u-boot-brain/arch/arm/mach-sunxi/dram_sun50i_h6.c
Jernej Skrabec ec9cdaaa13 sunxi: dram: h6: Improve DDR3 config detection
It turns out that in rare cases, current analytical approach to detect
correct DRAM bus width and rank on H6 doesn't work. On some TV boxes
with DDR3, incorrect DRAM configuration triggers write leveling error
which immediately stops initialization process. Exact reason why this
error appears isn't known. However, if correct configuration is used,
initalization works without problem.

In order to fix this issue, simply try another configuration when any
kind of error appears during initialization, not just those related to
rank and bus width.

Signed-off-by: Jernej Skrabec <jernej.skrabec@siol.net>
Tested-by: Thomas Graichen <thomas.graichen@googlemail.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Tested-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
2021-01-11 23:19:34 +00:00

700 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* sun50i H6 platform dram controller init
*
* (C) Copyright 2017 Icenowy Zheng <icenowy@aosc.io>
*
*/
#include <common.h>
#include <init.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/cpu.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/kconfig.h>
/*
* The DRAM controller structure on H6 is similar to the ones on A23/A80:
* they all contains 3 parts, COM, CTL and PHY. (As a note on A33/A83T/H3/A64
* /H5/R40 CTL and PHY is composed).
*
* COM is allwinner-specific. On H6, the address mapping function is moved
* from COM to CTL (with the standard ADDRMAP registers on DesignWare memory
* controller).
*
* CTL (controller) and PHY is from DesignWare.
*
* The CTL part is a bit similar to the one on A23/A80 (because they all
* originate from DesignWare), but gets more registers added.
*
* The PHY part is quite new, not seen in any previous Allwinner SoCs, and
* not seen on other SoCs in U-Boot. The only SoC that is also known to have
* similar PHY is ZynqMP.
*/
static void mctl_sys_init(struct dram_para *para);
static void mctl_com_init(struct dram_para *para);
static bool mctl_channel_init(struct dram_para *para);
static bool mctl_core_init(struct dram_para *para)
{
mctl_sys_init(para);
mctl_com_init(para);
switch (para->type) {
case SUNXI_DRAM_TYPE_LPDDR3:
case SUNXI_DRAM_TYPE_DDR3:
mctl_set_timing_params(para);
break;
default:
panic("Unsupported DRAM type!");
};
return mctl_channel_init(para);
}
/* PHY initialisation */
static void mctl_phy_pir_init(u32 val)
{
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
writel(val, &mctl_phy->pir);
writel(val | BIT(0), &mctl_phy->pir); /* Start initialisation. */
mctl_await_completion(&mctl_phy->pgsr[0], BIT(0), BIT(0));
}
enum {
MBUS_PORT_CPU = 0,
MBUS_PORT_GPU = 1,
MBUS_PORT_MAHB = 2,
MBUS_PORT_DMA = 3,
MBUS_PORT_VE = 4,
MBUS_PORT_CE = 5,
MBUS_PORT_TSC0 = 6,
MBUS_PORT_NDFC0 = 8,
MBUS_PORT_CSI0 = 11,
MBUS_PORT_DI0 = 14,
MBUS_PORT_DI1 = 15,
MBUS_PORT_DE300 = 16,
MBUS_PORT_IOMMU = 25,
MBUS_PORT_VE2 = 26,
MBUS_PORT_USB3 = 37,
MBUS_PORT_PCIE = 38,
MBUS_PORT_VP9 = 39,
MBUS_PORT_HDCP2 = 40,
};
enum {
MBUS_QOS_LOWEST = 0,
MBUS_QOS_LOW,
MBUS_QOS_HIGH,
MBUS_QOS_HIGHEST
};
inline void mbus_configure_port(u8 port,
bool bwlimit,
bool priority,
u8 qos,
u8 waittime,
