u-boot-brain/drivers/net/cortina_ni.c

1104 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2020 Cortina Access Inc.
* Author: Aaron Tseng <aaron.tseng@cortina-access.com>
*
* Ethernet MAC Driver for all supported CAxxxx SoCs
*/
#include <common.h>
#include <command.h>
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <env.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <u-boot/crc.h>
#include <led.h>
#include "cortina_ni.h"
#define HEADER_A_SIZE 8
enum ca_led_state_t {
CA_LED_OFF = 0,
CA_LED_ON = 1,
};
enum ca_port_t {
NI_PORT_0 = 0,
NI_PORT_1,
NI_PORT_2,
NI_PORT_3,
NI_PORT_4,
NI_PORT_5,
NI_PORT_MAX,
};
static struct udevice *curr_dev;
static u32 *ca_rdwrptr_adv_one(u32 *x, unsigned long base, unsigned long max)
{
if (x + 1 >= (u32 *)max)
return (u32 *)base;
else
return (x + 1);
}
static void ca_reg_read(void *reg, u64 base, u64 offset)
{
u32 *val = (u32 *)reg;
*val = readl(KSEG1_ATU_XLAT(base + offset));
}
static void ca_reg_write(void *reg, u64 base, u64 offset)
{
u32 val = *(u32 *)reg;
writel(val, KSEG1_ATU_XLAT(base + offset));
}
static int ca_mdio_write_rgmii(u32 addr, u32 offset, u16 data)
{
/* up to 10000 cycles*/
u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
struct PER_MDIO_ADDR_t mdio_addr;
struct PER_MDIO_CTRL_t mdio_ctrl;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
memset(&mdio_addr, 0, sizeof(mdio_addr));
mdio_addr.mdio_addr = addr;
mdio_addr.mdio_offset = offset;
mdio_addr.mdio_rd_wr = __MDIO_WR_FLAG;
ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
PER_MDIO_ADDR_OFFSET);
ca_reg_write(&data, (u64)priv->per_mdio_base_addr,
PER_MDIO_WRDATA_OFFSET);
memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
mdio_ctrl.mdiostart = 1;
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
debug("%s: phy_addr=%d, offset=%d, data=0x%x\n",
__func__, addr, offset, data);
do {
ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
if (mdio_ctrl.mdiodone) {
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
return 0;
}
} while (--loop_wait);
printf("CA NI %s: PHY write timeout!!!\n", __func__);
return -ETIMEDOUT;
}
int ca_mdio_write(u32 addr, u32 offset, u16 data)
{
u32 reg_addr, reg_val;
struct NI_MDIO_OPER_T mdio_oper;
/* support range: 1~31*/
if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
return -EINVAL;
/* the phy addr 5 is connect to RGMII */
if (addr >= 5)
return ca_mdio_write_rgmii(addr, offset, data);
memset(&mdio_oper, 0, sizeof(mdio_oper));
mdio_oper.reg_off = offset;
mdio_oper.phy_addr = addr;
mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
reg_val = data;
memcpy(&reg_addr, &mdio_oper, sizeof(reg_addr));
ca_reg_write(&reg_val, (u64)reg_addr, 0);
return 0;
}
static int ca_mdio_read_rgmii(u32 addr, u32 offset, u16 *data)
{
u32 loop_wait = __MDIO_ACCESS_TIMEOUT;
struct PER_MDIO_ADDR_t mdio_addr;
struct PER_MDIO_CTRL_t mdio_ctrl;
struct PER_MDIO_RDDATA_t read_data;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
memset(&mdio_addr, 0, sizeof(mdio_addr));
mdio_addr.mdio_addr = addr;
mdio_addr.mdio_offset = offset;
mdio_addr.mdio_rd_wr = __MDIO_RD_FLAG;
ca_reg_write(&mdio_addr, (u64)priv->per_mdio_base_addr,
PER_MDIO_ADDR_OFFSET);
memset(&mdio_ctrl, 0, sizeof(mdio_ctrl));
mdio_ctrl.mdiostart = 1;
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
do {
ca_reg_read(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
if (mdio_ctrl.mdiodone) {
ca_reg_write(&mdio_ctrl, (u64)priv->per_mdio_base_addr,
PER_MDIO_CTRL_OFFSET);
ca_reg_read(&read_data, (u64)priv->per_mdio_base_addr,
PER_MDIO_RDDATA_OFFSET);
*data = read_data.mdio_rddata;
return 0;
}
} while (--loop_wait);
printf("CA NI %s: TIMEOUT!!\n", __func__);
