// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Marvell International Ltd. * * FDT Helper functions similar to those provided to U-Boot. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** Structure used to get type of GPIO from device tree */ struct gpio_compat { char *compatible; /** Compatible string */ enum cvmx_gpio_type type; /** Type */ int8_t size; /** (max) Number of pins */ }; #define GPIO_REG_PCA953X_IN 0 #define GPIO_REG_PCA953X_OUT 1 #define GPIO_REG_PCA953X_INVERT 2 #define GPIO_REG_PCA953X_DIR 3 #define GPIO_REG_PCA957X_IN 0 #define GPIO_REG_PCA957X_INVERT 1 #define GPIO_REG_PCA957X_CFG 4 #define GPIO_REG_PCA957X_OUT 5 enum cvmx_i2c_mux_type { I2C_MUX, I2C_SWITCH }; /** Structure used to get type of GPIO from device tree */ struct mux_compat { char *compatible; /** Compatible string */ enum cvmx_i2c_bus_type type; /** Mux chip type */ enum cvmx_i2c_mux_type mux_type; /** Type of mux */ u8 enable; /** Enable bit for mux */ u8 size; /** (max) Number of channels */ }; /** * Local allocator to handle both SE and U-Boot that also zeroes out memory * * @param size number of bytes to allocate * * @return pointer to allocated memory or NULL if out of memory. * Alignment is set to 8-bytes. */ void *__cvmx_fdt_alloc(size_t size) { return calloc(size, 1); } /** * Free allocated memory. * * @param ptr pointer to memory to free * * NOTE: This only works in U-Boot since SE does not really have a freeing * mechanism. In SE the memory is zeroed out. */ void __cvmx_fdt_free(void *ptr, size_t size) { free(ptr); } /** * Look up a phandle and follow it to its node then return the offset of that * node. * * @param[in] fdt_addr pointer to FDT blob * @param node node to read phandle from * @param[in] prop_name name of property to find * @param[in,out] lenp Number of phandles, input max number * @param[out] nodes Array of phandle nodes * * @return -ve error code on error or 0 for success */ int cvmx_fdt_lookup_phandles(const void *fdt_addr, int node, const char *prop_name, int *lenp, int *nodes) { const u32 *phandles; int count; int i; phandles = fdt_getprop(fdt_addr, node, prop_name, &count); if (!phandles || count < 0) return -FDT_ERR_NOTFOUND; count /= 4; if (count > *lenp) count = *lenp; for (i = 0; i < count; i++) nodes[i] = fdt_node_offset_by_phandle(fdt_addr, fdt32_to_cpu(phandles[i])); *lenp = count; return 0; } /** * Given a FDT node return the CPU node number * * @param[in] fdt_addr Address of FDT * @param node FDT node number * * @return CPU node number or error if negative */ int cvmx_fdt_get_cpu_node(const void *fdt_addr, int node) { int parent = node; const u32 *ranges; int len = 0; while (fdt_node_check_compatible(fdt_addr, parent, "simple-bus") != 0) { parent = fdt_parent_offset(fdt_addr, parent); if (parent < 0) return parent; } ranges = fdt_getprop(fdt_addr, parent, "ranges", &len); if (!ranges) return len; if (len == 0) return 0; if (len < 24) return -FDT_ERR_TRUNCATED; return fdt32_to_cpu(ranges[2]) / 0x10; } /** * Get the total size of the flat device tree * * @param[in] fdt_addr Address of FDT * * @return Size of flat device tree in bytes or error if negative. */ int cvmx_fdt_get_fdt_size(const void *fdt_addr) { int rc; rc = fdt_check_header(fdt_addr); if (rc) return rc; return fdt_totalsize(fdt_addr); } /** * Returns if a node is compatible with one of the items in the string list * * @param[in] fdt_addr Pointer to flat device tree * @param node Node offset to check * @param[in] strlist Array of FDT device compatibility strings, * must end with NULL or empty string. * * @return 0 if at least one item matches, 1 if no matches */ int cvmx_fdt_node_check_compatible_list(const void *fdt_addr, int node, const char *const *strlist) { while (*strlist && **strlist) { if (!fdt_node_check_compatible(fdt_addr, node, *strlist)) return 0; strlist++; } return 1; } /** * Given a FDT node, return the next compatible node. * * @param[in] fdt_addr Pointer to flat device tree * @param start_offset Starting node offset or -1 to find the first * @param strlist Array of FDT device compatibility strings, must * end with NULL or empty string. * * @return next matching node or -1 if no more matches. */ int cvmx_fdt_node_offset_by_compatible_list(const void *fdt_addr, int startoffset, const char *const *strlist) { int offset; for (offset = fdt_next_node(fdt_addr, startoffset, NULL); offset >= 0; offset = fdt_next_node(fdt_addr, offset, NULL)) { if (!cvmx_fdt_node_check_compatible_list(fdt_addr, offset, strlist)) return offset; } return -1; } /** * Attaches a PHY to a SFP or QSFP. * * @param sfp sfp to attach PHY to * @param phy_info phy descriptor to attach or NULL to detach */ void cvmx_sfp_attach_phy(struct cvmx_fdt_sfp_info *sfp, struct cvmx_phy_info *phy_info) { sfp->phy_info = phy_info; if (phy_info) phy_info->sfp_info = sfp; } /** * Assigns an IPD port to a SFP slot * * @param sfp Handle to SFP data structure * @param ipd_port Port to assign it to * * @return 0 for success, -1 on error */ int cvmx_sfp_set_ipd_port(struct cvmx_fdt_sfp_info *sfp, int ipd_port) { int i; if (sfp->is_qsfp) { int xiface; cvmx_helper_interface_mode_t mode; xiface = cvmx_helper_get_interface_num(ipd_port); mode = cvmx_helper_interface_get_mode(xiface); sfp->ipd_port[0] = ipd_port; switch (mode) { case CVMX_HELPER_INTERFACE_MODE_SGMII: case CVMX_HELPER_INTERFACE_MODE_XFI: case CVMX_HELPER_INTERFACE_MODE_10G_KR: for (i = 1; i < 4; i++) sfp->ipd_port[i] = cvmx_helper_get_ipd_port(xiface, i); break; case CVMX_HELPER_INTERFACE_MODE_XLAUI: case CVMX_HELPER_INTERFACE_MODE_40G_KR4: sfp->ipd_port[0] = ipd_port; for (i = 1; i < 4; i++) sfp->ipd_port[i] = -1; break; default: debug("%s: Interface mode %s for interface 0x%x, ipd_port %d not supported for QSFP\n", __func__, cvmx_helper_interface_mode_to_string(mode), xiface, ipd_port); return -1; } } else { sfp->ipd_port[0] = ipd_port; for (i = 1; i < 4; i++) sfp->ipd_port[i] = -1; } return 0; } /** * Parses all of the channels assigned to a VSC7224 device * * @param[in] fdt_addr Address of flat device tree * @param of_offset Offset of vsc7224 node * @param[in,out] vsc7224 Data structure to hold the data * * @return 0 for success, -1 on error */ static int cvmx_fdt_parse_vsc7224_channels(const void *fdt_addr, int of_offset, struct cvmx_vsc7224 *vsc7224) { int parent_offset = of_offset; int err = 0; int reg; int num_chan = 0; struct cvmx_vsc7224_chan *channel; struct cvmx_fdt_sfp_info *sfp_info; int len; int num_taps; int i; const u32 *tap_values; int of_mac; int xiface, index; bool is_tx; bool is_qsfp; const char *mac_str; debug("%s(%p, %d, %s)\n", __func__, fdt_addr, of_offset, vsc7224->name); do { /* Walk through all channels */ of_offset = fdt_node_offset_by_compatible(fdt_addr, of_offset, "vitesse,vsc7224-channel"); if (of_offset == -FDT_ERR_NOTFOUND) { break; } else if (of_offset < 0) { debug("%s: Failed finding compatible channel\n", __func__); err = -1; break; } if (fdt_parent_offset(fdt_addr, of_offset) != parent_offset) break; reg = cvmx_fdt_get_int(fdt_addr, of_offset, "reg", -1); if (reg < 0 || reg > 3) { debug("%s: channel reg is either not present or out of range\n", __func__); err = -1; break; } is_tx = cvmx_fdt_get_bool(fdt_addr, of_offset, "direction-tx"); debug("%s(%s): Adding %cx channel %d\n", __func__, vsc7224->name, is_tx ? 