u-boot-brain/arch/mips/mach-mtmips/ddr_init.c
Weijie Gao f0a865bd55 mips: mtmips: add support to initialize SDRAM
This patch adds support for mtmips SoCs to initialize the SDRAM.

Reviewed-by: Stefan Roese <sr@denx.de>
Signed-off-by: Weijie Gao <weijie.gao@mediatek.com>
2021-01-24 21:39:26 +01:00

255 lines
5.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 MediaTek Inc.
*
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include <common.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <mach/ddr.h>
#include <mach/mc.h>
#define DDR_BW_TEST_PAT 0xaa5555aa
static const u32 sdr_size_cfg1[] = {
[DRAM_8MB] = (1 << NUMROWS_S),
[DRAM_16MB] = (1 << NUMROWS_S) | (1 << NUMCOLS_S),
[DRAM_32MB] = (2 << NUMROWS_S) | (1 << NUMCOLS_S),
[DRAM_64MB] = (2 << NUMROWS_S) | (2 << NUMCOLS_S),
};
static const u32 dram_size[] = {
[DRAM_8MB] = SZ_8M,
[DRAM_16MB] = SZ_16M,
[DRAM_32MB] = SZ_32M,
[DRAM_64MB] = SZ_64M,
[DRAM_128MB] = SZ_128M,
[DRAM_256MB] = SZ_256M,
};
static void dram_test_write(u32 addr, u32 val)
{
volatile ulong *target = (volatile ulong *)(KSEG1 + addr);
sync();
*target = val;
sync();
}
static u32 dram_test_read(u32 addr)
{
volatile ulong *target = (volatile ulong *)(KSEG1 + addr);
u32 val;
sync();
val = *target;
sync();
return val;
}
static int dram_addr_test_bit(u32 bit)
{
u32 val;
dram_test_write(0, 0);
dram_test_write(BIT(bit), DDR_BW_TEST_PAT);
val = dram_test_read(0);
if (val == DDR_BW_TEST_PAT)
return 1;
return 0;
}
static void mc_ddr_init(void __iomem *memc, const struct mc_ddr_cfg *cfg,
u32 dq_dly, u32 dqs_dly, mc_reset_t mc_reset, u32 bw)
{
u32 val;
mc_reset(1);
__udelay(200);
mc_reset(0);
clrbits_32(memc + MEMCTL_SDRAM_CFG1_REG, RBC_MAPPING);
writel(cfg->cfg2, memc + MEMCTL_DDR_CFG2_REG);
writel(cfg->cfg3, memc + MEMCTL_DDR_CFG3_REG);
writel(cfg->cfg4, memc + MEMCTL_DDR_CFG4_REG);
writel(dq_dly, memc + MEMCTL_DDR_DQ_DLY_REG);
writel(dqs_dly, memc + MEMCTL_DDR_DQS_DLY_REG);
writel(cfg->cfg0, memc + MEMCTL_DDR_CFG0_REG);
val = cfg->cfg1;
if (bw) {
val &= ~IND_SDRAM_WIDTH_M;
val |= (bw << IND_SDRAM_WIDTH_S) & IND_SDRAM_WIDTH_M;
}
writel(val, memc + MEMCTL_DDR_CFG1_REG);
clrsetbits_32(memc + MEMCTL_PWR_SAVE_CNT_REG, SR_TAR_CNT_M,
1 << SR_TAR_CNT_S);
setbits_32(memc + MEMCTL_DDR_SELF_REFRESH_REG, SR_AUTO_EN);
}
void ddr1_init(struct mc_ddr_init_param *param)
{
enum mc_dram_size sz;
u32 bw = 0;
/* First initialization, determine bus width */
mc_ddr_init(param->memc, &param->cfgs[DRAM_8MB], param->dq_dly,
param->dqs_dly, param->mc_reset, IND_SDRAM_WIDTH_16BIT);
/* Test bus width */
dram_test_write(0, DDR_BW_TEST_PAT);
if (dram_test_read(0) == DDR_BW_TEST_PAT)
bw = IND_SDRAM_WIDTH_16BIT;
else
bw = IND_SDRAM_WIDTH_8BIT;
/* Second initialization, determine DDR capacity */
mc_ddr_init(param->memc, &param->cfgs[DRAM_128MB], param->dq_dly,
