u-boot-brain/drivers/rtc/ds3232.c

277 lines
6.3 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2019, Vaisala Oyj
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <i2c.h>
#include <rtc.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
/*
* RTC register addresses
*/
#define RTC_SEC_REG_ADDR 0x00
#define RTC_MIN_REG_ADDR 0x01
#define RTC_HR_REG_ADDR 0x02
#define RTC_DAY_REG_ADDR 0x03
#define RTC_DATE_REG_ADDR 0x04
#define RTC_MON_REG_ADDR 0x05
#define RTC_YR_REG_ADDR 0x06
#define RTC_CTL_REG_ADDR 0x0e
#define RTC_STAT_REG_ADDR 0x0f
#define RTC_TEST_REG_ADDR 0x13
/*
* RTC control register bits
*/
#define RTC_CTL_BIT_A1IE BIT(0) /* Alarm 1 interrupt enable */
#define RTC_CTL_BIT_A2IE BIT(1) /* Alarm 2 interrupt enable */
#define RTC_CTL_BIT_INTCN BIT(2) /* Interrupt control */
#define RTC_CTL_BIT_DOSC BIT(7) /* Disable Oscillator */
/*
* RTC status register bits
*/
#define RTC_STAT_BIT_A1F BIT(0) /* Alarm 1 flag */
#define RTC_STAT_BIT_A2F BIT(1) /* Alarm 2 flag */
#define RTC_STAT_BIT_EN32KHZ BIT(3) /* Enable 32KHz Output */
#define RTC_STAT_BIT_BB32KHZ BIT(6) /* Battery backed 32KHz Output */
#define RTC_STAT_BIT_OSF BIT(7) /* Oscillator stop flag */
/*
* RTC test register bits
*/
#define RTC_TEST_BIT_SWRST BIT(7) /* Software reset */
#define RTC_DATE_TIME_REG_SIZE 7
#define RTC_SRAM_START 0x14
#define RTC_SRAM_END 0xFF
#define RTC_SRAM_SIZE 236
struct ds3232_priv_data {
u8 max_register;
u8 sram_start;
int sram_size;
};
static int ds3232_rtc_read8(struct udevice *dev, unsigned int reg)
{
int ret;
u8 buf;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
if (reg > priv_data->max_register)
return -EINVAL;
ret = dm_i2c_read(dev, reg, &buf, sizeof(buf));
if (ret < 0)
return ret;
return buf;
}
static int ds3232_rtc_write8(struct udevice *dev, unsigned int reg, int val)
{
u8 buf = (u8)val;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
if (reg > priv_data->max_register)
return -EINVAL;
return dm_i2c_write(dev, reg, &buf, sizeof(buf));
}
static int reset_sram(struct udevice *dev)
{
int ret, sram_end, reg;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
sram_end = priv_data->sram_start + priv_data->sram_size;
for (reg = priv_data->sram_start; reg < sram_end; reg++) {
ret = ds3232_rtc_write8(dev, reg, 0x00);
if (ret < 0)
return ret;
}
return 0;
}
static int verify_osc(struct udevice *dev)
{
int ret, rtc_status;
ret = ds3232_rtc_read8(dev, RTC_STAT_REG_ADDR);
if (ret < 0)
return ret;
rtc_status = ret;
if (rtc_status & RTC_STAT_BIT_OSF) {
dev_warn(dev,
"oscillator discontinuity flagged, time unreliable\n");
/*
* In case OSC was off we cannot trust the SRAM data anymore.
* Reset it to 0x00.
