u-boot-brain/arch/arm/cpu/armv8/Kconfig
Mingkai Hu 3aec452e4d armv8: Enable CPUECTLR.SMPEN for coherency
For A53, data coherency is enabled only when the CPUECTLR.SMPEN bit is
set. The SMPEN bit should be set before enabling the data cache.
If not enabled, the cache is not coherent with other cores and
data corruption could occur.

For A57/A72, SMPEN bit enables the processor to receive instruction
cache and TLB maintenance operations broadcast from other processors
in the cluster. This bit should be set before enabling the caches and
MMU, or performing any cache and TLB maintenance operations.

Signed-off-by: Mingkai Hu <mingkai.hu@nxp.com>
Signed-off-by: Gong Qianyu <Qianyu.Gong@nxp.com>
Signed-off-by: Mateusz Kulikowski <mateusz.kulikowski@gmail.com>
Signed-off-by: Hou Zhiqiang <Zhiqiang.Hou@nxp.com>
Reviewed-by: York Sun <york.sun@nxp.com>
2017-01-18 09:27:47 -08:00

103 lines
3.7 KiB
Plaintext

if ARM64
config ARMV8_MULTIENTRY
bool "Enable multiple CPUs to enter into U-Boot"
config ARMV8_SET_SMPEN
bool "Enable data coherency with other cores in cluster"
help
Say Y here if there is not any trust firmware to set
CPUECTLR_EL1.SMPEN bit before U-Boot.
For A53, it enables data coherency with other cores in the
cluster, and for A57/A72, it enables receiving of instruction
cache and TLB maintenance operations.
Cortex A53/57/72 cores require CPUECTLR_EL1.SMPEN set even
for single core systems. Unfortunately write access to this
register may be controlled by EL3/EL2 firmware. To be more
precise, by default (if there is EL2/EL3 firmware running)
this register is RO for NS EL1.
This switch can be used to avoid writing to CPUECTLR_EL1,
it can be safely enabled when EL2/EL3 initialized SMPEN bit
or when CPU implementation doesn't include that register.
config ARMV8_SPIN_TABLE
bool "Support spin-table enable method"
depends on ARMV8_MULTIENTRY && OF_LIBFDT
help
Say Y here to support "spin-table" enable method for booting Linux.
To use this feature, you must do:
- Specify enable-method = "spin-table" in each CPU node in the
Device Tree you are using to boot the kernel
- Let secondary CPUs in U-Boot (in a board specific manner)
before the master CPU jumps to the kernel
U-Boot automatically does:
- Set "cpu-release-addr" property of each CPU node
(overwrites it if already exists).
- Reserve the code for the spin-table and the release address
via a /memreserve/ region in the Device Tree.
config PSCI_RESET
bool "Use PSCI for reset and shutdown"
default y
depends on !ARCH_EXYNOS7 && !ARCH_BCM283X && !TARGET_LS2080A_EMU && \
!TARGET_LS2080A_SIMU && !TARGET_LS2080AQDS && \
!TARGET_LS2080ARDB && !TARGET_LS1012AQDS && \
!TARGET_LS1012ARDB && !TARGET_LS1012AFRDM && \
!TARGET_LS1043ARDB && !TARGET_LS1043AQDS && \
!TARGET_LS1046ARDB && !TARGET_LS1046AQDS && \
!ARCH_UNIPHIER && !ARCH_SNAPDRAGON && !TARGET_S32V234EVB
help
Most armv8 systems have PSCI support enabled in EL3, either through
ARM Trusted Firmware or other firmware.
On these systems, we do not need to implement system reset manually,
but can instead rely on higher level firmware to deal with it.
Select Y here to make use of PSCI calls for system reset
config ARMV8_PSCI
bool "Enable PSCI support" if EXPERT
default n
help
PSCI is Power State Coordination Interface defined by ARM.
The PSCI in U-boot provides a general framework and each platform
can implement their own specific PSCI functions.
Say Y here to enable PSCI support on ARMv8 platform.
config ARMV8_PSCI_NR_CPUS
int "Maximum supported CPUs for PSCI"
depends on ARMV8_PSCI
default 4
help
The maximum number of CPUs supported in the PSCI firmware.
It is no problem to set a larger value than the number of CPUs in
the actual hardware implementation.
config ARMV8_PSCI_CPUS_PER_CLUSTER
int "Number of CPUs per cluster"
depends on ARMV8_PSCI
default 0
help
The number of CPUs per cluster, suppose each cluster has same number
of CPU cores, platforms with asymmetric clusters don't apply here.
A value 0 or no definition of it works for single cluster system.
System with multi-cluster should difine their own exact value.
if SYS_HAS_ARMV8_SECURE_BASE
config ARMV8_SECURE_BASE
hex "Secure address for PSCI image"
depends on ARMV8_PSCI
help
Address for placing the PSCI text, data and stack sections.
If not defined, the PSCI sections are placed together with the u-boot
but platform can choose to place PSCI code image separately in other
places such as some secure RAM built-in SOC etc.
endif
endif