return -ETIMEDOUT;
}
int ca_mdio_read(u32 addr, u32 offset, u16 *data)
{
u32 reg_addr, reg_val;
struct NI_MDIO_OPER_T mdio_oper;
if (!data)
return -EINVAL;
/* support range: 1~31*/
if (addr < CA_MDIO_ADDR_MIN || addr > CA_MDIO_ADDR_MAX)
return -EINVAL;
/* the phy addr 5 is connect to RGMII */
if (addr >= 5)
return ca_mdio_read_rgmii(addr, offset, data);
memset(&mdio_oper, 0, sizeof(mdio_oper));
mdio_oper.reg_off = offset;
mdio_oper.phy_addr = addr;
mdio_oper.reg_base = CA_NI_MDIO_REG_BASE;
reg_val = *data;
memcpy(&reg_addr, &mdio_oper, sizeof(reg_addr));
ca_reg_read(&reg_val, (u64)reg_addr, 0);
*data = reg_val;
return 0;
}
int ca_miiphy_read(const char *devname, u8 addr, u8 reg, u16 *value)
{
return ca_mdio_read(addr, reg, value);
}
int ca_miiphy_write(const char *devname, u8 addr, u8 reg, u16 value)
{
return ca_mdio_write(addr, reg, value);
}
static int cortina_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
u16 data;
ca_mdio_read(addr, reg, &data);
return data;
}
static int cortina_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
return ca_mdio_write(addr, reg, val);
}
static void ca_ni_setup_mac_addr(void)
{
u8 mac[6];
struct NI_HV_GLB_MAC_ADDR_CFG0_t mac_addr_cfg0;
struct NI_HV_GLB_MAC_ADDR_CFG1_t mac_addr_cfg1;
struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* parsing ethaddr and set to NI registers. */
if (eth_env_get_enetaddr("ethaddr", mac)) {
/* The complete MAC address consists of
* {MAC_ADDR0_mac_addr0[0-3], MAC_ADDR1_mac_addr1[4],
* PT_PORT_STATIC_CFG_mac_addr6[5]}.
*/
mac_addr_cfg0.mac_addr0 = (mac[0] << 24) + (mac[1] << 16) +
(mac[2] << 8) + mac[3];
ca_reg_write(&mac_addr_cfg0, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_MAC_ADDR_CFG0_OFFSET);
memset(&mac_addr_cfg1, 0, sizeof(mac_addr_cfg1));
mac_addr_cfg1.mac_addr1 = mac[4];
ca_reg_write(&mac_addr_cfg1, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_MAC_ADDR_CFG1_OFFSET);
ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
port_static_cfg.mac_addr6 = mac[5];
ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
/* received only Broadcast and Address matched packets */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.xram_mgmt_promisc_mode = 0;
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
} else {
/* received all packets(promiscuous mode) */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.xram_mgmt_promisc_mode = 3;
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
}
}
static void ca_ni_enable_tx_rx(void)
{
struct NI_HV_PT_RXMAC_CFG_t rxmac_cfg;
struct NI_HV_PT_TXMAC_CFG_t txmac_cfg;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* Enable TX and RX functions */
ca_reg_read(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_RXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
rxmac_cfg.rx_en = 1;
ca_reg_write(&rxmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_RXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
ca_reg_read(&txmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_TXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
txmac_cfg.tx_en = 1;
ca_reg_write(&txmac_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_TXMAC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
}
#define AUTO_SCAN_TIMEOUT 3000 /* 3 seconds */
static int ca_ni_auto_scan_active_port(struct cortina_ni_priv *priv)
{
u8 i;
u16 data;
u32 start_time;
start_time = get_timer(0);
while (get_timer(start_time) < AUTO_SCAN_TIMEOUT) {
for (i = 0; i < priv->valid_port_num; i++) {
if (!priv->port_map[i].phy_addr)
continue;
ca_mdio_read(priv->port_map[i].phy_addr, 1, &data);
if (data & 0x04) {
priv->active_port = priv->port_map[i].port;
