msch = (void *)SERVER_MSCH0_BASE_ADDR;
dram_info.ddr_grf = (void *)DDR_GRF_BASE_ADDR;
dram_info.pmugrf = (void *)PMUGRF_BASE_ADDR;
sdram_params = get_default_sdram_config();
ret = sdram_init_detect(&dram_info, sdram_params);
if (ret)
goto error;
sdram_print_ddr_info(&sdram_params->ch.cap_info, &sdram_params->base);
printascii("out\n");
return ret;
error:
return (-1);
}
#else
static int px30_dmc_probe(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
debug("%s: grf=%p\n", __func__, priv->pmugrf);
priv->info.base = CONFIG_SYS_SDRAM_BASE;
priv->info.size =
rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
return 0;
}
static int px30_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops px30_dmc_ops = {
.get_info = px30_dmc_get_info,
};
static const struct udevice_id px30_dmc_ids[] = {
{ .compatible = "rockchip,px30-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_px30) = {
.name = "rockchip_px30_dmc",
.id = UCLASS_RAM,
.of_match = px30_dmc_ids,
.ops = &px30_dmc_ops,
.probe = px30_dmc_probe,
.priv_auto = sizeof(struct dram_info),
};
#endif /* CONFIG_TPL_BUILD */