u-boot-brain/drivers/i2c/ocores_i2c.c

639 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* ocores-i2c.c: I2C bus driver for OpenCores I2C controller
* (https://opencores.org/projects/i2c)
*
* (C) Copyright Peter Korsgaard <peter@korsgaard.com>
*
* Copyright (C) 2020 SiFive, Inc.
* Pragnesh Patel <pragnesh.patel@sifive.com>
*
* Support for the GRLIB port of the controller by
* Andreas Larsson <andreas@gaisler.com>
*/
#include <common.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <clk.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <i2c.h>
#include <linux/io.h>
#include <linux/compat.h>
#include <linux/log2.h>
#include <linux/delay.h>
/* registers */
#define OCI2C_PRELOW 0
#define OCI2C_PREHIGH 1
#define OCI2C_CONTROL 2
#define OCI2C_DATA 3
#define OCI2C_CMD 4 /* write only */
#define OCI2C_STATUS 4 /* read only, same address as OCI2C_CMD */
#define OCI2C_CTRL_IEN 0x40
#define OCI2C_CTRL_EN 0x80
#define OCI2C_CMD_START 0x91
#define OCI2C_CMD_STOP 0x41
#define OCI2C_CMD_READ 0x21
#define OCI2C_CMD_WRITE 0x11
#define OCI2C_CMD_READ_ACK 0x21
#define OCI2C_CMD_READ_NACK 0x29
#define OCI2C_CMD_IACK 0x01
#define OCI2C_STAT_IF 0x01
#define OCI2C_STAT_TIP 0x02
#define OCI2C_STAT_ARBLOST 0x20
#define OCI2C_STAT_BUSY 0x40
#define OCI2C_STAT_NACK 0x80
#define STATE_DONE 0
#define STATE_START 1
#define STATE_WRITE 2
#define STATE_READ 3
#define STATE_ERROR 4
#define TYPE_OCORES 0
#define TYPE_GRLIB 1
#define OCORES_FLAG_BROKEN_IRQ BIT(1) /* Broken IRQ for FU540-C000 SoC */
struct ocores_i2c_bus {
void __iomem *base;
u32 reg_shift;
u32 reg_io_width;
unsigned long flags;
struct i2c_msg *msg;
int pos;
int nmsgs;
int state; /* see STATE_ */
struct clk clk;
int ip_clk_khz;
int bus_clk_khz;
void (*setreg)(struct ocores_i2c_bus *i2c, int reg, u8 value);
u8 (*getreg)(struct ocores_i2c_bus *i2c, int reg);
};
DECLARE_GLOBAL_DATA_PTR;
/* Boolean attribute values */
enum {
FALSE = 0,
TRUE,
};
static void oc_setreg_8(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
writeb(value, i2c->base + (reg << i2c->reg_shift));
}
static void oc_setreg_16(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
writew(value, i2c->base + (reg << i2c->reg_shift));
}
static void oc_setreg_32(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
writel(value, i2c->base + (reg << i2c->reg_shift));
}
static void oc_setreg_16be(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
out_be16(i2c->base + (reg << i2c->reg_shift), value);
}
static void oc_setreg_32be(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
out_be32(i2c->base + (reg << i2c->reg_shift), value);
}
static inline u8 oc_getreg_8(struct ocores_i2c_bus *i2c, int reg)
{
return readb(i2c->base + (reg << i2c->reg_shift));
}
static inline u8 oc_getreg_16(struct ocores_i2c_bus *i2c, int reg)
{
return readw(i2c->base + (reg << i2c->reg_shift));
}
static inline u8 oc_getreg_32(struct ocores_i2c_bus *i2c, int reg)
{
return readl(i2c->base + (reg << i2c->reg_shift));
}
static inline u8 oc_getreg_16be(struct ocores_i2c_bus *i2c, int reg)
{
return in_be16(i2c->base + (reg << i2c->reg_shift));
}