return 0;
}
}
}
printf("CA NI %s: auto scan active_port timeout.\n", __func__);
return -1;
}
static void ca_ni_led(int port, int status)
{
char label[10];
struct udevice *led_dev;
if (IS_ENABLED(CONFIG_LED_CORTINA)) {
snprintf(label, sizeof(label), "led%d", port);
debug("%s: set port %d led %s.\n",
__func__, port, status ? "on" : "off");
led_get_by_label(label, &led_dev);
led_set_state(led_dev, status);
}
}
static void ca_ni_reset(void)
{
int i;
struct NI_HV_GLB_INIT_DONE_t init_done;
struct NI_HV_GLB_INTF_RST_CONFIG_t intf_rst_config;
struct NI_HV_GLB_STATIC_CFG_t static_cfg;
struct GLOBAL_BLOCK_RESET_t glb_blk_reset;
struct cortina_ni_priv *priv = dev_get_priv(curr_dev);
/* NI global resets */
ca_reg_read(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
glb_blk_reset.reset_ni = 1;
ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
/* Remove resets */
glb_blk_reset.reset_ni = 0;
ca_reg_write(&glb_blk_reset, (u64)priv->glb_base_addr,
GLOBAL_BLOCK_RESET_OFFSET);
/* check the ready bit of NI module */
for (i = 0; i < NI_READ_POLL_COUNT; i++) {
ca_reg_read(&init_done, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INIT_DONE_OFFSET);
if (init_done.ni_init_done)
break;
}
if (i == NI_READ_POLL_COUNT) {
printf("CA NI %s: NI init done not ready, init_done=0x%x!!!\n",
__func__, init_done.ni_init_done);
}
ca_reg_read(&intf_rst_config, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
switch (priv->active_port) {
case NI_PORT_0:
intf_rst_config.intf_rst_p0 = 0;
intf_rst_config.mac_rx_rst_p0 = 0;
intf_rst_config.mac_tx_rst_p0 = 0;
break;
case NI_PORT_1:
intf_rst_config.intf_rst_p1 = 0;
intf_rst_config.mac_rx_rst_p1 = 0;
intf_rst_config.mac_tx_rst_p1 = 0;
break;
case NI_PORT_2:
intf_rst_config.intf_rst_p2 = 0;
intf_rst_config.mac_rx_rst_p2 = 0;
intf_rst_config.mac_tx_rst_p2 = 0;
break;
case NI_PORT_3:
intf_rst_config.intf_rst_p3 = 0;
intf_rst_config.mac_tx_rst_p3 = 0;
intf_rst_config.mac_rx_rst_p3 = 0;
break;
case NI_PORT_4:
intf_rst_config.intf_rst_p4 = 0;
intf_rst_config.mac_tx_rst_p4 = 0;
intf_rst_config.mac_rx_rst_p4 = 0;
break;
}
ca_reg_write(&intf_rst_config, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_INTF_RST_CONFIG_OFFSET);
/* Only one GMAC can connect to CPU */
ca_reg_read(&static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_STATIC_CFG_OFFSET);
static_cfg.port_to_cpu = priv->active_port;
static_cfg.txmib_mode = 1;
static_cfg.rxmib_mode = 1;
ca_reg_write(&static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_GLB_STATIC_CFG_OFFSET);
}
static void ca_internal_gphy_cal(struct cortina_ni_priv *priv)
{
int i, port, num;
u32 reg_off, value;
num = priv->gphy_num;
for (port = 0; port < 4; port++) {
for (i = 0; i < num; i++) {
reg_off = priv->gphy_values[i].reg_off + (port * 0x80);
value = priv->gphy_values[i].value;
ca_reg_write(&value, reg_off, 0);
mdelay(50);
}
}
}
static int ca_mdio_register(struct udevice *dev)
{
int ret;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus = mdio_alloc();
if (!mdio_bus)
return -ENOMEM;
mdio_bus->read = cortina_mdio_read;
mdio_bus->write = cortina_mdio_write;
snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
mdio_bus->priv = (void *)priv;
ret = mdio_register(mdio_bus);
if (ret)
return ret;
priv->mdio_bus = mdio_bus;
return 0;
}
static void ca_rgmii_init(struct cortina_ni_priv *priv)
{
struct GLOBAL_GLOBAL_CONFIG_t glb_config;
struct GLOBAL_IO_DRIVE_CONTROL_t io_drive_control;
/* Generating 25Mhz reference clock for switch */
ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
glb_config.refclk_sel = 0x01;
glb_config.ext_reset = 0x01;
ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
mdelay(20);