u8 acs,
u16 bwl0,
u16 bwl1,
u16 bwl2)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0)
| (priority ? (1 << 1) : 0)
| ((qos & 0x3) << 2)
| ((waittime & 0xf) << 4)
| ((acs & 0xff) << 8)
| (bwl0 << 16) );
const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff);
debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1);
writel(cfg0, &mctl_com->master[port].cfg0);
writel(cfg1, &mctl_com->master[port].cfg1);
}
#define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \
mbus_configure_port(MBUS_PORT_ ## port, bwlimit, false, \
MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2)
static void mctl_set_master_priority(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
/* enable bandwidth limit windows and set windows size 1us */
writel(399, &mctl_com->tmr);
writel(BIT(16), &mctl_com->bwcr);
MBUS_CONF( CPU, true, HIGHEST, 0, 256, 128, 100);
MBUS_CONF( GPU, true, HIGH, 0, 1536, 1400, 256);
MBUS_CONF( MAHB, true, HIGHEST, 0, 512, 256, 96);
MBUS_CONF( DMA, true, HIGH, 0, 256, 100, 80);
MBUS_CONF( VE, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF( CE, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( TSC0, true, HIGH, 2, 100, 64, 32);
MBUS_CONF(NDFC0, true, HIGH, 0, 256, 128, 64);
MBUS_CONF( CSI0, true, HIGH, 0, 256, 128, 100);
MBUS_CONF( DI0, true, HIGH, 0, 1024, 256, 64);
MBUS_CONF(DE300, true, HIGHEST, 6, 8192, 2800, 2400);
MBUS_CONF(IOMMU, true, HIGHEST, 0, 100, 64, 32);
MBUS_CONF( VE2, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF( USB3, true, HIGH, 0, 256, 128, 64);
MBUS_CONF( PCIE, true, HIGH, 2, 100, 64, 32);
MBUS_CONF( VP9, true, HIGH, 2, 8192, 5500, 5000);
MBUS_CONF(HDCP2, true, HIGH, 2, 100, 64, 32);
}
static void mctl_sys_init(struct dram_para *para)
{
struct sunxi_ccm_reg * const ccm =
(struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
/* Put all DRAM-related blocks to reset state */
clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE | MBUS_RESET);
clrbits_le32(&ccm->dram_gate_reset, BIT(0));
udelay(5);
writel(0, &ccm->dram_gate_reset);
clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN);
clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Set PLL5 rate to doubled DRAM clock rate */
writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN |
CCM_PLL5_CTRL_N(para->clk * 2 / 24 - 1), &ccm->pll5_cfg);
mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK);
/* Configure DRAM mod clock */
writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg);
setbits_le32(&ccm->dram_clk_cfg, DRAM_CLK_UPDATE);
writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset);
udelay(5);
setbits_le32(&ccm->dram_gate_reset, BIT(0));
/* Disable all channels */
writel(0, &mctl_com->maer0);
writel(0, &mctl_com->maer1);
writel(0, &mctl_com->maer2);
/* Configure MBUS and enable DRAM mod reset */
setbits_le32(&ccm->mbus_cfg, MBUS_RESET);
setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE);
setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET);
udelay(5);
/* Unknown hack from the BSP, which enables access of mctl_ctl regs */
writel(0x8000, &mctl_ctl->unk_0x00c);
}
static void mctl_set_addrmap(struct dram_para *para)
{
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
u8 cols = para->cols;
u8 rows = para->rows;