static inline u8 oc_getreg_32be(struct ocores_i2c_bus *i2c, int reg)
{
return in_be32(i2c->base + (reg << i2c->reg_shift));
}
static inline void oc_setreg(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
i2c->setreg(i2c, reg, value);
}
static inline u8 oc_getreg(struct ocores_i2c_bus *i2c, int reg)
{
return i2c->getreg(i2c, reg);
}
static inline u8 i2c_8bit_addr_from_msg(const struct i2c_msg *msg)
{
return (msg->addr << 1) | (msg->flags & I2C_M_RD ? 1 : 0);
}
static void ocores_process(struct ocores_i2c_bus *i2c, u8 stat)
{
struct i2c_msg *msg = i2c->msg;
if (i2c->state == STATE_DONE || i2c->state == STATE_ERROR) {
/* stop has been sent */
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_IACK);
return;
}
/* error? */
if (stat & OCI2C_STAT_ARBLOST) {
i2c->state = STATE_ERROR;
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);
return;
}
if (i2c->state == STATE_START || i2c->state == STATE_WRITE) {
i2c->state =
(msg->flags & I2C_M_RD) ? STATE_READ : STATE_WRITE;
if (stat & OCI2C_STAT_NACK) {
i2c->state = STATE_ERROR;
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);
return;
}
} else {
msg->buf[i2c->pos++] = oc_getreg(i2c, OCI2C_DATA);
}
/* end of msg? */
if (i2c->pos == msg->len) {
i2c->nmsgs--;
i2c->msg++;
i2c->pos = 0;
msg = i2c->msg;
if (i2c->nmsgs) { /* end? */
/* send start? */
if (!(msg->flags & I2C_M_NOSTART)) {
u8 addr = i2c_8bit_addr_from_msg(msg);
i2c->state = STATE_START;
oc_setreg(i2c, OCI2C_DATA, addr);
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);
return;
}
i2c->state = (msg->flags & I2C_M_RD)
? STATE_READ : STATE_WRITE;
} else {
i2c->state = STATE_DONE;
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_STOP);
return;
}
}
if (i2c->state == STATE_READ) {
oc_setreg(i2c, OCI2C_CMD, i2c->pos == (msg->len - 1) ?
OCI2C_CMD_READ_NACK : OCI2C_CMD_READ_ACK);
} else {
oc_setreg(i2c, OCI2C_DATA, msg->buf[i2c->pos++]);
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_WRITE);
}
}
static irqreturn_t ocores_isr(int irq, void *dev_id)
{
struct ocores_i2c_bus *i2c = dev_id;
u8 stat = oc_getreg(i2c, OCI2C_STATUS);
if (i2c->flags & OCORES_FLAG_BROKEN_IRQ) {
if ((stat & OCI2C_STAT_IF) && !(stat & OCI2C_STAT_BUSY))
return IRQ_NONE;
} else if (!(stat & OCI2C_STAT_IF)) {
return IRQ_NONE;
}
ocores_process(i2c, stat);
return IRQ_HANDLED;
}
/**
* Wait until something change in a given register
* @i2c: ocores I2C device instance
* @reg: register to query
* @mask: bitmask to apply on register value
* @val: expected result
* @msec: timeout in msec
*
* Timeout is necessary to avoid to stay here forever when the chip
* does not answer correctly.
*
* Return: 0 on success, -ETIMEDOUT on timeout
*/
static int ocores_wait(struct ocores_i2c_bus *i2c,
int reg, u8 mask, u8 val,
const unsigned long msec)
{
u32 count = 0;
while (1) {
u8 status = oc_getreg(i2c, reg);
if ((status & mask) == val)
break;
udelay(1);
count += 1;
if (count == (1000 * msec))
return -ETIMEDOUT;
}
return 0;
}
/**
* Wait until is possible to process some data
* @i2c: ocores I2C device instance
*
* Used when the device is in polling mode (interrupts disabled).
