// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2016-2018 Intel Corporation * */ #include #include #include #include #include #include #include #include #include "sdram_s10.h" #include #include #include #include #include #include struct altera_sdram_priv { struct ram_info info; struct reset_ctl_bulk resets; }; struct altera_sdram_platdata { void __iomem *hmc; void __iomem *ddr_sch; void __iomem *iomhc; }; DECLARE_GLOBAL_DATA_PTR; #define DDR_CONFIG(A, B, C, R) (((A) << 24) | ((B) << 16) | ((C) << 8) | (R)) #define PGTABLE_OFF 0x4000 /* The followring are the supported configurations */ u32 ddr_config[] = { /* DDR_CONFIG(Address order,Bank,Column,Row) */ /* List for DDR3 or LPDDR3 (pinout order > chip, row, bank, column) */ DDR_CONFIG(0, 3, 10, 12), DDR_CONFIG(0, 3, 9, 13), DDR_CONFIG(0, 3, 10, 13), DDR_CONFIG(0, 3, 9, 14), DDR_CONFIG(0, 3, 10, 14), DDR_CONFIG(0, 3, 10, 15), DDR_CONFIG(0, 3, 11, 14), DDR_CONFIG(0, 3, 11, 15), DDR_CONFIG(0, 3, 10, 16), DDR_CONFIG(0, 3, 11, 16), DDR_CONFIG(0, 3, 12, 15), /* 0xa */ /* List for DDR4 only (pinout order > chip, bank, row, column) */ DDR_CONFIG(1, 3, 10, 14), DDR_CONFIG(1, 4, 10, 14), DDR_CONFIG(1, 3, 10, 15), DDR_CONFIG(1, 4, 10, 15), DDR_CONFIG(1, 3, 10, 16), DDR_CONFIG(1, 4, 10, 16), DDR_CONFIG(1, 3, 10, 17), DDR_CONFIG(1, 4, 10, 17), }; static u32 hmc_readl(struct altera_sdram_platdata *plat, u32 reg) { return readl(plat->iomhc + reg); } static u32 hmc_ecc_readl(struct altera_sdram_platdata *plat, u32 reg) { return readl(plat->hmc + reg); } static u32 hmc_ecc_writel(struct altera_sdram_platdata *plat, u32 data, u32 reg) { return writel(data, plat->hmc + reg); } static u32 ddr_sch_writel(struct altera_sdram_platdata *plat, u32 data, u32 reg) { return writel(data, plat->ddr_sch + reg); } int match_ddr_conf(u32 ddr_conf) { int i; for (i = 0; i < ARRAY_SIZE(ddr_config); i++) { if (ddr_conf == ddr_config[i]) return i; } return 0; } static int emif_clear(struct altera_sdram_platdata *plat) { hmc_ecc_writel(plat, 0, RSTHANDSHAKECTRL); return wait_for_bit_le32((const void *)(plat->hmc + RSTHANDSHAKESTAT), DDR_HMC_RSTHANDSHAKE_MASK, false, 1000, false); } static int emif_reset(struct altera_sdram_platdata *plat) { u32 c2s, s2c, ret; c2s = hmc_ecc_readl(plat, RSTHANDSHAKECTRL) & DDR_HMC_RSTHANDSHAKE_MASK; s2c = hmc_ecc_readl(plat, RSTHANDSHAKESTAT) & DDR_HMC_RSTHANDSHAKE_MASK; debug("DDR: c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n", c2s, s2c, hmc_readl(plat, NIOSRESERVED0), hmc_readl(plat, NIOSRESERVED1), hmc_readl(plat, NIOSRESERVED2), hmc_readl(plat, DRAMSTS)); if (s2c && emif_clear(plat)) { printf("DDR: emif_clear() failed\n"); return -1; } debug("DDR: Triggerring emif reset\n"); hmc_ecc_writel(plat, DDR_HMC_CORE2SEQ_INT_REQ, RSTHANDSHAKECTRL); /* if seq2core[3] = 0, we are good */ ret = wait_for_bit_le32((const void *)(plat->hmc + RSTHANDSHAKESTAT), DDR_HMC_SEQ2CORE_INT_RESP_MASK, false, 1000, false); if (ret) { printf("DDR: failed to get ack from EMIF\n"); return ret; } ret = emif_clear(plat); if (ret) { printf("DDR: emif_clear() failed\n"); return ret; } debug("DDR: %s triggered successly\n", __func__); return 0; } static int poll_hmc_clock_status(void) { return wait_for_bit_le32((const void *)(socfpga_get_sysmgr_addr() + SYSMGR_SOC64_HMC_CLK), SYSMGR_HMC_CLK_STATUS_MSK, true, 1000, false); } static void sdram_clear_mem(phys_addr_t addr, phys_size_t size) { phys_size_t i; if (addr % CONFIG_SYS_CACHELINE_SIZE) { printf("DDR: address 0x%llx is not cacheline size aligned.