't' : 'r', reg); tap_values = (const uint32_t *)fdt_getprop(fdt_addr, of_offset, "taps", &len); if (!tap_values) { debug("%s: Error: no taps defined for vsc7224 channel %d\n", __func__, reg); err = -1; break; } if (vsc7224->channel[reg]) { debug("%s: Error: channel %d already assigned at %p\n", __func__, reg, vsc7224->channel[reg]); err = -1; break; } if (len % 16) { debug("%s: Error: tap format error for channel %d\n", __func__, reg); err = -1; break; } num_taps = len / 16; debug("%s: Adding %d taps\n", __func__, num_taps); channel = __cvmx_fdt_alloc(sizeof(*channel) + num_taps * sizeof(struct cvmx_vsc7224_tap)); if (!channel) { debug("%s: Out of memory\n", __func__); err = -1; break; } vsc7224->channel[reg] = channel; channel->num_taps = num_taps; channel->lane = reg; channel->of_offset = of_offset; channel->is_tx = is_tx; channel->pretap_disable = cvmx_fdt_get_bool(fdt_addr, of_offset, "pretap-disable"); channel->posttap_disable = cvmx_fdt_get_bool(fdt_addr, of_offset, "posttap-disable"); channel->vsc7224 = vsc7224; /* Read all the tap values */ for (i = 0; i < num_taps; i++) { channel->taps[i].len = fdt32_to_cpu(tap_values[i * 4 + 0]); channel->taps[i].main_tap = fdt32_to_cpu(tap_values[i * 4 + 1]); channel->taps[i].pre_tap = fdt32_to_cpu(tap_values[i * 4 + 2]); channel->taps[i].post_tap = fdt32_to_cpu(tap_values[i * 4 + 3]); debug("%s: tap %d: len: %d, main_tap: 0x%x, pre_tap: 0x%x, post_tap: 0x%x\n", __func__, i, channel->taps[i].len, channel->taps[i].main_tap, channel->taps[i].pre_tap, channel->taps[i].post_tap); } /* Now find out which interface it's mapped to */ channel->ipd_port = -1; mac_str = "sfp-mac"; if (fdt_getprop(fdt_addr, of_offset, mac_str, NULL)) { is_qsfp = false; } else if (fdt_getprop(fdt_addr, of_offset, "qsfp-mac", NULL)) { is_qsfp = true; mac_str = "qsfp-mac"; } else { debug("%s: Error: MAC not found for %s channel %d\n", __func__, vsc7224->name, reg); return -1; } of_mac = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, mac_str); if (of_mac < 0) { debug("%s: Error %d with MAC %s phandle for %s\n", __func__, of_mac, mac_str, vsc7224->name); return -1; } debug("%s: Found mac at offset %d\n", __func__, of_mac); err = cvmx_helper_cfg_get_xiface_index_by_fdt_node_offset(of_mac, &xiface, &index); if (!err) { channel->xiface = xiface; channel->index = index; channel->ipd_port = cvmx_helper_get_ipd_port(xiface, index); debug("%s: Found MAC, xiface: 0x%x, index: %d, ipd port: %d\n", __func__, xiface, index, channel->ipd_port); if (channel->ipd_port >= 0) { cvmx_helper_cfg_set_vsc7224_chan_info(xiface, index, channel); debug("%s: Storing config channel for xiface 0x%x, index %d\n", __func__, xiface, index); } sfp_info = cvmx_helper_cfg_get_sfp_info(xiface, index); if (!sfp_info) { debug("%s: Warning: no (Q)SFP+ slot found for xinterface 0x%x, index %d for channel %d\n", __func__, xiface, index, channel->lane); continue; } /* Link it */ channel->next = sfp_info->vsc7224_chan; if (sfp_info->vsc7224_chan) sfp_info->vsc7224_chan->prev = channel; sfp_info->vsc7224_chan = channel; sfp_info->is_vsc7224 = true; debug("%s: Registering VSC7224 %s channel %d with SFP %s\n", __func__, vsc7224->name, channel->lane, sfp_info->name); if (!sfp_info->mod_abs_changed) { debug("%s: Registering cvmx_sfp_vsc7224_mod_abs_changed at %p for xinterface 0x%x, index %d\n", __func__, &cvmx_sfp_vsc7224_mod_abs_changed, xiface, index); cvmx_sfp_register_mod_abs_changed( sfp_info, &cvmx_sfp_vsc7224_mod_abs_changed, NULL); } } } while (!err && num_chan < 4); return err; } /** * @INTERNAL * Parses all instances of the Vitesse VSC7224 reclocking chip * * @param[in] fdt_addr Address of flat device tree * * @return 0 for success, error otherwise */ int __cvmx_fdt_parse_vsc7224(const void *fdt_addr) { int of_offset = -1; struct cvmx_vsc7224 *vsc7224 = NULL; struct cvmx_fdt_gpio_info *gpio_info = NULL; int err = 0; int of_parent; static bool parsed; debug("%s(%p)\n", __func__, fdt_addr); if (parsed) { debug("%s: Already parsed\n", __func__); return 0; } do { of_offset = fdt_node_offset_by_compatible(fdt_addr, of_offset, "vitesse,vsc7224"); debug("%s: of_offset: %d\n", __func__, of_offset); if (of_offset == -FDT_ERR_NOTFOUND) { break; } else if (of_offset < 0) { err = -1; debug("%s: Error %d parsing FDT\n", __func__, of_offset); break; } vsc7224 = __cvmx_fdt_alloc(sizeof(*vsc7224)); if (!vsc7224) { debug("%s: Out of memory!\n", __func__); return -1; } vsc7224->of_offset = of_offset; vsc7224->i2c_addr = cvmx_fdt_get_int(fdt_addr, of_offset, "reg", -1); of_parent = fdt_parent_offset(fdt_addr, of_offset); vsc7224->i2c_bus = cvmx_fdt_get_i2c_bus(fdt_addr, of_parent); if (vsc7224->i2c_addr < 0) { debug("%s: Error: reg field missing\n", __func__); err = -1; break; } if (!vsc7224->i2c_bus) { debug("%s: Error getting i2c bus\n", __func__); err = -1; break; } vsc7224->name = fdt_get_name(fdt_addr, of_offset, NULL); debug("%s: Adding %s\n", __func__, vsc7224->name); if (fdt_getprop(fdt_addr, of_offset, "reset", NULL)) { gpio_info = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "reset"); vsc7224->reset_gpio = gpio_info; } if (fdt_getprop(fdt_addr, of_offset, "los", NULL)) { gpio_info = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "los"); vsc7224->los_gpio = gpio_info; } debug("%s: Parsing channels\n", __func__); err = cvmx_fdt_parse_vsc7224_channels(fdt_addr, of_offset, vsc7224); if (err) { debug("%s: Error parsing VSC7224 channels\n", __func__); break; } } while (of_offset > 0); if (err) { debug("%s(): Error\n", __func__); if (vsc7224) { if (vsc7224->reset_gpio) __cvmx_fdt_free(vsc7224->reset_gpio, sizeof(*vsc7224->reset_gpio)); if (vsc7224->los_gpio) __cvmx_fdt_free(vsc7224->los_gpio, sizeof(*vsc7224->los_gpio)); if (vsc7224->i2c_bus) cvmx_fdt_free_i2c_bus(vsc7224->i2c_bus); __cvmx_fdt_free(vsc7224, sizeof(*vsc7224)); } } if (!err) parsed = true; return err; } /** * @INTERNAL * Parses all instances of the Avago AVSP5410 gearbox phy * * @param[in] fdt_addr Address of flat device tree * * @return 0 for success, error otherwise */ int __cvmx_fdt_parse_avsp5410(const void *fdt_addr) { int of_offset = -1; struct cvmx_avsp5410 *avsp5410 = NULL; struct cvmx_fdt_sfp_info *sfp_info; int err = 0; int of_parent; static bool parsed; int of_mac; int xiface, index; bool is_qsfp; const char *mac_str; debug("%s(%p)\n", __func__, fdt_addr); if (parsed) { debug("%s: Already parsed\n", __func__); return 0; } do { of_offset = fdt_node_offset_by_compatible(fdt_addr, of_offset, "avago,avsp-5410"); debug("%s: of_offset: %d\n", __func__, of_offset); if (of_offset == -FDT_ERR_NOTFOUND) { break; } else if (of_offset < 0) { err = -1; debug("%s: Error %d parsing FDT\n", __func__, of_offset); break; } avsp5410 = __cvmx_fdt_alloc(sizeof(*avsp5410)); if (!avsp5410) { debug("%s: Out of memory!