*
* Return: 0 on success, -ETIMEDOUT on timeout
*/
static int ocores_poll_wait(struct ocores_i2c_bus *i2c)
{
u8 mask;
int err;
if (i2c->state == STATE_DONE || i2c->state == STATE_ERROR) {
/* transfer is over */
mask = OCI2C_STAT_BUSY;
} else {
/* on going transfer */
mask = OCI2C_STAT_TIP;
/*
* We wait for the data to be transferred (8bit),
* then we start polling on the ACK/NACK bit
*/
udelay((8 * 1000) / i2c->bus_clk_khz);
}
/*
* once we are here we expect to get the expected result immediately
* so if after 1ms we timeout then something is broken.
*/
err = ocores_wait(i2c, OCI2C_STATUS, mask, 0, 1);
if (err)
debug("%s: STATUS timeout, bit 0x%x did not clear in 1ms\n",
__func__, mask);
return err;
}
/**
* It handles an IRQ-less transfer
* @i2c: ocores I2C device instance
*
* Even if IRQ are disabled, the I2C OpenCore IP behavior is exactly the same
* (only that IRQ are not produced). This means that we can re-use entirely
* ocores_isr(), we just add our polling code around it.
*
* It can run in atomic context
*/
static void ocores_process_polling(struct ocores_i2c_bus *i2c)
{
while (1) {
irqreturn_t ret;
int err;
err = ocores_poll_wait(i2c);
if (err) {
i2c->state = STATE_ERROR;
break; /* timeout */
}
ret = ocores_isr(-1, i2c);
if (ret == IRQ_NONE) {
break; /* all messages have been transferred */
} else {
if (i2c->flags & OCORES_FLAG_BROKEN_IRQ)
if (i2c->state == STATE_DONE)
break;
}
}
}
static int ocores_xfer_core(struct ocores_i2c_bus *i2c,
struct i2c_msg *msgs, int num, bool polling)
{
u8 ctrl;
ctrl = oc_getreg(i2c, OCI2C_CONTROL);
if (polling)
oc_setreg(i2c, OCI2C_CONTROL, ctrl & ~OCI2C_CTRL_IEN);
i2c->msg = msgs;
i2c->pos = 0;
i2c->nmsgs = num;
i2c->state = STATE_START;
oc_setreg(i2c, OCI2C_DATA, i2c_8bit_addr_from_msg(i2c->msg));
oc_setreg(i2c, OCI2C_CMD, OCI2C_CMD_START);
if (polling)
ocores_process_polling(i2c);
return (i2c->state == STATE_DONE) ? num : -EIO;
}
static int ocores_i2c_xfer(struct udevice *dev, struct i2c_msg *msg, int nmsgs)
{
struct ocores_i2c_bus *bus = dev_get_priv(dev);
int ret;
debug("i2c_xfer: %d messages\n", nmsgs);
ret = ocores_xfer_core(bus, msg, nmsgs, 1);
if (ret != nmsgs) {
debug("i2c_write: error sending\n");
return -EREMOTEIO;
}
return 0;
}
static int ocores_i2c_enable_clk(struct udevice *dev)
{
struct ocores_i2c_bus *bus = dev_get_priv(dev);
ulong clk_rate;
int ret;
ret = clk_get_by_index(dev, 0, &bus->clk);
if (ret)
return -EINVAL;
ret = clk_enable(&bus->clk);
if (ret)
return ret;
clk_rate = clk_get_rate(&bus->clk);
if (!clk_rate)
return -EINVAL;
bus->ip_clk_khz = clk_rate / 1000;
clk_free(&bus->clk);
return 0;
}
static int ocores_init(struct udevice *dev, struct ocores_i2c_bus *bus)
{
int prescale;
int diff;
u8 ctrl = oc_getreg(bus, OCI2C_CONTROL);