u8 ranks = para->ranks;
if (!para->bus_full_width)
cols -= 1;
/* Ranks */
if (ranks == 2)
mctl_ctl->addrmap[0] = rows + cols - 3;
else
mctl_ctl->addrmap[0] = 0x1F;
/* Banks, hardcoded to 8 banks now */
mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16;
/* Columns */
mctl_ctl->addrmap[2] = 0;
switch (cols) {
case 7:
mctl_ctl->addrmap[3] = 0x1F1F1F00;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 8:
mctl_ctl->addrmap[3] = 0x1F1F0000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 9:
mctl_ctl->addrmap[3] = 0x1F000000;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 10:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F1F;
break;
case 11:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0x1F00;
break;
case 12:
mctl_ctl->addrmap[3] = 0;
mctl_ctl->addrmap[4] = 0;
break;
default:
panic("Unsupported DRAM configuration: column number invalid\n");
}
/* Rows */
mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
switch (rows) {
case 13:
mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 14:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 15:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000;
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 16:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = 0x0F0F;
break;
case 17:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00;
break;
case 18:
mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24);
mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8);
break;
default:
panic("Unsupported DRAM configuration: row number invalid\n");
}
/* Bank groups, DDR4 only */
mctl_ctl->addrmap[8] = 0x3F3F;
}
static void mctl_com_init(struct dram_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
u32 reg_val, tmp;
mctl_set_addrmap(para);
setbits_le32(&mctl_com->cr, BIT(31));
/* The bonding ID seems to be always 7. */
if (readl(SUNXI_SIDC_BASE + 0x100) == 7) /* bonding ID */
clrbits_le32(&mctl_com->cr, BIT(27));
else if (readl(SUNXI_SIDC_BASE + 0x100) == 3)
setbits_le32(&mctl_com->cr, BIT(27));
if (para->clk > 408)
reg_val = 0xf00;
else if (para->clk > 246)
reg_val = 0x1f00;
else
reg_val = 0x3f00;
clrsetbits_le32(&mctl_com->unk_0x008, 0x3f00, reg_val);
/* TODO: DDR4 */
reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks);
if (para->type == SUNXI_DRAM_TYPE_LPDDR3)
reg_val |= MSTR_DEVICETYPE_LPDDR3;
if (para->type == SUNXI_DRAM_TYPE_DDR3)
reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE;
if (para->bus_full_width)
reg_val |= MSTR_BUSWIDTH_FULL;
else
reg_val |= MSTR_BUSWIDTH_HALF;
writel(reg_val | BIT(31), &mctl_ctl->mstr);
if (para->type == SUNXI_DRAM_TYPE_LPDDR3)
reg_val = DCR_LPDDR3 | DCR_DDR8BANK;
if (para->type == SUNXI_DRAM_TYPE_DDR3)
reg_val = DCR_DDR3 | DCR_DDR8BANK | DCR_DDR2T;
writel(reg_val | 0x400, &mctl_phy->dcr);
if (para->ranks == 2)
writel(0x0303, &mctl_ctl->odtmap);
else
writel(0x0201, &mctl_ctl->odtmap);
/* TODO: DDR4 */
if (para->type == SUNXI_DRAM_TYPE_LPDDR3) {
tmp = para->clk * 7 / 2000;
reg_val = 0x0400;
reg_val |= (tmp + 7) << 24;
reg_val |= (((para->clk < 400) ? 3 : 4) - tmp) << 16;
} else if (para->type == SUNXI_DRAM_TYPE_DDR3) {
reg_val = 0x06000400; /* TODO?: Use CL - CWL value in [7:0] */
} else {
panic("Only (LP)DDR3 supported (type = %d)\n", para->type);
}