/* Do external reset */
ca_reg_read(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
glb_config.ext_reset = 0x0;
ca_reg_write(&glb_config, (u64)priv->glb_base_addr,
GLOBAL_GLOBAL_CONFIG_OFFSET);
ca_reg_read(&io_drive_control, (u64)priv->glb_base_addr,
GLOBAL_IO_DRIVE_CONTROL_OFFSET);
io_drive_control.gmac_mode = 2;
io_drive_control.gmac_dn = 1;
io_drive_control.gmac_dp = 1;
ca_reg_write(&io_drive_control, (u64)priv->glb_base_addr,
GLOBAL_IO_DRIVE_CONTROL_OFFSET);
}
static int ca_phy_probe(struct udevice *dev)
{
int auto_scan_active_port = 0, tmp_port;
char *buf;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct phy_device *int_phydev, *ext_phydev;
/* Initialize internal phy device */
int_phydev = phy_connect(priv->mdio_bus,
priv->port_map[NI_PORT_3].phy_addr,
dev, priv->phy_interface);
if (int_phydev) {
int_phydev->supported &= PHY_GBIT_FEATURES;
int_phydev->advertising = int_phydev->supported;
phy_config(int_phydev);
} else {
printf("CA NI %s: There is no internal phy device\n", __func__);
}
/* Initialize external phy device */
ext_phydev = phy_connect(priv->mdio_bus,
priv->port_map[NI_PORT_4].phy_addr,
dev, priv->phy_interface);
if (ext_phydev) {
ext_phydev->supported &= PHY_GBIT_FEATURES;
ext_phydev->advertising = int_phydev->supported;
phy_config(ext_phydev);
} else {
printf("CA NI %s: There is no external phy device\n", __func__);
}
/* auto scan the first link up port as active_port */
buf = env_get("auto_scan_active_port");
if (buf != 0) {
auto_scan_active_port = simple_strtoul(buf, NULL, 0);
printf("CA NI %s: auto_scan_active_port=%d\n", __func__,
auto_scan_active_port);
}
if (auto_scan_active_port) {
ca_ni_auto_scan_active_port(priv);
} else {
buf = env_get("active_port");
if (buf != 0) {
tmp_port = simple_strtoul(buf, NULL, 0);
if (tmp_port < 0 &&
!(priv->valid_port_map && BIT(tmp_port))) {
printf("CA NI ERROR: not support this port.");
free(dev);
free(priv);
return 1;
}
priv->active_port = tmp_port;
}
}
printf("CA NI %s: active_port=%d\n", __func__, priv->active_port);
if (priv->active_port == NI_PORT_4)
priv->phydev = ext_phydev;
else
priv->phydev = int_phydev;
return 0;
}
static int cortina_eth_start(struct udevice *dev)
{
int ret;
struct NI_HV_XRAM_CPUXRAM_ADRCFG_RX_t cpuxram_adrcfg_rx;
struct NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_t cpuxram_adrcfg_tx;
struct NI_HV_XRAM_CPUXRAM_CFG_t cpuxram_cfg;
struct NI_HV_PT_PORT_STATIC_CFG_t port_static_cfg;
struct NI_HV_PT_PORT_GLB_CFG_t port_glb_cfg;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct phy_device *phydev = priv->phydev;
ret = phy_startup(priv->phydev);
if (ret) {
ca_ni_led(priv->active_port, CA_LED_OFF);
printf("CA NI Could not initialize PHY %s, active_port=%d\n",
priv->phydev->dev->name, priv->active_port);
return ret;
}
if (!priv->phydev->link) {
printf("CA NI %s: link down.\n", priv->phydev->dev->name);
return 0;
}
ca_ni_led(priv->active_port, CA_LED_ON);
printf("CA NI PHY ID 0x%08X %dMbps %s duplex\n",
phydev->phy_id, phydev->speed,
phydev->duplex == DUPLEX_HALF ? "half" : "full");
/* RX XRAM ADDRESS CONFIG (start and end address) */
memset(&cpuxram_adrcfg_rx, 0, sizeof(cpuxram_adrcfg_rx));
cpuxram_adrcfg_rx.rx_top_addr = RX_TOP_ADDR;
cpuxram_adrcfg_rx.rx_base_addr = RX_BASE_ADDR;
ca_reg_write(&cpuxram_adrcfg_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_ADRCFG_RX_OFFSET);
/* TX XRAM ADDRESS CONFIG (start and end address) */
memset(&cpuxram_adrcfg_tx, 0, sizeof(cpuxram_adrcfg_tx));
cpuxram_adrcfg_tx.tx_top_addr = TX_TOP_ADDR;
cpuxram_adrcfg_tx.tx_base_addr = TX_BASE_ADDR;
ca_reg_write(&cpuxram_adrcfg_tx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_ADRCFG_TX_0_OFFSET);
