u-boot-brain/drivers/mmc/meson_gx_mmc.c

340 lines
8.2 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Carlo Caione <carlo@caione.org>
*/
#include <common.h>
#include <clk.h>
#include <cpu_func.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <pwrseq.h>
#include <mmc.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <linux/delay.h>
#include <linux/log2.h>
#include "meson_gx_mmc.h"
bool meson_gx_mmc_is_compatible(struct udevice *dev,
enum meson_gx_mmc_compatible family)
{
enum meson_gx_mmc_compatible compat = dev_get_driver_data(dev);
return compat == family;
}
static inline void *get_regbase(const struct mmc *mmc)
{
struct meson_mmc_plat *pdata = mmc->priv;
return pdata->regbase;
}
static inline uint32_t meson_read(struct mmc *mmc, int offset)
{
return readl(get_regbase(mmc) + offset);
}
static inline void meson_write(struct mmc *mmc, uint32_t val, int offset)
{
writel(val, get_regbase(mmc) + offset);
}
static void meson_mmc_config_clock(struct mmc *mmc)
{
uint32_t meson_mmc_clk = 0;
unsigned int clk, clk_src, clk_div;
if (!mmc->clock)
return;
/* TOFIX This should use the proper clock taken from DT */
/* 1GHz / CLK_MAX_DIV = 15,9 MHz */
if (mmc->clock > 16000000) {
clk = SD_EMMC_CLKSRC_DIV2;
clk_src = CLK_SRC_DIV2;
} else {
clk = SD_EMMC_CLKSRC_24M;
clk_src = CLK_SRC_24M;
}
clk_div = DIV_ROUND_UP(clk, mmc->clock);
/*
* SM1 SoCs doesn't work fine over 50MHz with CLK_CO_PHASE_180
* If CLK_CO_PHASE_270 is used, it's more stable than other.
* Other SoCs use CLK_CO_PHASE_180 by default.
* It needs to find what is a proper value about each SoCs.
*/
if (meson_gx_mmc_is_compatible(mmc->dev, MMC_COMPATIBLE_SM1))
meson_mmc_clk |= CLK_CO_PHASE_270;
else
meson_mmc_clk |= CLK_CO_PHASE_180;
/* 180 phase tx clock */
meson_mmc_clk |= CLK_TX_PHASE_000;
/* clock settings */
meson_mmc_clk |= clk_src;
meson_mmc_clk |= clk_div;
meson_write(mmc, meson_mmc_clk, MESON_SD_EMMC_CLOCK);
}
static int meson_dm_mmc_set_ios(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
uint32_t meson_mmc_cfg;
meson_mmc_config_clock(mmc);
meson_mmc_cfg = meson_read(mmc, MESON_SD_EMMC_CFG);
meson_mmc_cfg &= ~CFG_BUS_WIDTH_MASK;
if (mmc->bus_width == 1)
meson_mmc_cfg |= CFG_BUS_WIDTH_1;
else if (mmc->bus_width == 4)
meson_mmc_cfg |= CFG_BUS_WIDTH_4;
else if (mmc->bus_width == 8)
meson_mmc_cfg |= CFG_BUS_WIDTH_8;
else
return -EINVAL;
/* 512 bytes block length */
meson_mmc_cfg &= ~CFG_BL_LEN_MASK;
meson_mmc_cfg |= CFG_BL_LEN_512;
/* Response timeout 256 clk */
meson_mmc_cfg &= ~CFG_RESP_TIMEOUT_MASK;
meson_mmc_cfg |= CFG_RESP_TIMEOUT_256;
/* Command-command gap 16 clk */
meson_mmc_cfg &= ~CFG_RC_CC_MASK;
meson_mmc_cfg |= CFG_RC_CC_16;
meson_write(mmc, meson_mmc_cfg, MESON_SD_EMMC_CFG);
return 0;
}
static void meson_mmc_setup_cmd(struct mmc *mmc, struct mmc_data *data,
struct mmc_cmd *cmd)
{
uint32_t meson_mmc_cmd = 0, cfg;
meson_mmc_cmd |= cmd->cmdidx << CMD_CFG_CMD_INDEX_SHIFT;
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136)
meson_mmc_cmd |= CMD_CFG_RESP_128;
if (cmd->resp_type & MMC_RSP_BUSY)
meson_mmc_cmd |= CMD_CFG_R1B;
if (!(cmd->resp_type & MMC_RSP_CRC))
meson_mmc_cmd |= CMD_CFG_RESP_NOCRC;
} else {
meson_mmc_cmd |= CMD_CFG_NO_RESP;
}
if (data) {
cfg = meson_read(mmc, MESON_SD_EMMC_CFG);
cfg &= ~CFG_BL_LEN_MASK;
cfg |= ilog2(data->blocksize) << CFG_BL_LEN_SHIFT;
meson_write(mmc, cfg, MESON_SD_EMMC_CFG);
if (data->flags == MMC_DATA_WRITE)
meson_mmc_cmd |= CMD_CFG_DATA_WR;
meson_mmc_cmd |= CMD_CFG_DATA_IO | CMD_CFG_BLOCK_MODE |
data->blocks;
}
meson_mmc_cmd |= CMD_CFG_TIMEOUT_4S | CMD_CFG_OWNER |
CMD_CFG_END_OF_CHAIN;
meson_write(mmc, meson_mmc_cmd, MESON_SD_EMMC_CMD_CFG);
}
static void meson_mmc_setup_addr(struct mmc *mmc, struct mmc_data *data)
{
struct meson_mmc_plat *pdata = mmc->priv;
unsigned int data_size;
uint32_t data_addr = 0;
if (data) {
data_size = data->blocks * data->blocksize;
if (data->flags == MMC_DATA_READ) {
data_addr = (ulong) data->dest;
invalidate_dcache_range(data_addr,
data_addr + data_size);
} else {