param->dqs_dly, param->mc_reset, bw);
if (dram_addr_test_bit(9)) {
sz = DRAM_8MB;
} else {
if (dram_addr_test_bit(10)) {
if (dram_addr_test_bit(23))
sz = DRAM_16MB;
else
sz = DRAM_32MB;
} else {
if (dram_addr_test_bit(24))
sz = DRAM_64MB;
else
sz = DRAM_128MB;
}
}
/* Final initialization, with DDR calibration */
mc_ddr_init(param->memc, &param->cfgs[sz], param->dq_dly,
param->dqs_dly, param->mc_reset, bw);
/* Return actual DDR configuration */
param->memsize = dram_size[sz];
param->bus_width = bw;
}
void ddr2_init(struct mc_ddr_init_param *param)
{
enum mc_dram_size sz;
u32 bw = 0;
/* First initialization, determine bus width */
mc_ddr_init(param->memc, &param->cfgs[DRAM_32MB], param->dq_dly,
param->dqs_dly, param->mc_reset, IND_SDRAM_WIDTH_16BIT);
/* Test bus width */
dram_test_write(0, DDR_BW_TEST_PAT);
if (dram_test_read(0) == DDR_BW_TEST_PAT)
bw = IND_SDRAM_WIDTH_16BIT;
else
bw = IND_SDRAM_WIDTH_8BIT;
/* Second initialization, determine DDR capacity */
mc_ddr_init(param->memc, &param->cfgs[DRAM_256MB], param->dq_dly,
param->dqs_dly, param->mc_reset, bw);
if (bw == IND_SDRAM_WIDTH_16BIT) {
if (dram_addr_test_bit(10)) {
sz = DRAM_32MB;
} else {
if (dram_addr_test_bit(24)) {
if (dram_addr_test_bit(27))
sz = DRAM_64MB;
else
sz = DRAM_128MB;
} else {
sz = DRAM_256MB;
}
}
} else {
if (dram_addr_test_bit(23)) {
sz = DRAM_32MB;
} else {
if (dram_addr_test_bit(24)) {
if (dram_addr_test_bit(27))
sz = DRAM_64MB;
else
sz = DRAM_128MB;
} else {
sz = DRAM_256MB;
}
}
}
/* Final initialization, with DDR calibration */
mc_ddr_init(param->memc, &param->cfgs[sz], param->dq_dly,
param->dqs_dly, param->mc_reset, bw);
/* Return actual DDR configuration */
param->memsize = dram_size[sz];
param->bus_width = bw;
}
static void mc_sdr_init(void __iomem *memc, mc_reset_t mc_reset, u32 cfg0,
u32 cfg1)
{
mc_reset(1);
__udelay(200);
mc_reset(0);
writel(cfg0, memc + MEMCTL_SDRAM_CFG0_REG);
writel(cfg1, memc + MEMCTL_SDRAM_CFG1_REG);
while (!(readl(memc + MEMCTL_SDRAM_CFG1_REG) & SDRAM_INIT_DONE))
;
clrsetbits_32(memc + MEMCTL_PWR_SAVE_CNT_REG, SR_TAR_CNT_M,
1 << SR_TAR_CNT_S);
setbits_32(memc + MEMCTL_DDR_SELF_REFRESH_REG, SR_AUTO_EN);
}
void sdr_init(struct mc_ddr_init_param *param)
{
enum mc_dram_size sz;
u32 cfg1;
cfg1 = param->sdr_cfg1 | SDRAM_INIT_START;
cfg1 &= ~(NUMCOLS_M | NUMROWS_M);
/* First initialization, determine SDR capacity */
mc_sdr_init(param->memc, param->mc_reset, param->sdr_cfg0,
cfg1 | sdr_size_cfg1[DRAM_64MB]);
if (dram_addr_test_bit(9)) {
sz = DRAM_8MB;
} else {
if (dram_addr_test_bit(10)) {
if (dram_addr_test_bit(23))
sz = DRAM_16MB;
else
sz = DRAM_32MB;
} else {
sz = DRAM_64MB;
}
}
/* Final initialization */
mc_sdr_init(param->memc, param->mc_reset, param->sdr_cfg0,
cfg1 | sdr_size_cfg1[sz]);
/* Return actual DDR configuration */
param->memsize = dram_size[sz];
}