/* make sure the device is disabled */
ctrl &= ~(OCI2C_CTRL_EN | OCI2C_CTRL_IEN);
oc_setreg(bus, OCI2C_CONTROL, ctrl);
prescale = (bus->ip_clk_khz / (5 * bus->bus_clk_khz)) - 1;
prescale = clamp(prescale, 0, 0xffff);
diff = bus->ip_clk_khz / (5 * (prescale + 1)) - bus->bus_clk_khz;
if (abs(diff) > bus->bus_clk_khz / 10) {
debug("Unsupported clock settings: core: %d KHz, bus: %d KHz\n",
bus->ip_clk_khz, bus->bus_clk_khz);
return -EINVAL;
}
oc_setreg(bus, OCI2C_PRELOW, prescale & 0xff);
oc_setreg(bus, OCI2C_PREHIGH, prescale >> 8);
/* Init the device */
oc_setreg(bus, OCI2C_CMD, OCI2C_CMD_IACK);
oc_setreg(bus, OCI2C_CONTROL, ctrl | OCI2C_CTRL_EN);
return 0;
}
/*
* Read and write functions for the GRLIB port of the controller. Registers are
* 32-bit big endian and the PRELOW and PREHIGH registers are merged into one
* register. The subsequent registers have their offsets decreased accordingly.
*/
static u8 oc_getreg_grlib(struct ocores_i2c_bus *i2c, int reg)
{
u32 rd;
int rreg = reg;
if (reg != OCI2C_PRELOW)
rreg--;
rd = in_be32(i2c->base + (rreg << i2c->reg_shift));
if (reg == OCI2C_PREHIGH)
return (u8)(rd >> 8);
else
return (u8)rd;
}
static void oc_setreg_grlib(struct ocores_i2c_bus *i2c, int reg, u8 value)
{
u32 curr, wr;
int rreg = reg;
if (reg != OCI2C_PRELOW)
rreg--;
if (reg == OCI2C_PRELOW || reg == OCI2C_PREHIGH) {
curr = in_be32(i2c->base + (rreg << i2c->reg_shift));
if (reg == OCI2C_PRELOW)
wr = (curr & 0xff00) | value;
else
wr = (((u32)value) << 8) | (curr & 0xff);
} else {
wr = value;
}
out_be32(i2c->base + (rreg << i2c->reg_shift), wr);
}
static int ocores_i2c_set_bus_speed(struct udevice *dev, unsigned int speed)
{
int prescale;
int diff;
struct ocores_i2c_bus *bus = dev_get_priv(dev);
/* speed in Khz */
speed = speed / 1000;
prescale = (bus->ip_clk_khz / (5 * speed)) - 1;
prescale = clamp(prescale, 0, 0xffff);
diff = bus->ip_clk_khz / (5 * (prescale + 1)) - speed;
if (abs(diff) > speed / 10) {
debug("Unsupported clock settings: core: %d KHz, bus: %d KHz\n",
bus->ip_clk_khz, speed);
return -EINVAL;
}
oc_setreg(bus, OCI2C_PRELOW, prescale & 0xff);
oc_setreg(bus, OCI2C_PREHIGH, prescale >> 8);
bus->bus_clk_khz = speed;
return 0;
}
int ocores_i2c_get_bus_speed(struct udevice *dev)
{
struct ocores_i2c_bus *bus = dev_get_priv(dev);
return (bus->bus_clk_khz * 1000);
}
static const struct dm_i2c_ops ocores_i2c_ops = {
.xfer = ocores_i2c_xfer,
.set_bus_speed = ocores_i2c_set_bus_speed,
.get_bus_speed = ocores_i2c_get_bus_speed,
};
static int ocores_i2c_probe(struct udevice *dev)
{
struct ocores_i2c_bus *bus = dev_get_priv(dev);
bool clock_frequency_present;
u32 val;
u32 clock_frequency_khz;
int ret;
bus->base = (void __iomem *)devfdt_get_addr(dev);
if (dev_read_u32(dev, "reg-shift", &bus->reg_shift)) {