\n", addr); hang(); } if (size % CONFIG_SYS_CACHELINE_SIZE) { printf("DDR: size 0x%llx is not multiple of cacheline size\n", size); hang(); } /* Use DC ZVA instruction to clear memory to zeros by a cache line */ for (i = 0; i < size; i = i + CONFIG_SYS_CACHELINE_SIZE) { asm volatile("dc zva, %0" : : "r"(addr) : "memory"); addr += CONFIG_SYS_CACHELINE_SIZE; } } static void sdram_init_ecc_bits(bd_t *bd) { phys_size_t size, size_init; phys_addr_t start_addr; int bank = 0; unsigned int start = get_timer(0); icache_enable(); start_addr = bd->bi_dram[0].start; size = bd->bi_dram[0].size; /* Initialize small block for page table */ memset((void *)start_addr, 0, PGTABLE_SIZE + PGTABLE_OFF); gd->arch.tlb_addr = start_addr + PGTABLE_OFF; gd->arch.tlb_size = PGTABLE_SIZE; start_addr += PGTABLE_SIZE + PGTABLE_OFF; size -= (PGTABLE_OFF + PGTABLE_SIZE); dcache_enable(); while (1) { while (size) { size_init = min((phys_addr_t)SZ_1G, (phys_addr_t)size); sdram_clear_mem(start_addr, size_init); size -= size_init; start_addr += size_init; WATCHDOG_RESET(); } bank++; if (bank >= CONFIG_NR_DRAM_BANKS) break; start_addr = bd->bi_dram[bank].start; size = bd->bi_dram[bank].size; } dcache_disable(); icache_disable(); printf("SDRAM-ECC: Initialized success with %d ms\n", (unsigned int)get_timer(start)); } static void sdram_size_check(bd_t *bd) { phys_size_t total_ram_check = 0; phys_size_t ram_check = 0; phys_addr_t start = 0; int bank; /* Sanity check ensure correct SDRAM size specified */ debug("DDR: Running SDRAM size sanity check\n"); for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { start = bd->bi_dram[bank].start; while (ram_check < bd->bi_dram[bank].size) { ram_check += get_ram_size((void *)(start + ram_check), (phys_size_t)SZ_1G); } total_ram_check += ram_check; ram_check = 0; } /* If the ram_size is 2GB smaller, we can assume the IO space is * not mapped in. gd->ram_size is the actual size of the dram * not the accessible size. */ if (total_ram_check != gd->ram_size) { puts("DDR: SDRAM size check failed!\n"); hang(); } debug("DDR: SDRAM size check passed!\n"); } /** * sdram_calculate_size() - Calculate SDRAM size * * Calculate SDRAM device size based on SDRAM controller parameters. * Size is specified in bytes. */ static phys_size_t sdram_calculate_size(struct altera_sdram_platdata *plat) { u32 dramaddrw = hmc_readl(plat, DRAMADDRW); phys_size_t size = 1 << (DRAMADDRW_CFG_CS_ADDR_WIDTH(dramaddrw) + DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw) + DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) + DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw) + DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw)); size *= (2 << (hmc_ecc_readl(plat, DDRIOCTRL) & DDR_HMC_DDRIOCTRL_IOSIZE_MSK)); return size; } /** * sdram_mmr_init_full() - Function to initialize SDRAM MMR * * Initialize the SDRAM MMR. */ static