\n", __func__); return -1; } avsp5410->of_offset = of_offset; avsp5410->i2c_addr = cvmx_fdt_get_int(fdt_addr, of_offset, "reg", -1); of_parent = fdt_parent_offset(fdt_addr, of_offset); avsp5410->i2c_bus = cvmx_fdt_get_i2c_bus(fdt_addr, of_parent); if (avsp5410->i2c_addr < 0) { debug("%s: Error: reg field missing\n", __func__); err = -1; break; } if (!avsp5410->i2c_bus) { debug("%s: Error getting i2c bus\n", __func__); err = -1; break; } avsp5410->name = fdt_get_name(fdt_addr, of_offset, NULL); debug("%s: Adding %s\n", __func__, avsp5410->name); /* Now find out which interface it's mapped to */ avsp5410->ipd_port = -1; mac_str = "sfp-mac"; if (fdt_getprop(fdt_addr, of_offset, mac_str, NULL)) { is_qsfp = false; } else if (fdt_getprop(fdt_addr, of_offset, "qsfp-mac", NULL)) { is_qsfp = true; mac_str = "qsfp-mac"; } else { debug("%s: Error: MAC not found for %s\n", __func__, avsp5410->name); return -1; } of_mac = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, mac_str); if (of_mac < 0) { debug("%s: Error %d with MAC %s phandle for %s\n", __func__, of_mac, mac_str, avsp5410->name); return -1; } debug("%s: Found mac at offset %d\n", __func__, of_mac); err = cvmx_helper_cfg_get_xiface_index_by_fdt_node_offset(of_mac, &xiface, &index); if (!err) { avsp5410->xiface = xiface; avsp5410->index = index; avsp5410->ipd_port = cvmx_helper_get_ipd_port(xiface, index); debug("%s: Found MAC, xiface: 0x%x, index: %d, ipd port: %d\n", __func__, xiface, index, avsp5410->ipd_port); if (avsp5410->ipd_port >= 0) { cvmx_helper_cfg_set_avsp5410_info(xiface, index, avsp5410); debug("%s: Storing config phy for xiface 0x%x, index %d\n", __func__, xiface, index); } sfp_info = cvmx_helper_cfg_get_sfp_info(xiface, index); if (!sfp_info) { debug("%s: Warning: no (Q)SFP+ slot found for xinterface 0x%x, index %d\n", __func__, xiface, index); continue; } sfp_info->is_avsp5410 = true; sfp_info->avsp5410 = avsp5410; debug("%s: Registering AVSP5410 %s with SFP %s\n", __func__, avsp5410->name, sfp_info->name); if (!sfp_info->mod_abs_changed) { debug("%s: Registering cvmx_sfp_avsp5410_mod_abs_changed at %p for xinterface 0x%x, index %d\n", __func__, &cvmx_sfp_avsp5410_mod_abs_changed, xiface, index); cvmx_sfp_register_mod_abs_changed( sfp_info, &cvmx_sfp_avsp5410_mod_abs_changed, NULL); } } } while (of_offset > 0); if (err) { debug("%s(): Error\n", __func__); if (avsp5410) { if (avsp5410->i2c_bus) cvmx_fdt_free_i2c_bus(avsp5410->i2c_bus); __cvmx_fdt_free(avsp5410, sizeof(*avsp5410)); } } if (!err) parsed = true; return err; } /** * Parse QSFP GPIOs for SFP * * @param[in] fdt_addr Pointer to flat device tree * @param of_offset Offset of QSFP node * @param[out] sfp_info Pointer to sfp info to fill in * * @return 0 for success */ static int cvmx_parse_qsfp(const void *fdt_addr, int of_offset, struct cvmx_fdt_sfp_info *sfp_info) { sfp_info->select = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "select"); sfp_info->mod_abs = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "mod_prs"); sfp_info->reset = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "reset"); sfp_info->interrupt = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "interrupt"); sfp_info->lp_mode = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "lp_mode"); return 0; } /** * Parse SFP GPIOs for SFP * * @param[in] fdt_addr Pointer to flat device tree * @param of_offset Offset of SFP node * @param[out] sfp_info Pointer to sfp info to fill in * * @return 0 for success */ static int cvmx_parse_sfp(const void *fdt_addr, int of_offset, struct cvmx_fdt_sfp_info *sfp_info) { sfp_info->mod_abs = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "mod_abs"); sfp_info->rx_los = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "rx_los"); sfp_info->tx_disable = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "tx_disable"); sfp_info->tx_error = cvmx_fdt_gpio_get_info_phandle(fdt_addr, of_offset, "tx_error"); return 0; } /** * Parse SFP/QSFP EEPROM and diag * * @param[in] fdt_addr Pointer to flat device tree * @param of_offset Offset of SFP node * @param[out] sfp_info Pointer to sfp info to fill in * * @return 0 for success, -1 on error */ static int cvmx_parse_sfp_eeprom(const void *fdt_addr, int of_offset, struct cvmx_fdt_sfp_info *sfp_info) { int of_eeprom; int of_diag; debug("%s(%p, %d, %s)\n", __func__, fdt_addr, of_offset, sfp_info->name); of_eeprom = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, "eeprom"); if (of_eeprom < 0) { debug("%s: Missing \"eeprom\" from device tree for %s\n", __func__, sfp_info->name); return -1; } sfp_info->i2c_bus = cvmx_fdt_get_i2c_bus(fdt_addr, fdt_parent_offset(fdt_addr, of_eeprom)); sfp_info->i2c_eeprom_addr = cvmx_fdt_get_int(fdt_addr, of_eeprom, "reg", 0x50); debug("%s(%p, %d, %s, %d)\n", __func__, fdt_addr, of_offset, sfp_info->name, sfp_info->i2c_eeprom_addr); if (!sfp_info->i2c_bus) { debug("%s: Error: could not determine i2c bus for eeprom for %s\n", __func__, sfp_info->name); return -1; } of_diag = cvmx_fdt_lookup_phandle(fdt_addr, of_offset, "diag"); if (of_diag >= 0) sfp_info->i2c_diag_addr = cvmx_fdt_get_int(fdt_addr, of_diag, "reg", 0x51); else sfp_info->i2c_diag_addr = 0x51; return 0; } /** * Parse SFP information from device tree * * @param[in] fdt_addr Address of flat device tree * * @return pointer to sfp info or NULL if error */ struct cvmx_fdt_sfp_info *cvmx_helper_fdt_parse_sfp_info(const void *fdt_addr, int of_offset) { struct cvmx_fdt_sfp_info *sfp_info = NULL; int err = -1; bool is_qsfp; if (!fdt_node_check_compatible(fdt_addr, of_offset, "ethernet,sfp-slot")) { is_qsfp = false; } else if (!fdt_node_check_compatible(fdt_addr, of_offset, "ethernet,qsfp-slot")) { is_qsfp = true; } else { debug("%s: Error: incompatible sfp/qsfp slot, compatible=%s\n", __func__, (char *)fdt_getprop(fdt_addr, of_offset, "compatible", NULL)); goto error_exit; } debug("%s: %ssfp module found at offset %d\n", __func__, is_qsfp ? "q" : "", of_offset); sfp_info = __cvmx_fdt_alloc(sizeof(*sfp_info)); if (!sfp_info) { debug("%s: Error: out of memory\n", __func__); goto error_exit; } sfp_info->name = fdt_get_name(fdt_addr, of_offset, NULL); sfp_info->of_offset = of_offset; sfp_info->is_qsfp = is_qsfp; sfp_info->last_mod_abs = -1; sfp_info->last_rx_los = -1; if (is_qsfp) err = cvmx_parse_qsfp(fdt_addr, of_offset, sfp_info); else err = cvmx_parse_sfp(fdt_addr, of_offset, sfp_info); if (err) { debug("%s: Error in %s parsing %ssfp GPIO