writel(reg_val, &mctl_ctl->odtcfg);
if (!para->bus_full_width) {
writel(0x0, &mctl_phy->dx[2].gcr[0]);
writel(0x0, &mctl_phy->dx[3].gcr[0]);
}
}
static void mctl_bit_delay_set(struct dram_para *para)
{
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
int i, j;
u32 val;
for (i = 0; i < 4; i++) {
val = readl(&mctl_phy->dx[i].bdlr0);
for (j = 0; j < 4; j++)
val += para->dx_write_delays[i][j] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr0);
val = readl(&mctl_phy->dx[i].bdlr1);
for (j = 0; j < 4; j++)
val += para->dx_write_delays[i][j + 4] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr1);
val = readl(&mctl_phy->dx[i].bdlr2);
for (j = 0; j < 4; j++)
val += para->dx_write_delays[i][j + 8] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr2);
}
clrbits_le32(&mctl_phy->pgcr[0], BIT(26));
for (i = 0; i < 4; i++) {
val = readl(&mctl_phy->dx[i].bdlr3);
for (j = 0; j < 4; j++)
val += para->dx_read_delays[i][j] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr3);
val = readl(&mctl_phy->dx[i].bdlr4);
for (j = 0; j < 4; j++)
val += para->dx_read_delays[i][j + 4] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr4);
val = readl(&mctl_phy->dx[i].bdlr5);
for (j = 0; j < 4; j++)
val += para->dx_read_delays[i][j + 8] << (j * 8);
writel(val, &mctl_phy->dx[i].bdlr5);
val = readl(&mctl_phy->dx[i].bdlr6);
val += (para->dx_read_delays[i][12] << 8) |
(para->dx_read_delays[i][13] << 16);
writel(val, &mctl_phy->dx[i].bdlr6);
}
setbits_le32(&mctl_phy->pgcr[0], BIT(26));
udelay(1);
if (para->type != SUNXI_DRAM_TYPE_LPDDR3)
return;
for (i = 1; i < 14; i++) {
val = readl(&mctl_phy->acbdlr[i]);
val += 0x0a0a0a0a;
writel(val, &mctl_phy->acbdlr[i]);
}
}
static bool mctl_channel_init(struct dram_para *para)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct sunxi_mctl_ctl_reg * const mctl_ctl =
(struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE;
struct sunxi_mctl_phy_reg * const mctl_phy =
(struct sunxi_mctl_phy_reg *)SUNXI_DRAM_PHY0_BASE;
int i;
u32 val;
setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30));
setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30));
writel(0x2f05, &mctl_ctl->sched[0]);
setbits_le32(&mctl_ctl->rfshctl3, BIT(0));
setbits_le32(&mctl_ctl->dfimisc, BIT(0));
setbits_le32(&mctl_ctl->unk_0x00c, BIT(8));
clrsetbits_le32(&mctl_phy->pgcr[1], 0x180, 0xc0);
/* TODO: non-LPDDR3 types */
clrsetbits_le32(&mctl_phy->pgcr[2], GENMASK(17, 0), ns_to_t(7800));
clrbits_le32(&mctl_phy->pgcr[6], BIT(0));
clrsetbits_le32(&mctl_phy->dxccr, 0xee0, 0x220);
/* TODO: VT compensation */
clrsetbits_le32(&mctl_phy->dsgcr, BIT(0), 0x440060);
clrbits_le32(&mctl_phy->vtcr[1], BIT(1));
for (i = 0; i < 4; i++)
clrsetbits_le32(&mctl_phy->dx[i].gcr[0], 0xe00, 0x800);
for (i = 0; i < 4; i++)
clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, 0x5555);
for (i = 0; i < 4; i++)
clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, 0x1010);
udelay(100);
if (para->ranks == 2)
setbits_le32(&mctl_phy->dtcr[1], 0x30000);
else
clrsetbits_le32(&mctl_phy->dtcr[1], 0x30000, 0x10000);
if (sunxi_dram_is_lpddr(para->type))
clrbits_le32(&mctl_phy->dtcr[1], BIT(1));
if (para->ranks == 2) {
writel(0x00010001, &mctl_phy->rankidr);
writel(0x20000, &mctl_phy->odtcr);
} else {