int sdram_mmr_init_full(struct udevice *dev) { struct altera_sdram_platdata *plat = dev->platdata; struct altera_sdram_priv *priv = dev_get_priv(dev); u32 update_value, io48_value, ddrioctl; u32 i; int ret; phys_size_t hw_size; bd_t bd = {0}; /* Enable access to DDR from CPU master */ clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_DDRREG), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE0), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1A), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1B), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1C), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1D), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_CPU0_MPRT_ADBASE_MEMSPACE1E), CCU_ADBASE_DI_MASK); /* Enable access to DDR from IO master */ clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE0), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1A), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1B), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1C), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1D), CCU_ADBASE_DI_MASK); clrbits_le32(CCU_REG_ADDR(CCU_IOM_MPRT_ADBASE_MEMSPACE1E), CCU_ADBASE_DI_MASK); /* this enables nonsecure access to DDR */ /* mpuregion0addr_limit */ FW_MPU_DDR_SCR_WRITEL(0xFFFF0000, FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMIT); FW_MPU_DDR_SCR_WRITEL(0x1F, FW_MPU_DDR_SCR_MPUREGION0ADDR_LIMITEXT); /* nonmpuregion0addr_limit */ FW_MPU_DDR_SCR_WRITEL(0xFFFF0000, FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMIT); FW_MPU_DDR_SCR_WRITEL(0x1F, FW_MPU_DDR_SCR_NONMPUREGION0ADDR_LIMITEXT); /* Enable mpuregion0enable and nonmpuregion0enable */ FW_MPU_DDR_SCR_WRITEL(MPUREGION0_ENABLE | NONMPUREGION0_ENABLE, FW_MPU_DDR_SCR_EN_SET); /* Ensure HMC clock is running */ if (poll_hmc_clock_status()) { puts("DDR: Error as HMC clock not running\n"); return -1; } /* Try 3 times to do a calibration */ for (i = 0; i < 3; i++) { ret = wait_for_bit_le32((const void *)(plat->hmc + DDRCALSTAT), DDR_HMC_DDRCALSTAT_CAL_MSK, true, 1000, false); if (!ret) break; emif_reset(plat); } if (ret) { puts("DDR: Error as SDRAM calibration failed\n"); return -1; } debug("DDR: Calibration success\n"); u32 ctrlcfg0 = hmc_readl(plat, CTRLCFG0); u32 ctrlcfg1 = hmc_readl(plat, CTRLCFG1); u32 dramaddrw = hmc_readl(plat, DRAMADDRW); u32 dramtim0 = hmc_readl(plat, DRAMTIMING0); u32 caltim0 = hmc_readl(plat, CALTIMING0); u32 caltim1 = hmc_readl(plat, CALTIMING1); u32 caltim2 = hmc_readl(plat, CALTIMING2); u32 caltim3 = hmc_readl(plat, CALTIMING3); u32 caltim4 = hmc_readl(plat, CALTIMING4); u32 caltim9 = hmc_readl(plat, CALTIMING9); /* * Configure the DDR IO size [0xFFCFB008] * niosreserve0: Used to indicate DDR width & * bit[7:0] = Number of data bits (bit[6:5] 0x01=32bit, 0x10=64bit) * bit[8] = 1 if user-mode OCT is present * bit[9] = 1 if warm reset compiled into EMIF Cal Code * bit[10] = 1 if warm reset is on during generation in EMIF Cal * niosreserve1: IP ADCDS version encoded as 16 bit value * bit[2:0] = Variant (0=not special,1=FAE beta, 2=Customer beta, * 3=EAP, 4-6 are reserved) * bit[5:3] = Service Pack # (e.g. 1) * bit[9:6] = Minor Release # * bit[14:10] = Major Release # */ update_value = hmc_readl(plat, NIOSRESERVED0); hmc_ecc_writel(plat, ((update_value & 0xFF) >> 5), DDRIOCTRL); ddrioctl = hmc_ecc_readl(plat, DDRIOCTRL); /* enable HPS interface to HMC */ hmc_ecc_writel(plat, DDR_HMC_HPSINTFCSEL_ENABLE_MASK, HPSINTFCSEL); /* Set the DDR Configuration */ io48_value = DDR_CONFIG(CTRLCFG1_CFG_ADDR_ORDER(ctrlcfg1), (DRAMADDRW_CFG_BANK_ADDR_WIDTH(dramaddrw) + DRAMADDRW_CFG_BANK_GRP_ADDR_WIDTH(dramaddrw)), DRAMADDRW_CFG_COL_ADDR_WIDTH(dramaddrw), DRAMADDRW_CFG_ROW_ADDR_WIDTH(dramaddrw)); update_value = match_ddr_conf(io48_value); if (update_value) ddr_sch_writel(plat, update_value, DDR_SCH_DDRCONF); /* Configure HMC dramaddrw */ hmc_ecc_writel(plat, hmc_readl(plat, DRAMADDRW), DRAMADDRWIDTH); /* * Configure DDR timing * RDTOMISS = tRTP + tRP + tRCD - BL/2 * WRTOMISS = WL + tWR + tRP + tRCD and * WL = RL + BL/2 + 2 - rd-to-wr ; tWR = 15ns so... * First part of equation is in memory clock units so divide by 2 * for HMC clock units. 1066MHz is close to 1ns so use 15 directly. * WRTOMISS = ((RL + BL/2 + 2 + tWR) >> 1)- rd-to-wr + tRP + tRCD */ u32 burst_len = CTRLCFG0_CFG_CTRL_BURST_LEN(ctrlcfg0); update_value = CALTIMING2_CFG_RD_TO_WR_PCH(caltim2) + CALTIMING4_CFG_PCH_TO_VALID(caltim4) + CALTIMING0_CFG_ACT_TO_RDWR(caltim0) - (burst_len >> 2); io48_value = (((DRAMTIMING0_CFG_TCL(dramtim0) + 2 + DDR_TWR + (burst_len >> 1)) >> 1) - /* Up to here was in memory cycles so divide by 2 */ CALTIMING1_CFG_RD_TO_WR(caltim1) + CALTIMING0_CFG_ACT_TO_RDWR(caltim0) + CALTIMING4_CFG_PCH_TO_VALID(caltim4)); ddr_sch_writel(plat, ((CALTIMING0_CFG_ACT_TO_ACT(caltim0) << DDR_SCH_DDRTIMING_ACTTOACT_OFF) | (update_value << DDR_SCH_DDRTIMING_RDTOMISS_OFF) | (io48_value << DDR_SCH_DDRTIMING_WRTOMISS_OFF) | ((burst_len >> 2) << DDR_SCH_DDRTIMING_BURSTLEN_OFF) | (CALTIMING1_CFG_RD_TO_WR(caltim1) << DDR_SCH_DDRTIMING_RDTOWR_OFF) | (CALTIMING3_CFG_WR_TO_RD(caltim3) << DDR_SCH_DDRTIMING_WRTORD_OFF) | (((ddrioctl == 1) ? 1 : 0) << DDR_SCH_DDRTIMING_BWRATIO_OFF)), DDR_SCH_DDRTIMING); /* Configure DDR mode [precharge = 0] */ ddr_sch_writel(plat, ((ddrioctl ? 0 : 1) << DDR_SCH_DDRMOD_BWRATIOEXTENDED_OFF), DDR_SCH_DDRMODE); /* Configure the read latency */ ddr_sch_writel(plat, (DRAMTIMING0_CFG_TCL(dramtim0) >> 1) + DDR_READ_LATENCY_DELAY, DDR_SCH_READ_LATENCY); /* * Configuring timing values concerning activate commands * [FAWBANK alway 1 because always 4 bank DDR] */ ddr_sch_writel(plat, ((CALTIMING0_CFG_ACT_TO_ACT_DB(caltim0) << DDR_SCH_ACTIVATE_RRD_OFF) | (CALTIMING9_CFG_4_ACT_TO_ACT(caltim9) << DDR_SCH_ACTIVATE_FAW_OFF) | (DDR_ACTIVATE_FAWBANK << DDR_SCH_ACTIVATE_FAWBANK_OFF)), DDR_SCH_ACTIVATE); /* * Configuring timing values concerning device to device data bus * ownership change */ ddr_sch_writel(plat, ((CALTIMING1_CFG_RD_TO_RD_DC(caltim1) << DDR_SCH_DEVTODEV_BUSRDTORD_OFF) | (CALTIMING1_CFG_RD_TO_WR_DC(caltim1) << DDR_SCH_DEVTODEV_BUSRDTOWR_OFF) | (CALTIMING3_CFG_WR_TO_RD_DC(caltim3) << DDR_SCH_DEVTODEV_BUSWRTORD_OFF)), DDR_SCH_DEVTODEV); /* assigning the SDRAM size */ unsigned long long size = sdram_calculate_size(plat); /* If the size is invalid, use default Config size */ if (size <= 0) hw_size = PHYS_SDRAM_1_SIZE; else hw_size = size; /* Get bank configuration from devicetree */ ret = fdtdec_decode_ram_size(gd->fdt_blob, NULL, 0, NULL, (phys_size_t *)&gd->ram_size, &bd); if (ret) { puts("DDR: Failed to decode memory node\n"); return -1; } if (gd->ram_size != hw_size) printf("DDR: Warning: DRAM size from device tree mismatch with hardware.