u-boot-brain/arch/mips/lib/cache_init.S
Tom Rini 83d290c56f SPDX: Convert all of our single license tags to Linux Kernel style
When U-Boot started using SPDX tags we were among the early adopters and
there weren't a lot of other examples to borrow from.  So we picked the
area of the file that usually had a full license text and replaced it
with an appropriate SPDX-License-Identifier: entry.  Since then, the
Linux Kernel has adopted SPDX tags and they place it as the very first
line in a file (except where shebangs are used, then it's second line)
and with slightly different comment styles than us.

In part due to community overlap, in part due to better tag visibility
and in part for other minor reasons, switch over to that style.

This commit changes all instances where we have a single declared
license in the tag as both the before and after are identical in tag
contents.  There's also a few places where I found we did not have a tag
and have introduced one.

Signed-off-by: Tom Rini <trini@konsulko.com>
2018-05-07 09:34:12 -04:00

472 lines
11 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Cache-handling routined for MIPS CPUs
*
* Copyright (c) 2003 Wolfgang Denk <wd@denx.de>
*/
#include <asm-offsets.h>
#include <config.h>
#include <asm/asm.h>
#include <asm/regdef.h>
#include <asm/mipsregs.h>
#include <asm/addrspace.h>
#include <asm/cacheops.h>
#include <asm/cm.h>
#ifndef CONFIG_SYS_MIPS_CACHE_MODE
#define CONFIG_SYS_MIPS_CACHE_MODE CONF_CM_CACHABLE_NONCOHERENT
#endif
#define INDEX_BASE CKSEG0
.macro f_fill64 dst, offset, val
LONG_S \val, (\offset + 0 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 1 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 2 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 3 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 4 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 5 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 6 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 7 * LONGSIZE)(\dst)
#if LONGSIZE == 4
LONG_S \val, (\offset + 8 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 9 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 10 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 11 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 12 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 13 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 14 * LONGSIZE)(\dst)
LONG_S \val, (\offset + 15 * LONGSIZE)(\dst)
#endif
.endm
.macro cache_loop curr, end, line_sz, op
10: cache \op, 0(\curr)
PTR_ADDU \curr, \curr, \line_sz
bne \curr, \end, 10b
.endm
.macro l1_info sz, line_sz, off
.set push
.set noat
mfc0 $1, CP0_CONFIG, 1
/* detect line size */
srl \line_sz, $1, \off + MIPS_CONF1_DL_SHF - MIPS_CONF1_DA_SHF
andi \line_sz, \line_sz, (MIPS_CONF1_DL >> MIPS_CONF1_DL_SHF)
move \sz, zero
beqz \line_sz, 10f
li \sz, 2
sllv \line_sz, \sz, \line_sz
/* detect associativity */
srl \sz, $1, \off + MIPS_CONF1_DA_SHF - MIPS_CONF1_DA_SHF
andi \sz, \sz, (MIPS_CONF1_DA >> MIPS_CONF1_DA_SHF)
addiu \sz, \sz, 1
/* sz *= line_sz */
mul \sz, \sz, \line_sz
/* detect log32(sets) */
srl $1, $1, \off + MIPS_CONF1_DS_SHF - MIPS_CONF1_DA_SHF
andi $1, $1, (MIPS_CONF1_DS >> MIPS_CONF1_DS_SHF)
addiu $1, $1, 1
andi $1, $1, 0x7
/* sz <<= log32(sets) */
sllv \sz, \sz, $1
/* sz *= 32 */
li $1, 32
mul \sz, \sz, $1
10:
.set pop
.endm
/*
* mips_cache_reset - low level initialisation of the primary caches
*
* This routine initialises the primary caches to ensure that they have good
* parity. It must be called by the ROM before any cached locations are used
* to prevent the possibility of data with bad parity being written to memory.
*
* To initialise the instruction cache it is essential that a source of data
* with good parity is available. This routine will initialise an area of
* memory starting at location zero to be used as a source of parity.
*
* Note that this function does not follow the standard calling convention &
* may clobber typically callee-saved registers.
*
* RETURNS: N/A
*
*/
#define R_RETURN s0
#define R_IC_SIZE s1
#define R_IC_LINE s2
#define R_DC_SIZE s3
#define R_DC_LINE s4
#define R_L2_SIZE s5
#define R_L2_LINE s6
#define R_L2_BYPASSED s7
#define R_L2_L2C t8
LEAF(mips_cache_reset)
move R_RETURN, ra
#ifdef CONFIG_MIPS_L2_CACHE
/*
* For there to be an L2 present, Config2 must be present. If it isn't
* then we proceed knowing there's no L2 cache.