/*
* Configuration for Management Ethernet Interface:
* - RGMII 1000 mode or RGMII 100 mode
* - MAC mode
*/
ca_reg_read(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
if (phydev->speed == SPEED_1000) {
/* port 4 connects to RGMII PHY */
if (phydev->addr == 5)
port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_1000;
else
port_static_cfg.int_cfg = GE_MAC_INTF_GMII;
} else {
/* port 4 connects to RGMII PHY */
if (phydev->addr == 5)
port_static_cfg.int_cfg = GE_MAC_INTF_RGMII_100;
else
port_static_cfg.int_cfg = GE_MAC_INTF_MII;
}
ca_reg_write(&port_static_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_STATIC_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
ca_reg_read(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_GLB_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
port_glb_cfg.speed = phydev->speed == SPEED_10 ? 1 : 0;
port_glb_cfg.duplex = phydev->duplex == DUPLEX_HALF ? 1 : 0;
ca_reg_write(&port_glb_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_PT_PORT_GLB_CFG_OFFSET +
(APB0_NI_HV_PT_STRIDE * priv->active_port));
/* Need to toggle the tx and rx cpu_pkt_dis bit */
/* after changing Address config register. */
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.rx_0_cpu_pkt_dis = 1;
cpuxram_cfg.tx_0_cpu_pkt_dis = 1;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
ca_reg_read(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
cpuxram_cfg.rx_0_cpu_pkt_dis = 0;
cpuxram_cfg.tx_0_cpu_pkt_dis = 0;
ca_reg_write(&cpuxram_cfg, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CFG_OFFSET);
ca_ni_enable_tx_rx();
return 0;
}
/*********************************************
* Packet receive routine from Management FE
* Expects a previously allocated buffer and
* fills the length
* Retruns 0 on success -1 on failure
*******************************************/
static int cortina_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
u8 *ptr;
u32 next_link, pktlen = 0;
u32 sw_rx_rd_ptr, hw_rx_wr_ptr, *rx_xram_ptr, *data_ptr;
int loop, index = 0, blk_num;
struct cortina_ni_priv *priv = dev_get_priv(dev);
struct NI_HEADER_X_T header_x;
struct NI_PACKET_STATUS packet_status;
struct NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_t cpuxram_cpu_sta_rx;
struct NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_t cpuxram_cpu_cfg_rx;
/* get the hw write pointer */
memset(&cpuxram_cpu_sta_rx, 0, sizeof(cpuxram_cpu_sta_rx));
ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
/* get the sw read pointer */
memset(&cpuxram_cpu_cfg_rx, 0, sizeof(cpuxram_cpu_cfg_rx));
ca_reg_read(&cpuxram_cpu_cfg_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
sw_rx_rd_ptr = cpuxram_cpu_cfg_rx.pkt_rd_ptr;
debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0 = 0x%p, ", __func__,
priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0 = 0x%p\n",
priv->ni_hv_base_addr + NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
debug("%s : RX hw_wr_ptr = %d, sw_rd_ptr = %d\n",
__func__, hw_rx_wr_ptr, sw_rx_rd_ptr);
while (sw_rx_rd_ptr != hw_rx_wr_ptr) {
/* Point to the absolute memory address of XRAM
* where read pointer is
*/
rx_xram_ptr = (u32 *)
((unsigned long)priv->ni_xram_base
+ sw_rx_rd_ptr * 8);
/* Wrap around if required */
if (rx_xram_ptr >= (u32 *)(unsigned long)priv->rx_xram_end_adr)
rx_xram_ptr = (u32 *)
(unsigned long)priv->rx_xram_base_adr;
/* Checking header XR. Do not update the read pointer yet */
/* skip unused 32-bit in Header XR */
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
memcpy(&header_x, rx_xram_ptr, sizeof(header_x));
next_link = header_x.next_link;
/* Header XR [31:0] */