pdata->w_buf = calloc(data_size, sizeof(char));
data_addr = (ulong) pdata->w_buf;
memcpy(pdata->w_buf, data->src, data_size);
flush_dcache_range(data_addr, data_addr + data_size);
}
}
meson_write(mmc, data_addr, MESON_SD_EMMC_CMD_DAT);
}
static void meson_mmc_read_response(struct mmc *mmc, struct mmc_cmd *cmd)
{
if (cmd->resp_type & MMC_RSP_136) {
cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP3);
cmd->response[1] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP2);
cmd->response[2] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP1);
cmd->response[3] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP);
} else {
cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP);
}
}
static int meson_dm_mmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
struct meson_mmc_plat *pdata = mmc->priv;
uint32_t status;
ulong start;
int ret = 0;
/* max block size supported by chip is 512 byte */
if (data && data->blocksize > 512)
return -EINVAL;
meson_mmc_setup_cmd(mmc, data, cmd);
meson_mmc_setup_addr(mmc, data);
meson_write(mmc, cmd->cmdarg, MESON_SD_EMMC_CMD_ARG);
/* use 10s timeout */
start = get_timer(0);
do {
status = meson_read(mmc, MESON_SD_EMMC_STATUS);
} while(!(status & STATUS_END_OF_CHAIN) && get_timer(start) < 10000);
if (!(status & STATUS_END_OF_CHAIN))
ret = -ETIMEDOUT;
else if (status & STATUS_RESP_TIMEOUT)
ret = -ETIMEDOUT;
else if (status & STATUS_ERR_MASK)
ret = -EIO;
meson_mmc_read_response(mmc, cmd);
if (data && data->flags == MMC_DATA_WRITE)
free(pdata->w_buf);
/* reset status bits */
meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS);
return ret;
}
static const struct dm_mmc_ops meson_dm_mmc_ops = {
.send_cmd = meson_dm_mmc_send_cmd,
.set_ios = meson_dm_mmc_set_ios,
};
static int meson_mmc_of_to_plat(struct udevice *dev)
{
struct meson_mmc_plat *pdata = dev_get_plat(dev);
fdt_addr_t addr;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
pdata->regbase = (void *)addr;
return 0;
}
static int meson_mmc_probe(struct udevice *dev)
{
struct meson_mmc_plat *pdata = dev_get_plat(dev);
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mmc *mmc = &pdata->mmc;
struct mmc_config *cfg = &pdata->cfg;
struct clk_bulk clocks;
uint32_t val;
int ret;
/* Enable the clocks feeding the MMC controller */
ret = clk_get_bulk(dev, &clocks);
if (ret)
return ret;
ret = clk_enable_bulk(&clocks);
if (ret)
return ret;
cfg->voltages = MMC_VDD_33_34 | MMC_VDD_32_33 |
MMC_VDD_31_32 | MMC_VDD_165_195;
cfg->host_caps = MMC_MODE_8BIT | MMC_MODE_4BIT |
MMC_MODE_HS_52MHz | MMC_MODE_HS;
cfg->f_min = DIV_ROUND_UP(SD_EMMC_CLKSRC_24M, CLK_MAX_DIV);
cfg->f_max = 100000000; /* 100 MHz */
cfg->b_max = 511; /* max 512 - 1 blocks */
cfg->name = dev->name;
mmc->priv = pdata;
upriv->mmc = mmc;
mmc_set_clock(mmc, cfg->f_min, MMC_CLK_ENABLE);
#ifdef CONFIG_MMC_PWRSEQ
/* Enable power if needed */
ret = mmc_pwrseq_get_power(dev, cfg);
if (!ret) {
ret = pwrseq_set_power(cfg->pwr_dev, true);
if (ret)
return ret;
}
#endif
/* reset all status bits */
meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS);
/* disable interrupts */
meson_write(mmc, 0, MESON_SD_EMMC_IRQ_EN);
/* enable auto clock mode */
val = meson_read(mmc, MESON_SD_EMMC_CFG);
val &= ~CFG_SDCLK_ALWAYS_ON;
val |= CFG_AUTO_CLK;
meson_write(mmc, val, MESON_SD_EMMC_CFG);
return 0;
}
int meson_mmc_bind(struct udevice *dev)
{
struct meson_mmc_plat *pdata = dev_get_plat(dev);
return mmc_bind(dev, &pdata->mmc, &pdata->cfg);
}
static const struct udevice_id meson_mmc_match[] = {
{ .compatible = "amlogic,meson-gx-mmc", .data = MMC_COMPATIBLE_GX },
{ .compatible = "amlogic,meson-axg-mmc", .data = MMC_COMPATIBLE_GX },
{ .compatible = "amlogic,meson-sm1-mmc", .data = MMC_COMPATIBLE_SM1 },
{ /* sentinel */ }
};
U_BOOT_DRIVER(meson_mmc) = {
.name = "meson_gx_mmc",
.id = UCLASS_MMC,
.of_match = meson_mmc_match,
.ops = &meson_dm_mmc_ops,
.probe = meson_mmc_probe,
.bind = meson_mmc_bind,
.of_to_plat = meson_mmc_of_to_plat,
.plat_auto = sizeof(struct meson_mmc_plat),
};