*/
move R_L2_SIZE, zero
move R_L2_LINE, zero
move R_L2_BYPASSED, zero
move R_L2_L2C, zero
mfc0 t0, CP0_CONFIG, 1
bgez t0, l2_probe_done
/*
* From MIPSr6 onwards the L2 cache configuration might not be reported
* by Config2. The Config5.L2C bit indicates whether this is the case,
* and if it is then we need knowledge of where else to look. For cores
* from Imagination Technologies this is a CM GCR.
*/
# if __mips_isa_rev >= 6
/* Check that Config5 exists */
mfc0 t0, CP0_CONFIG, 2
bgez t0, l2_probe_cop0
mfc0 t0, CP0_CONFIG, 3
bgez t0, l2_probe_cop0
mfc0 t0, CP0_CONFIG, 4
bgez t0, l2_probe_cop0
/* Check Config5.L2C is set */
mfc0 t0, CP0_CONFIG, 5
and R_L2_L2C, t0, MIPS_CONF5_L2C
beqz R_L2_L2C, l2_probe_cop0
/* Config5.L2C is set */
# ifdef CONFIG_MIPS_CM
/* The CM will provide L2 configuration */
PTR_LI t0, CKSEG1ADDR(CONFIG_MIPS_CM_BASE)
lw t1, GCR_L2_CONFIG(t0)
bgez t1, l2_probe_done
ext R_L2_LINE, t1, \
GCR_L2_CONFIG_LINESZ_SHIFT, GCR_L2_CONFIG_LINESZ_BITS
beqz R_L2_LINE, l2_probe_done
li t2, 2
sllv R_L2_LINE, t2, R_L2_LINE
ext t2, t1, GCR_L2_CONFIG_ASSOC_SHIFT, GCR_L2_CONFIG_ASSOC_BITS
addiu t2, t2, 1
mul R_L2_SIZE, R_L2_LINE, t2
ext t2, t1, GCR_L2_CONFIG_SETSZ_SHIFT, GCR_L2_CONFIG_SETSZ_BITS
sllv R_L2_SIZE, R_L2_SIZE, t2
li t2, 64
mul R_L2_SIZE, R_L2_SIZE, t2
/* Bypass the L2 cache so that we can init the L1s early */
or t1, t1, GCR_L2_CONFIG_BYPASS
sw t1, GCR_L2_CONFIG(t0)
sync
li R_L2_BYPASSED, 1
/* Zero the L2 tag registers */
sw zero, GCR_L2_TAG_ADDR(t0)
sw zero, GCR_L2_TAG_ADDR_UPPER(t0)
sw zero, GCR_L2_TAG_STATE(t0)
sw zero, GCR_L2_TAG_STATE_UPPER(t0)
sw zero, GCR_L2_DATA(t0)
sw zero, GCR_L2_DATA_UPPER(t0)
sync
# else
/* We don't know how to retrieve L2 configuration on this system */
# endif
b l2_probe_done
# endif
/*
* For pre-r6 systems, or r6 systems with Config5.L2C==0, probe the L2
* cache configuration from the cop0 Config2 register.