writel(0x0, &mctl_phy->rankidr);
writel(0x10000, &mctl_phy->odtcr);
}
/* set bits [3:0] to 1? 0 not valid in ZynqMP d/s */
if (para->type == SUNXI_DRAM_TYPE_LPDDR3)
clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000040);
else
clrsetbits_le32(&mctl_phy->dtcr[0], 0xF0000000, 0x10000000);
if (para->clk <= 792) {
if (para->clk <= 672) {
if (para->clk <= 600)
val = 0x300;
else
val = 0x400;
} else {
val = 0x500;
}
} else {
val = 0x600;
}
/* FIXME: NOT REVIEWED YET */
clrsetbits_le32(&mctl_phy->zq[0].zqcr, 0x700, val);
clrsetbits_le32(&mctl_phy->zq[0].zqpr[0], 0xff,
CONFIG_DRAM_ZQ & 0xff);
clrbits_le32(&mctl_phy->zq[0].zqor[0], 0xfffff);
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ >> 8) & 0xff);
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xf00) - 0x100);
setbits_le32(&mctl_phy->zq[0].zqor[0], (CONFIG_DRAM_ZQ & 0xff00) << 4);
clrbits_le32(&mctl_phy->zq[1].zqpr[0], 0xfffff);
setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ >> 16) & 0xff);
setbits_le32(&mctl_phy->zq[1].zqpr[0], ((CONFIG_DRAM_ZQ >> 8) & 0xf00) - 0x100);
setbits_le32(&mctl_phy->zq[1].zqpr[0], (CONFIG_DRAM_ZQ & 0xff0000) >> 4);
if (para->type == SUNXI_DRAM_TYPE_LPDDR3) {
for (i = 1; i < 14; i++)
writel(0x06060606, &mctl_phy->acbdlr[i]);
}
val = PIR_ZCAL | PIR_DCAL | PIR_PHYRST | PIR_DRAMINIT | PIR_QSGATE |
PIR_RDDSKW | PIR_WRDSKW | PIR_RDEYE | PIR_WREYE;
if (para->type == SUNXI_DRAM_TYPE_DDR3)
val |= PIR_DRAMRST | PIR_WL;
mctl_phy_pir_init(val);
/* TODO: DDR4 types ? */
for (i = 0; i < 4; i++)
writel(0x00000909, &mctl_phy->dx[i].gcr[5]);
for (i = 0; i < 4; i++) {
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
val = 0x0;
else
val = 0xaaaa;
clrsetbits_le32(&mctl_phy->dx[i].gcr[2], 0xffff, val);
if (IS_ENABLED(CONFIG_DRAM_ODT_EN))
val = 0x0;
else
val = 0x2020;
clrsetbits_le32(&mctl_phy->dx[i].gcr[3], 0x3030, val);
}
mctl_bit_delay_set(para);
udelay(1);
setbits_le32(&mctl_phy->pgcr[6], BIT(0));
clrbits_le32(&mctl_phy->pgcr[6], 0xfff8);
for (i = 0; i < 4; i++)
clrbits_le32(&mctl_phy->dx[i].gcr[3], ~0x3ffff);
udelay(10);
if (readl(&mctl_phy->pgsr[0]) & 0xff00000) {
/* Oops! There's something wrong! */
debug("PLL = %x\n", readl(0x3001010));
debug("DRAM PHY PGSR0 = %x\n", readl(&mctl_phy->pgsr[0]));
for (i = 0; i < 4; i++)
debug("DRAM PHY DX%dRSR0 = %x\n", i, readl(&mctl_phy->dx[i].rsr[0]));
debug("Error while initializing DRAM PHY!\n");
return false;
}
if (sunxi_dram_is_lpddr(para->type))
clrsetbits_le32(&mctl_phy->dsgcr, 0xc0, 0x40);
clrbits_le32(&mctl_phy->pgcr[1], 0x40);
clrbits_le32(&mctl_ctl->dfimisc, BIT(0));
writel(1, &mctl_ctl->swctl);
mctl_await_completion(&mctl_ctl->swstat, 1, 1);
clrbits_le32(&mctl_ctl->rfshctl3, BIT(0));
setbits_le32(&mctl_com->unk_0x014, BIT(31));
writel(0xffffffff, &mctl_com->maer0);
writel(0x7ff, &mctl_com->maer1);
writel(0xffff, &mctl_com->maer2);
return true;
}
static void mctl_auto_detect_rank_width(struct dram_para *para)
{
/* this is minimum size that it's supported */
para->cols = 8;
para->rows = 13;
/*
* Previous versions of this driver tried to auto detect the rank
* and width by looking at controller registers. However this proved
* to be not reliable, so this approach here is the more robust
* solution. Check the git history for details.