\n"); printf("DDR: %lld MiB\n", gd->ram_size >> 20); /* Enable or disable the SDRAM ECC */ if (CTRLCFG1_CFG_CTRL_EN_ECC(ctrlcfg1)) { setbits_le32(plat->hmc + ECCCTRL1, (DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK | DDR_HMC_ECCCTL_CNT_RST_SET_MSK | DDR_HMC_ECCCTL_ECC_EN_SET_MSK)); clrbits_le32(plat->hmc + ECCCTRL1, (DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK | DDR_HMC_ECCCTL_CNT_RST_SET_MSK)); setbits_le32(plat->hmc + ECCCTRL2, (DDR_HMC_ECCCTL2_RMW_EN_SET_MSK | DDR_HMC_ECCCTL2_AWB_EN_SET_MSK)); hmc_ecc_writel(plat, DDR_HMC_ERRINTEN_INTMASK, ERRINTENS); /* Enable non-secure writes to HMC Adapter for SDRAM ECC */ writel(FW_HMC_ADAPTOR_MPU_MASK, FW_HMC_ADAPTOR_REG_ADDR); /* Initialize memory content if not from warm reset */ if (!cpu_has_been_warmreset()) sdram_init_ecc_bits(&bd); } else { clrbits_le32(plat->hmc + ECCCTRL1, (DDR_HMC_ECCCTL_AWB_CNT_RST_SET_MSK | DDR_HMC_ECCCTL_CNT_RST_SET_MSK | DDR_HMC_ECCCTL_ECC_EN_SET_MSK)); clrbits_le32(plat->hmc + ECCCTRL2, (DDR_HMC_ECCCTL2_RMW_EN_SET_MSK | DDR_HMC_ECCCTL2_AWB_EN_SET_MSK)); } sdram_size_check(&bd); priv->info.base = bd.bi_dram[0].start; priv->info.size = gd->ram_size; debug("DDR: HMC init success\n"); return 0; } static int altera_sdram_ofdata_to_platdata(struct udevice *dev) { struct altera_sdram_platdata *plat = dev->platdata; fdt_addr_t addr; addr = dev_read_addr_index(dev, 0); if (addr == FDT_ADDR_T_NONE) return -EINVAL; plat->ddr_sch = (void __iomem *)addr; addr = dev_read_addr_index(dev, 1); if (addr == FDT_ADDR_T_NONE) return -EINVAL; plat->iomhc = (void __iomem *)addr; addr = dev_read_addr_index(dev, 2); if (addr == FDT_ADDR_T_NONE) return -EINVAL; plat->hmc = (void __iomem *)addr; return 0; } static int altera_sdram_probe(struct udevice *dev) { int ret; struct altera_sdram_priv *priv = dev_get_priv(dev); ret = reset_get_bulk(dev, &priv->resets); if (ret) { dev_err(dev, "Can't get reset: %d\n", ret); return -ENODEV; } reset_deassert_bulk(&priv->resets); if (sdram_mmr_init_full(dev) != 0) { puts("SDRAM init failed.\n"); goto failed; } return 0; failed: reset_release_bulk(&priv->resets); return -ENODEV; } static int altera_sdram_get_info(struct udevice *dev, struct ram_info *info) { struct altera_sdram_priv *priv = dev_get_priv(dev); info->base = priv->info.base; info->size = priv->info.size; return 0; } static struct ram_ops altera_sdram_ops = { .get_info = altera_sdram_get_info, }; static const struct udevice_id altera_sdram_ids[] = { { .compatible = "altr,sdr-ctl-s10" }, { /* sentinel */ } }; U_BOOT_DRIVER(altera_sdram) = { .name = "altr_sdr_ctl", .id = UCLASS_RAM, .of_match = altera_sdram_ids, .ops = &altera_sdram_ops, .ofdata_to_platdata = altera_sdram_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct altera_sdram_platdata), .probe = altera_sdram_probe, .priv_auto_alloc_size = sizeof(struct altera_sdram_priv), };