*/
l2_probe_cop0:
mfc0 t0, CP0_CONFIG, 2
srl R_L2_LINE, t0, MIPS_CONF2_SL_SHF
andi R_L2_LINE, R_L2_LINE, MIPS_CONF2_SL >> MIPS_CONF2_SL_SHF
beqz R_L2_LINE, l2_probe_done
li t1, 2
sllv R_L2_LINE, t1, R_L2_LINE
srl t1, t0, MIPS_CONF2_SA_SHF
andi t1, t1, MIPS_CONF2_SA >> MIPS_CONF2_SA_SHF
addiu t1, t1, 1
mul R_L2_SIZE, R_L2_LINE, t1
srl t1, t0, MIPS_CONF2_SS_SHF
andi t1, t1, MIPS_CONF2_SS >> MIPS_CONF2_SS_SHF
sllv R_L2_SIZE, R_L2_SIZE, t1
li t1, 64
mul R_L2_SIZE, R_L2_SIZE, t1
/* Attempt to bypass the L2 so that we can init the L1s early */
or t0, t0, MIPS_CONF2_L2B
mtc0 t0, CP0_CONFIG, 2
ehb
mfc0 t0, CP0_CONFIG, 2
and R_L2_BYPASSED, t0, MIPS_CONF2_L2B
/* Zero the L2 tag registers */
mtc0 zero, CP0_TAGLO, 4
ehb
l2_probe_done:
#endif
#ifndef CONFIG_SYS_CACHE_SIZE_AUTO
li R_IC_SIZE, CONFIG_SYS_ICACHE_SIZE
li R_IC_LINE, CONFIG_SYS_ICACHE_LINE_SIZE
#else
l1_info R_IC_SIZE, R_IC_LINE, MIPS_CONF1_IA_SHF
#endif
#ifndef CONFIG_SYS_CACHE_SIZE_AUTO
li R_DC_SIZE, CONFIG_SYS_DCACHE_SIZE
li R_DC_LINE, CONFIG_SYS_DCACHE_LINE_SIZE
#else
l1_info R_DC_SIZE, R_DC_LINE, MIPS_CONF1_DA_SHF
#endif
#ifdef CONFIG_SYS_MIPS_CACHE_INIT_RAM_LOAD
/* Determine the largest L1 cache size */
#ifndef CONFIG_SYS_CACHE_SIZE_AUTO
#if CONFIG_SYS_ICACHE_SIZE > CONFIG_SYS_DCACHE_SIZE
li v0, CONFIG_SYS_ICACHE_SIZE
#else
li v0, CONFIG_SYS_DCACHE_SIZE
#endif
#else
move v0, R_IC_SIZE
sltu t1, R_IC_SIZE, R_DC_SIZE
movn v0, R_DC_SIZE, t1
#endif
/*
* Now clear that much memory starting from zero.
*/
PTR_LI a0, CKSEG1
PTR_ADDU a1, a0, v0
2: PTR_ADDIU a0, 64
f_fill64 a0, -64, zero
bne a0, a1, 2b
#endif /* CONFIG_SYS_MIPS_CACHE_INIT_RAM_LOAD */
#ifdef CONFIG_MIPS_L2_CACHE
/*
* If the L2 is bypassed, init the L1 first so that we can execute the
* rest of the cache initialisation using the L1 instruction cache.
*/
bnez R_L2_BYPASSED, l1_init
l2_init:
PTR_LI t0, INDEX_BASE
PTR_ADDU t1, t0, R_L2_SIZE
1: cache INDEX_STORE_TAG_SD, 0(t0)
PTR_ADDU t0, t0, R_L2_LINE
bne t0, t1, 1b
/*
* If the L2 was bypassed then we already initialised the L1s before
* the L2, so we are now done.
*/
bnez R_L2_BYPASSED, l2_unbypass
#endif
/*
* The TagLo registers used depend upon the CPU implementation, but the
* architecture requires that it is safe for software to write to both
* TagLo selects 0 & 2 covering supported cases.
*/
l1_init:
mtc0 zero, CP0_TAGLO
mtc0 zero, CP0_TAGLO, 2
ehb
/*
* The caches are probably in an indeterminate state, so we force good
* parity into them by doing an invalidate for each line. If
* CONFIG_SYS_MIPS_CACHE_INIT_RAM_LOAD is set then we'll proceed to
* perform a load/fill & a further invalidate for each line, assuming
* that the bottom of RAM (having just been cleared) will generate good
* parity for the cache.
*/
/*
* Initialize the I-cache first,
*/
blez R_IC_SIZE, 1f
PTR_LI t0, INDEX_BASE
PTR_ADDU t1, t0, R_IC_SIZE
/* clear tag to invalidate */
cache_loop t0, t1, R_IC_LINE, INDEX_STORE_TAG_I
#ifdef CONFIG_SYS_MIPS_CACHE_INIT_RAM_LOAD
/* fill once, so data field parity is correct */
PTR_LI t0, INDEX_BASE
cache_loop t0, t1, R_IC_LINE, FILL
/* invalidate again - prudent but not strictly neccessary */
PTR_LI t0, INDEX_BASE
cache_loop t0, t1, R_IC_LINE, INDEX_STORE_TAG_I
#endif
/* Enable use of the I-cache by setting Config.K0 */
sync
mfc0 t0, CP0_CONFIG
li t1, CONFIG_SYS_MIPS_CACHE_MODE
#if __mips_isa_rev >= 2
ins t0, t1, 0, 3
#else
ori t0, t0, CONF_CM_CMASK
xori t0, t0, CONF_CM_CMASK
or t0, t0, t1
#endif
mtc0 t0, CP0_CONFIG
/*
* then initialize D-cache.