*/
ret = reset_sram(dev);
if (ret < 0)
return ret;
}
return 0;
}
static int ds3232_rtc_set(struct udevice *dev, const struct rtc_time *tm)
{
u8 buf[RTC_DATE_TIME_REG_SIZE];
u8 is_century;
if (tm->tm_year < 1900 || tm->tm_year > 2099)
dev_warn(dev, "WARNING: year should be between 1900 and 2099!\n");
is_century = (tm->tm_year >= 2000) ? 0x80 : 0;
buf[RTC_SEC_REG_ADDR] = bin2bcd(tm->tm_sec);
buf[RTC_MIN_REG_ADDR] = bin2bcd(tm->tm_min);
buf[RTC_HR_REG_ADDR] = bin2bcd(tm->tm_hour);
buf[RTC_DAY_REG_ADDR] = bin2bcd(tm->tm_wday + 1);
buf[RTC_DATE_REG_ADDR] = bin2bcd(tm->tm_mday);
buf[RTC_MON_REG_ADDR] = bin2bcd(tm->tm_mon) | is_century;
buf[RTC_YR_REG_ADDR] = bin2bcd(tm->tm_year % 100);
return dm_i2c_write(dev, 0, buf, sizeof(buf));
}
static int ds3232_rtc_get(struct udevice *dev, struct rtc_time *tm)
{
int ret;
u8 buf[RTC_DATE_TIME_REG_SIZE];
u8 is_twelve_hr;
u8 is_pm;
u8 is_century;
ret = verify_osc(dev);
if (ret < 0)
return ret;
ret = dm_i2c_read(dev, 0, buf, sizeof(buf));
if (ret < 0)
return ret;
/* Extract additional information for AM/PM and century */
is_twelve_hr = buf[RTC_HR_REG_ADDR] & 0x40;
is_pm = buf[RTC_HR_REG_ADDR] & 0x20;
is_century = buf[RTC_MON_REG_ADDR] & 0x80;
tm->tm_sec = bcd2bin(buf[RTC_SEC_REG_ADDR] & 0x7F);
tm->tm_min = bcd2bin(buf[RTC_MIN_REG_ADDR] & 0x7F);
if (is_twelve_hr)
tm->tm_hour = bcd2bin(buf[RTC_HR_REG_ADDR] & 0x1F)
+ (is_pm ? 12 : 0);
else
tm->tm_hour = bcd2bin(buf[RTC_HR_REG_ADDR]);
tm->tm_wday = bcd2bin((buf[RTC_DAY_REG_ADDR] & 0x07) - 1);
tm->tm_mday = bcd2bin(buf[RTC_DATE_REG_ADDR] & 0x3F);
tm->tm_mon = bcd2bin((buf[RTC_MON_REG_ADDR] & 0x7F));
tm->tm_year = bcd2bin(buf[RTC_YR_REG_ADDR])
+ (is_century ? 2000 : 1900);
tm->tm_yday = 0;
tm->tm_isdst = 0;
return 0;
}
static int ds3232_rtc_reset(struct udevice *dev)
{
int ret;
ret = reset_sram(dev);
if (ret < 0)
return ret;
/*
* From datasheet
* (https://datasheets.maximintegrated.com/en/ds/DS3232M.pdf):
*
* The device reset occurs during the normal acknowledge time slot
* following the receipt of the data byte carrying that
* SWRST instruction a NACK occurs due to the resetting action.
*
* Therefore we don't verify the result of I2C write operation since it
* will fail due the NACK.
*/
ds3232_rtc_write8(dev, RTC_TEST_REG_ADDR, RTC_TEST_BIT_SWRST);
return 0;
}
static int ds3232_probe(struct udevice *dev)
{
int rtc_status;
int ret;
struct ds3232_priv_data *priv_data;
priv_data = dev_get_priv(dev);
if (!priv_data)
return -EINVAL;
priv_data->sram_start = RTC_SRAM_START;
priv_data->max_register = RTC_SRAM_END;
priv_data->sram_size = RTC_SRAM_SIZE;
ret = ds3232_rtc_read8(dev, RTC_STAT_REG_ADDR);
if (ret < 0)
return ret;
rtc_status = ret;
ret = verify_osc(dev);
if (ret < 0)
return ret;
rtc_status &= ~(RTC_STAT_BIT_OSF | RTC_STAT_BIT_A1F | RTC_STAT_BIT_A2F);
return ds3232_rtc_write8(dev, RTC_STAT_REG_ADDR, rtc_status);
}
static const struct rtc_ops ds3232_rtc_ops = {
.get = ds3232_rtc_get,
.set = ds3232_rtc_set,
.reset = ds3232_rtc_reset,
.read8 = ds3232_rtc_read8,
.write8 = ds3232_rtc_write8
};
static const struct udevice_id ds3232_rtc_ids[] = {
{ .compatible = "dallas,ds3232" },
{ }
};
U_BOOT_DRIVER(rtc_ds3232) = {
.name = "rtc-ds3232",
.id = UCLASS_RTC,
.probe = ds3232_probe,
.of_match = ds3232_rtc_ids,
.ops = &ds3232_rtc_ops,
.priv_auto = sizeof(struct ds3232_priv_data),
};