info\n", __func__, sfp_info->name, is_qsfp ? "q" : ""); goto error_exit; } debug("%s: Parsing %ssfp module eeprom\n", __func__, is_qsfp ? "q" : ""); err = cvmx_parse_sfp_eeprom(fdt_addr, of_offset, sfp_info); if (err) { debug("%s: Error parsing eeprom info for %s\n", __func__, sfp_info->name); goto error_exit; } /* Register default check for mod_abs changed */ if (!err) cvmx_sfp_register_check_mod_abs(sfp_info, cvmx_sfp_check_mod_abs, NULL); error_exit: /* Note: we don't free any data structures on error since it gets * rather complicated with i2c buses and whatnot. */ return err ? NULL : sfp_info; } /** * @INTERNAL * Parse a slice of the Inphi/Cortina CS4343 in the device tree * * @param[in] fdt_addr Address of flat device tree * @param of_offset fdt offset of slice * @param phy_info phy_info data structure * * @return slice number if non-negative, otherwise error */ static int cvmx_fdt_parse_cs4343_slice(const void *fdt_addr, int of_offset, struct cvmx_phy_info *phy_info) { struct cvmx_cs4343_slice_info *slice; int reg; int reg_offset; reg = cvmx_fdt_get_int(fdt_addr, of_offset, "reg", -1); reg_offset = cvmx_fdt_get_int(fdt_addr, of_offset, "slice_offset", -1); if (reg < 0 || reg >= 4) { debug("%s(%p, %d, %p): Error: reg %d undefined or out of range\n", __func__, fdt_addr, of_offset, phy_info, reg); return -1; } if (reg_offset % 0x1000 || reg_offset > 0x3000 || reg_offset < 0) { debug("%s(%p, %d, %p): Error: reg_offset 0x%x undefined or out of range\n", __func__, fdt_addr, of_offset, phy_info, reg_offset); return -1; } if (!phy_info->cs4343_info) { debug("%s: Error: phy info cs4343 datastructure is NULL\n", __func__); return -1; } debug("%s(%p, %d, %p): %s, reg: %d, slice offset: 0x%x\n", __func__, fdt_addr, of_offset, phy_info, fdt_get_name(fdt_addr, of_offset, NULL), reg, reg_offset); slice = &phy_info->cs4343_info->slice[reg]; slice->name = fdt_get_name(fdt_addr, of_offset, NULL); slice->mphy = phy_info->cs4343_info; slice->phy_info = phy_info; slice->of_offset = of_offset; slice->slice_no = reg; slice->reg_offset = reg_offset; /* SR settings */ slice->sr_stx_cmode_res = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-cmode-res", 3); slice->sr_stx_drv_lower_cm = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-drv-lower-cm", 8); slice->sr_stx_level = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-level", 0x1c); slice->sr_stx_pre_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-pre-peak", 1); slice->sr_stx_muxsubrate_sel = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-muxsubrate-sel", 0); slice->sr_stx_post_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "sr-stx-post-peak", 8); /* CX settings */ slice->cx_stx_cmode_res = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-cmode-res", 3); slice->cx_stx_drv_lower_cm = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-drv-lower-cm", 8); slice->cx_stx_level = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-level", 0x1c); slice->cx_stx_pre_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-pre-peak", 1); slice->cx_stx_muxsubrate_sel = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-muxsubrate-sel", 0); slice->cx_stx_post_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "cx-stx-post-peak", 0xC); /* 1000Base-X settings */ /* CX settings */ slice->basex_stx_cmode_res = cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-cmode-res", 3); slice->basex_stx_drv_lower_cm = cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-drv-lower-cm", 8); slice->basex_stx_level = cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-level", 0x1c); slice->basex_stx_pre_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-pre-peak", 1); slice->basex_stx_muxsubrate_sel = cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-muxsubrate-sel", 0); slice->basex_stx_post_peak = cvmx_fdt_get_int(fdt_addr, of_offset, "basex-stx-post-peak", 8); /* Get the link LED gpio pin */ slice->link_gpio = cvmx_fdt_get_int(fdt_addr, of_offset, "link-led-gpio", -1); slice->error_gpio = cvmx_fdt_get_int(fdt_addr, of_offset, "error-led-gpio", -1); slice->los_gpio = cvmx_fdt_get_int(fdt_addr, of_offset, "los-input-gpio", -1); slice->link_inverted = cvmx_fdt_get_bool(fdt_addr, of_offset, "link-led-gpio-inverted"); slice->error_inverted = cvmx_fdt_get_bool(fdt_addr, of_offset, "error-led-gpio-inverted"); slice->los_inverted = cvmx_fdt_get_bool(fdt_addr, of_offset, "los-input-gpio-inverted"); /* Convert GPIOs to be die based if they're not already */ if (slice->link_gpio > 4 && slice->link_gpio <= 8) slice->link_gpio -= 4; if (slice->error_gpio > 4 && slice->error_gpio <= 8) slice->error_gpio -= 4; if (slice->los_gpio > 4 && slice->los_gpio <= 8) slice->los_gpio -= 4; return reg; } /** * @INTERNAL * Parses either a CS4343 phy or a slice of the phy from the device tree * @param[in] fdt_addr Address of FDT * @param of_offset offset of slice or phy in device tree * @param phy_info phy_info data structure to fill in * * @return 0 for success, -1 on error */ int cvmx_fdt_parse_cs4343(const void *fdt_addr, int of_offset, struct cvmx_phy_info *phy_info) { int of_slice = -1; struct cvmx_cs4343_info *cs4343; int err = -1; int reg; debug("%s(%p, %d, %p): %s (%s)\n", __func__, fdt_addr, of_offset, phy_info, fdt_get_name(fdt_addr, of_offset, NULL), (const char *)fdt_getprop(fdt_addr, of_offset, "compatible", NULL)); if (!phy_info->cs4343_info) phy_info->cs4343_info = __cvmx_fdt_alloc(sizeof(struct cvmx_cs4343_info)); if (!phy_info->cs4343_info) { debug("%s: Error: out of memory!\n", __func__); return -1; } cs4343 = phy_info->cs4343_info; /* If we're passed to a slice then process only that slice */ if (!fdt_node_check_compatible(fdt_addr, of_offset, "cortina,cs4343-slice")) { err = 0; of_slice = of_offset; of_offset = fdt_parent_offset(fdt_addr, of_offset); reg = cvmx_fdt_parse_cs4343_slice(fdt_addr, of_slice, phy_info); if (reg >= 0) phy_info->cs4343_slice_info = &cs4343->slice[reg]; else err = reg; } else if (!fdt_node_check_compatible(fdt_addr, of_offset, "cortina,cs4343")) { /* Walk through and process all of the slices */ of_slice = fdt_node_offset_by_compatible(fdt_addr, of_offset, "cortina,cs4343-slice"); while (of_slice > 0 && fdt_parent_offset(fdt_addr, of_slice) == of_offset) { debug("%s: Parsing slice %s\n", __func__, fdt_get_name(fdt_addr, of_slice, NULL)); err = cvmx_fdt_parse_cs4343_slice(fdt_addr, of_slice, phy_info); if (err < 0) break; of_slice = fdt_node_offset_by_compatible(fdt_addr, of_slice, "cortina,cs4343-slice"); } } else { debug("%s: Error: unknown compatible string %s for %s\n", __func__, (const char *)fdt_getprop(fdt_addr, of_offset, "compatible", NULL), fdt_get_name(fdt_addr, of_offset, NULL)); } if (err >= 0) { cs4343->name = fdt_get_name(fdt_addr, of_offset, NULL); cs4343->phy_info = phy_info; cs4343->of_offset = of_offset; } return err < 0 ? -1 : 0; }