*/
1: blez R_DC_SIZE, 3f
PTR_LI t0, INDEX_BASE
PTR_ADDU t1, t0, R_DC_SIZE
/* clear all tags */
cache_loop t0, t1, R_DC_LINE, INDEX_STORE_TAG_D
#ifdef CONFIG_SYS_MIPS_CACHE_INIT_RAM_LOAD
/* load from each line (in cached space) */
PTR_LI t0, INDEX_BASE
2: LONG_L zero, 0(t0)
PTR_ADDU t0, R_DC_LINE
bne t0, t1, 2b
/* clear all tags */
PTR_LI t0, INDEX_BASE
cache_loop t0, t1, R_DC_LINE, INDEX_STORE_TAG_D
#endif
3:
#ifdef CONFIG_MIPS_L2_CACHE
/* If the L2 isn't bypassed then we're done */
beqz R_L2_BYPASSED, return
/* The L2 is bypassed - go initialise it */
b l2_init
l2_unbypass:
# if __mips_isa_rev >= 6
beqz R_L2_L2C, 1f
li t0, CKSEG1ADDR(CONFIG_MIPS_CM_BASE)
lw t1, GCR_L2_CONFIG(t0)
xor t1, t1, GCR_L2_CONFIG_BYPASS
sw t1, GCR_L2_CONFIG(t0)
sync
ehb
b 2f
# endif
1: mfc0 t0, CP0_CONFIG, 2
xor t0, t0, MIPS_CONF2_L2B
mtc0 t0, CP0_CONFIG, 2
ehb
2:
# ifdef CONFIG_MIPS_CM
/* Config3 must exist for a CM to be present */
mfc0 t0, CP0_CONFIG, 1
bgez t0, 2f
mfc0 t0, CP0_CONFIG, 2
bgez t0, 2f
/* Check Config3.CMGCR to determine CM presence */
mfc0 t0, CP0_CONFIG, 3
and t0, t0, MIPS_CONF3_CMGCR
beqz t0, 2f
/* Change Config.K0 to a coherent CCA */
mfc0 t0, CP0_CONFIG
li t1, CONF_CM_CACHABLE_COW
#if __mips_isa_rev >= 2
ins t0, t1, 0, 3
#else
ori t0, t0, CONF_CM_CMASK
xori t0, t0, CONF_CM_CMASK
or t0, t0, t1
#endif
mtc0 t0, CP0_CONFIG
/*
* Join the coherent domain such that the caches of this core are kept
* coherent with those of other cores.
*/
PTR_LI t0, CKSEG1ADDR(CONFIG_MIPS_CM_BASE)
lw t1, GCR_REV(t0)
li t2, GCR_REV_CM3
li t3, GCR_Cx_COHERENCE_EN
bge t1, t2, 1f
li t3, GCR_Cx_COHERENCE_DOM_EN
1: sw t3, GCR_Cx_COHERENCE(t0)
ehb
2:
# endif
#endif
return:
/* Ensure all cache operations complete before returning */
sync
jr ra
END(mips_cache_reset)
/*
* dcache_status - get cache status
*
* RETURNS: 0 - cache disabled; 1 - cache enabled
*
*/
LEAF(dcache_status)
mfc0 t0, CP0_CONFIG
li t1, CONF_CM_UNCACHED
andi t0, t0, CONF_CM_CMASK
move v0, zero
beq t0, t1, 2f
li v0, 1
2: jr ra
END(dcache_status)
/*
* dcache_disable - disable cache
*
* RETURNS: N/A
*
*/
LEAF(dcache_disable)
mfc0 t0, CP0_CONFIG
li t1, -8
and t0, t0, t1
ori t0, t0, CONF_CM_UNCACHED
mtc0 t0, CP0_CONFIG
jr ra
END(dcache_disable)
/*
* dcache_enable - enable cache
*
* RETURNS: N/A
*
*/
LEAF(dcache_enable)
mfc0 t0, CP0_CONFIG
ori t0, CONF_CM_CMASK
xori t0, CONF_CM_CMASK
ori t0, CONFIG_SYS_MIPS_CACHE_MODE
mtc0 t0, CP0_CONFIG
jr ra
END(dcache_enable)