/* no 'reg-shift', check for deprecated 'regstep' */
ret = dev_read_u32(dev, "regstep", &val);
if (ret) {
dev_err(dev,
"missing both reg-shift and regstep property: %d\n", ret);
return -EINVAL;
} else {
bus->reg_shift = ilog2(val);
dev_warn(dev,
"regstep property deprecated, use reg-shift\n");
}
}
if (dev_read_u32(dev, "clock-frequency", &val)) {
bus->bus_clk_khz = 100;
clock_frequency_present = FALSE;
} else {
bus->bus_clk_khz = val / 1000;
clock_frequency_khz = val / 1000;
clock_frequency_present = TRUE;
}
ret = ocores_i2c_enable_clk(dev);
if (ret)
return ret;
if (bus->ip_clk_khz == 0) {
if (dev_read_u32(dev, "opencores,ip-clock-frequency", &val)) {
if (!clock_frequency_present) {
dev_err(dev,
"Missing required parameter 'opencores,ip-clock-frequency'\n");
clk_disable(&bus->clk);
return -ENODEV;
}
bus->ip_clk_khz = clock_frequency_khz;
dev_warn(dev,
"Deprecated usage of the 'clock-frequency' property, please update to 'opencores,ip-clock-frequency'\n");
} else {
bus->ip_clk_khz = val / 1000;
if (clock_frequency_present)
bus->bus_clk_khz = clock_frequency_khz;
}
}
bus->reg_io_width = dev_read_u32_default(dev, "reg-io-width", 1);
if (dev_get_driver_data(dev) == TYPE_GRLIB) {
debug("GRLIB variant of i2c-ocores\n");
bus->setreg = oc_setreg_grlib;
bus->getreg = oc_getreg_grlib;
}
if (!bus->setreg || !bus->getreg) {
bool be = (cpu_to_be32(0x12345678) == 0x12345678);
switch (bus->reg_io_width) {
case 1:
bus->setreg = oc_setreg_8;
bus->getreg = oc_getreg_8;
break;
case 2:
bus->setreg = be ? oc_setreg_16be : oc_setreg_16;
bus->getreg = be ? oc_getreg_16be : oc_getreg_16;
break;
case 4:
bus->setreg = be ? oc_setreg_32be : oc_setreg_32;
bus->getreg = be ? oc_getreg_32be : oc_getreg_32;
break;
default:
debug("Unsupported I/O width (%d)\n",
bus->reg_io_width);
ret = -EINVAL;
goto err_clk;
}
}
/*
* Set OCORES_FLAG_BROKEN_IRQ to enable workaround for
* FU540-C000 SoC in polling mode.
* Since the SoC does have an interrupt, its DT has an interrupt
* property - But this should be bypassed as the IRQ logic in this
* SoC is broken.
*/
if (device_is_compatible(dev, "sifive,fu540-c000-i2c"))
bus->flags |= OCORES_FLAG_BROKEN_IRQ;
ret = ocores_init(dev, bus);
if (ret)
goto err_clk;
return 0;
err_clk:
clk_disable(&bus->clk);
return ret;
}
static const struct udevice_id ocores_i2c_ids[] = {
{ .compatible = "opencores,i2c-ocores", .data = TYPE_OCORES },
{ .compatible = "aeroflexgaisler,i2cmst", .data = TYPE_GRLIB },
{ .compatible = "sifive,fu540-c000-i2c" },
{ .compatible = "sifive,i2c0" },
};
U_BOOT_DRIVER(i2c_ocores) = {
.name = "i2c_ocores",
.id = UCLASS_I2C,
.of_match = ocores_i2c_ids,
.probe = ocores_i2c_probe,
.priv_auto = sizeof(struct ocores_i2c_bus),
.ops = &ocores_i2c_ops,
};