*
* Strategy here is to test most demanding combination first and least
* demanding last, otherwise HW might not be fully utilized. For
* example, half bus width and rank = 1 combination would also work
* on HW with full bus width and rank = 2, but only 1/4 RAM would be
* visible.
*/
debug("testing 32-bit width, rank = 2\n");
para->bus_full_width = 1;
para->ranks = 2;
if (mctl_core_init(para))
return;
debug("testing 32-bit width, rank = 1\n");
para->bus_full_width = 1;
para->ranks = 1;
if (mctl_core_init(para))
return;
debug("testing 16-bit width, rank = 2\n");
para->bus_full_width = 0;
para->ranks = 2;
if (mctl_core_init(para))
return;
debug("testing 16-bit width, rank = 1\n");
para->bus_full_width = 0;
para->ranks = 1;
if (mctl_core_init(para))
return;
panic("This DRAM setup is currently not supported.\n");
}
static void mctl_auto_detect_dram_size(struct dram_para *para)
{
/* TODO: non-(LP)DDR3 */
/* detect row address bits */
para->cols = 8;
para->rows = 18;
mctl_core_init(para);
for (para->rows = 13; para->rows < 18; para->rows++) {
/* 8 banks, 8 bit per byte and 16/32 bit width */
if (mctl_mem_matches((1 << (para->rows + para->cols +
4 + para->bus_full_width))))
break;
}
/* detect column address bits */
para->cols = 11;
mctl_core_init(para);
for (para->cols = 8; para->cols < 11; para->cols++) {
/* 8 bits per byte and 16/32 bit width */
if (mctl_mem_matches(1 << (para->cols + 1 +
para->bus_full_width)))
break;
}
}
unsigned long mctl_calc_size(struct dram_para *para)
{
u8 width = para->bus_full_width ? 4 : 2;
/* TODO: non-(LP)DDR3 */
/* 8 banks */
return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks;
}
#define SUN50I_H6_LPDDR3_DX_WRITE_DELAYS \
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
#define SUN50I_H6_LPDDR3_DX_READ_DELAYS \
{{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }}
#define SUN50I_H6_DDR3_DX_WRITE_DELAYS \
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
#define SUN50I_H6_DDR3_DX_READ_DELAYS \
{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, \
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}
unsigned long sunxi_dram_init(void)
{
struct sunxi_mctl_com_reg * const mctl_com =
(struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE;
struct dram_para para = {
.clk = CONFIG_DRAM_CLK,
#ifdef CONFIG_SUNXI_DRAM_H6_LPDDR3
.type = SUNXI_DRAM_TYPE_LPDDR3,
.dx_read_delays = SUN50I_H6_LPDDR3_DX_READ_DELAYS,
.dx_write_delays = SUN50I_H6_LPDDR3_DX_WRITE_DELAYS,
#elif defined(CONFIG_SUNXI_DRAM_H6_DDR3_1333)
.type = SUNXI_DRAM_TYPE_DDR3,
.dx_read_delays = SUN50I_H6_DDR3_DX_READ_DELAYS,
.dx_write_delays = SUN50I_H6_DDR3_DX_WRITE_DELAYS,
#endif
};
unsigned long size;
/* RES_CAL_CTRL_REG in BSP U-boot*/
setbits_le32(0x7010310, BIT(8));
clrbits_le32(0x7010318, 0x3f);
mctl_auto_detect_rank_width(&para);
mctl_auto_detect_dram_size(&para);
mctl_core_init(&para);
size = mctl_calc_size(&para);
clrsetbits_le32(&mctl_com->cr, 0xf0, (size >> (10 + 10 + 4)) & 0xf0);
mctl_set_master_priority();
return size;
};