if (*rx_xram_ptr == 0xffffffff)
printf("CA NI %s: XRAM Error !\n", __func__);
debug("%s : RX next link 0x%x\n", __func__, next_link);
debug("%s : bytes_valid %x\n", __func__, header_x.bytes_valid);
if (header_x.ownership == 0) {
/* point to Packet status [31:0] */
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
memcpy(&packet_status, rx_xram_ptr,
sizeof(*rx_xram_ptr));
if (packet_status.valid == 0) {
debug("%s: Invalid Packet !!, ", __func__);
debug("next_link=%d\n", next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
if (packet_status.drop ||
packet_status.runt ||
packet_status.oversize ||
packet_status.jabber ||
packet_status.crc_error ||
packet_status.jumbo) {
debug("%s: Error Packet!!, ", __func__);
debug("next_link=%d\n", next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
/* check whether packet size is larger than 1514 */
if (packet_status.packet_size > 1518) {
debug("%s: Error Packet !! Packet size=%d, ",
__func__, packet_status.packet_size);
debug("larger than 1518, next_link=%d\n",
next_link);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
return 0;
}
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
pktlen = packet_status.packet_size;
debug("%s : rx packet length = %d\n",
__func__, packet_status.packet_size);
rx_xram_ptr = ca_rdwrptr_adv_one(rx_xram_ptr,
priv->rx_xram_base_adr,
priv->rx_xram_end_adr);
data_ptr = (u32 *)net_rx_packets[index];
/* Read out the packet */
/* Data is in little endian form in the XRAM */
/* Send the packet to upper layer */
debug("%s: packet data[]=", __func__);
for (loop = 0; loop <= pktlen / 4; loop++) {
ptr = (u8 *)rx_xram_ptr;
if (loop < 10)
debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]",
ptr[0], ptr[1], ptr[2], ptr[3]);
*data_ptr++ = *rx_xram_ptr++;
/* Wrap around if required */
if (rx_xram_ptr >= (u32 *)
(unsigned long)priv->rx_xram_end_adr) {
rx_xram_ptr = (u32 *)(unsigned long)
(priv->rx_xram_base_adr);
}
}
debug("\n");
net_process_received_packet(net_rx_packets[index],
pktlen);
if (++index >= PKTBUFSRX)
index = 0;
blk_num = net_rx_packets[index][0x2c] * 255 +
net_rx_packets[index][0x2d];
debug("%s: tftp block number=%d\n", __func__, blk_num);
/* Update the software read pointer */
ca_reg_write(&next_link,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
}
/* get the hw write pointer */
ca_reg_read(&cpuxram_cpu_sta_rx, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STA_RX_0_OFFSET);
hw_rx_wr_ptr = cpuxram_cpu_sta_rx.pkt_wr_ptr;
/* get the sw read pointer */
ca_reg_read(&sw_rx_rd_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_RX_0_OFFSET);
}
return 0;
}
static int cortina_eth_send(struct udevice *dev, void *packet, int length)
{
u32 hw_tx_rd_ptr = 0, sw_tx_wr_ptr = 0;
u32 loop, new_pkt_len, ca_crc32;
u32 *tx_xram_ptr, *data_ptr;
u16 next_link = 0;
u8 *ptr, *pkt_buf_ptr, valid_bytes = 0;
int pad = 0;
static u8 pkt_buf[2048];
struct NI_HEADER_X_T hdr_xt;
struct NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_t cpuxram_cpu_cfg_tx;
struct cortina_ni_priv *priv = dev_get_priv(dev);
if (!packet || length > 2032)
return -1;
/* Get the hardware read pointer */
ca_reg_read(&hw_tx_rd_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET);
/* Get the software write pointer */
ca_reg_read(&sw_tx_wr_ptr, (u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
debug("%s: NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0=0x%p, ",
__func__,
KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
NI_HV_XRAM_CPUXRAM_CPU_STAT_TX_0_OFFSET));
debug("NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0=0x%p\n",
KSEG1_ATU_XLAT(priv->ni_hv_base_addr +
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET));
debug("%s : hw_tx_rd_ptr = %d\n", __func__, hw_tx_rd_ptr);
debug("%s : sw_tx_wr_ptr = %d\n", __func__, sw_tx_wr_ptr);
if (hw_tx_rd_ptr != sw_tx_wr_ptr) {
printf("CA NI %s: Tx FIFO is not available!\n", __func__);
return 1;
}
/* a workaround on 2015/10/01
* the packet size+CRC should be 8-byte alignment
*/
if (((length + 4) % 8) != 0)
length += (8 - ((length + 4) % 8));
memset(pkt_buf, 0x00, sizeof(pkt_buf));
/* add 8-byte header_A at the beginning of packet */
memcpy(&pkt_buf[HEADER_A_SIZE], (const void *)packet, length);
pad = 64 - (length + 4); /* if packet length < 60 */
pad = (pad < 0) ? 0 : pad;
debug("%s: length=%d, pad=%d\n", __func__, length, pad);
new_pkt_len = length + pad; /* new packet length */
pkt_buf_ptr = (u8 *)pkt_buf;
/* Calculate the CRC32, skip 8-byte header_A */
ca_crc32 = crc32(0, (u8 *)(pkt_buf_ptr + HEADER_A_SIZE), new_pkt_len);
debug("%s: crc32 is 0x%x\n", __func__, ca_crc32);
debug("%s: ~crc32 is 0x%x\n", __func__, ~ca_crc32);
debug("%s: pkt len %d\n", __func__, new_pkt_len);
/* should add 8-byte header_! */
/* CRC will re-calculated by hardware */
memcpy((pkt_buf_ptr + new_pkt_len + HEADER_A_SIZE),
(u8 *)(&ca_crc32), sizeof(ca_crc32));
new_pkt_len = new_pkt_len + 4; /* add CRC */
valid_bytes = new_pkt_len % 8;
valid_bytes = valid_bytes ? valid_bytes : 0;
debug("%s: valid_bytes %d\n", __func__, valid_bytes);
/* should add 8-byte headerA */
next_link = sw_tx_wr_ptr +
(new_pkt_len + 7 + HEADER_A_SIZE) / 8; /* for headr XT */
/* add header */
next_link = next_link + 1;
/* Wrap around if required */
if (next_link > priv->tx_xram_end) {
next_link = priv->tx_xram_start +
(next_link - (priv->tx_xram_end + 1));
}
debug("%s: TX next_link %x\n", __func__, next_link);
memset(&hdr_xt, 0, sizeof(hdr_xt));
hdr_xt.ownership = 1;
hdr_xt.bytes_valid = valid_bytes;
hdr_xt.next_link = next_link;
tx_xram_ptr = (u32 *)((unsigned long)priv->ni_xram_base
+ sw_tx_wr_ptr * 8);
/* Wrap around if required */
if (tx_xram_ptr >= (u32 *)(unsigned long)priv->tx_xram_end_adr)
tx_xram_ptr = (u32 *)(unsigned long)priv->tx_xram_base_adr;
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
memcpy(tx_xram_ptr, &hdr_xt, sizeof(*tx_xram_ptr));
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
/* Now to copy the data. The first byte on the line goes first */
data_ptr = (u32 *)pkt_buf_ptr;
debug("%s: packet data[]=", __func__);
/* copy header_A to XRAM */
for (loop = 0; loop <= (new_pkt_len + HEADER_A_SIZE) / 4; loop++) {
ptr = (u8 *)data_ptr;
if ((loop % 4) == 0)
debug("\n");
debug("[0x%x]-[0x%x]-[0x%x]-[0x%x]-",
ptr[0], ptr[1], ptr[2], ptr[3]);
*tx_xram_ptr = *data_ptr++;
tx_xram_ptr = ca_rdwrptr_adv_one(tx_xram_ptr,
priv->tx_xram_base_adr,
priv->tx_xram_end_adr);
}
debug("\n");
/* Publish the software write pointer */
cpuxram_cpu_cfg_tx.pkt_wr_ptr = next_link;
ca_reg_write(&cpuxram_cpu_cfg_tx,
(u64)priv->ni_hv_base_addr,
NI_HV_XRAM_CPUXRAM_CPU_CFG_TX_0_OFFSET);
return 0;
}
static void cortina_eth_stop(struct udevice *netdev)
{
/* Nothing to do for now. */
}
static int cortina_eth_probe(struct udevice *dev)
{
int ret, reg_value;
struct cortina_ni_priv *priv;
priv = dev_get_priv(dev);
priv->rx_xram_base_adr = priv->ni_xram_base + (RX_BASE_ADDR * 8);
priv->rx_xram_end_adr = priv->ni_xram_base + ((RX_TOP_ADDR + 1) * 8);
priv->rx_xram_start = RX_BASE_ADDR;
priv->rx_xram_end = RX_TOP_ADDR;
priv->tx_xram_base_adr = priv->ni_xram_base + (TX_BASE_ADDR * 8);
priv->tx_xram_end_adr = priv->ni_xram_base + ((TX_TOP_ADDR + 1) * 8);
priv->tx_xram_start = TX_BASE_ADDR;
priv->tx_xram_end = TX_TOP_ADDR;
curr_dev = dev;
debug("%s: rx_base_addr:%x\t rx_top_addr %x\n",
__func__, priv->rx_xram_start, priv->rx_xram_end);
debug("%s: tx_base_addr:%x\t tx_top_addr %x\n",
__func__, priv->tx_xram_start, priv->tx_xram_end);
debug("%s: rx physical start address = %x end address = %x\n",
__func__, priv->rx_xram_base_adr, priv->rx_xram_end_adr);
debug("%s: tx physical start address = %x end address = %x\n",
__func__, priv->tx_xram_base_adr, priv->tx_xram_end_adr);
/* MDIO register */
ret = ca_mdio_register(dev);
if (ret)
return ret;
/* set MDIO pre-scale value */
ca_reg_read(&reg_value, (u64)priv->per_mdio_base_addr,
PER_MDIO_CFG_OFFSET);
reg_value = reg_value | 0x00280000;
ca_reg_write(&reg_value, (u64)priv->per_mdio_base_addr,
PER_MDIO_CFG_OFFSET);
ca_phy_probe(dev);
priv->phydev->addr = priv->port_map[priv->active_port].phy_addr;
ca_ni_led(priv->active_port, CA_LED_ON);
ca_ni_reset();
printf("CA NI %s: active_port=%d, phy_addr=%d\n",
__func__, priv->active_port, priv->phydev->addr);
printf("CA NI %s: phy_id=0x%x, phy_id & PHY_ID_MASK=0x%x\n", __func__,
priv->phydev->phy_id, priv->phydev->phy_id & 0xFFFFFFF0);
/* parsing ethaddr and set to NI registers. */
ca_ni_setup_mac_addr();
#ifdef MIIPHY_REGISTER
/* the phy_read and phy_write
* should meet the proto type of miiphy_register
*/
miiphy_register(dev->name, ca_miiphy_read, ca_miiphy_write);
#endif
if (priv->init_rgmii) {
/* hardware settings for RGMII port */
ca_rgmii_init(priv);
}
if (priv->gphy_num > 0) {
/* do internal gphy calibration */
ca_internal_gphy_cal(priv);
}
return 0;
}
static int ca_ni_of_to_plat(struct udevice *dev)
{
int i, ret;
struct cortina_ni_priv *priv = dev_get_priv(dev);
memset(priv, 0, sizeof(struct cortina_ni_priv));
priv->glb_base_addr = dev_remap_addr_index(dev, 0);
if (!priv->glb_base_addr)
return -ENOENT;
printf("CA NI %s: priv->glb_base_addr for index 0 is 0x%p\n",
__func__, priv->glb_base_addr);
priv->per_mdio_base_addr = dev_remap_addr_index(dev, 1);
if (!priv->per_mdio_base_addr)
return -ENOENT;
printf("CA NI %s: priv->per_mdio_base_addr for index 1 is 0x%p\n",
__func__, priv->per_mdio_base_addr);
priv->ni_hv_base_addr = dev_remap_addr_index(dev, 2);
if (!priv->ni_hv_base_addr)
return -ENOENT;
printf("CA NI %s: priv->ni_hv_base_addr for index 2 is 0x%p\n",
__func__, priv->ni_hv_base_addr);
priv->valid_port_map = dev_read_u32_default(dev, "valid-port-map", 1);
priv->valid_port_num = dev_read_u32_default(dev, "valid-port-num", 1);
for (i = 0; i < priv->valid_port_num; i++) {
ret = dev_read_u32_index(dev, "valid-ports", i * 2,
&priv->port_map[i].phy_addr);
ret = dev_read_u32_index(dev, "valid-ports", (i * 2) + 1,
&priv->port_map[i].port);
}
priv->gphy_num = dev_read_u32_default(dev, "inter-gphy-num", 1);
for (i = 0; i < priv->gphy_num; i++) {
ret = dev_read_u32_index(dev, "inter-gphy-val", i * 2,
&priv->gphy_values[i].reg_off);
ret = dev_read_u32_index(dev, "inter-gphy-val", (i * 2) + 1,
&priv->gphy_values[i].value);
}
priv->active_port = dev_read_u32_default(dev, "def-active-port", 1);
priv->init_rgmii = dev_read_u32_default(dev, "init-rgmii", 1);
priv->ni_xram_base = dev_read_u32_default(dev, "ni-xram-base", 1);
return 0;
}
static const struct eth_ops cortina_eth_ops = {
.start = cortina_eth_start,
.send = cortina_eth_send,
.recv = cortina_eth_recv,
.stop = cortina_eth_stop,
};
static const struct udevice_id cortina_eth_ids[] = {
{ .compatible = "eth_cortina" },
{ }
};
U_BOOT_DRIVER(eth_cortina) = {
.name = "eth_cortina",
.id = UCLASS_ETH,
.of_match = cortina_eth_ids,
.probe = cortina_eth_probe,
.ops = &cortina_eth_ops,
.priv_auto = sizeof(struct cortina_ni_priv),
.plat_auto = sizeof(struct eth_pdata),
.of_to_plat = ca_ni_of_to_plat,
};