// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2013 Google, Inc */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; struct dm_testprobe_pdata { int probe_err; }; static int testprobe_drv_probe(struct udevice *dev) { struct dm_testprobe_pdata *pdata = dev_get_plat(dev); return pdata->probe_err; } static const struct udevice_id testprobe_ids[] = { { .compatible = "denx,u-boot-probe-test" }, { } }; U_BOOT_DRIVER(testprobe_drv) = { .name = "testprobe_drv", .of_match = testprobe_ids, .id = UCLASS_TEST_PROBE, .probe = testprobe_drv_probe, .plat_auto = sizeof(struct dm_testprobe_pdata), }; UCLASS_DRIVER(testprobe) = { .name = "testprobe", .id = UCLASS_TEST_PROBE, .flags = DM_UC_FLAG_SEQ_ALIAS, }; struct dm_testdevres_pdata { void *ptr; }; struct dm_testdevres_priv { void *ptr; void *ptr_ofdata; }; static int testdevres_drv_bind(struct udevice *dev) { struct dm_testdevres_pdata *pdata = dev_get_plat(dev); pdata->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE, 0); return 0; } static int testdevres_drv_of_to_plat(struct udevice *dev) { struct dm_testdevres_priv *priv = dev_get_priv(dev); priv->ptr_ofdata = devm_kmalloc(dev, TEST_DEVRES_SIZE3, 0); return 0; } static int testdevres_drv_probe(struct udevice *dev) { struct dm_testdevres_priv *priv = dev_get_priv(dev); priv->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE2, 0); return 0; } static const struct udevice_id testdevres_ids[] = { { .compatible = "denx,u-boot-devres-test" }, { } }; U_BOOT_DRIVER(testdevres_drv) = { .name = "testdevres_drv", .of_match = testdevres_ids, .id = UCLASS_TEST_DEVRES, .bind = testdevres_drv_bind, .of_to_plat = testdevres_drv_of_to_plat, .probe = testdevres_drv_probe, .plat_auto = sizeof(struct dm_testdevres_pdata), .priv_auto = sizeof(struct dm_testdevres_priv), }; UCLASS_DRIVER(testdevres) = { .name = "testdevres", .id = UCLASS_TEST_DEVRES, .flags = DM_UC_FLAG_SEQ_ALIAS, }; int dm_check_devices(struct unit_test_state *uts, int num_devices) { struct udevice *dev; int ret; int i; /* * Now check that the ping adds are what we expect. This is using the * ping-add property in each node. */ for (i = 0; i < num_devices; i++) { uint32_t base; ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev); ut_assert(!ret); /* * Get the 'ping-expect' property, which tells us what the * ping add should be. We don't use the plat because we * want to test the code that sets that up * (testfdt_drv_probe()). */ base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev), "ping-expect"); debug("dev=%d, base=%d: %s\n", i, base, fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL)); ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev))); } return 0; } /* Test that FDT-based binding works correctly */ static int dm_test_fdt(struct unit_test_state *uts) { const int num_devices = 9; struct udevice *dev; struct uclass *uc; int ret; int i; ret = dm_extended_scan(false); ut_assert(!ret); ret = uclass_get(UCLASS_TEST_FDT, &uc); ut_assert(!ret); /* These are num_devices compatible root-level device tree nodes */ ut_asserteq(num_devices, list_count_items(&uc->dev_head)); /* Each should have platform data but no private data */ for (i = 0; i < num_devices; i++) { ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev); ut_assert(!ret); ut_assert(!dev_get_priv(dev)); ut_assert(dev_get_plat(dev)); } ut_assertok(dm_check_devices(uts, num_devices)); return 0; } DM_TEST(dm_test_fdt, 0); static int dm_test_alias_highest_id(struct unit_test_state *uts) { int ret; ret = dev_read_alias_highest_id("ethernet"); ut_asserteq(5, ret); ret = dev_read_alias_highest_id("gpio"); ut_asserteq(3, ret); ret = dev_read_alias_highest_id("pci"); ut_asserteq(2, ret); ret = dev_read_alias_highest_id("i2c"); ut_asserteq(0, ret); ret = dev_read_alias_highest_id("deadbeef"); ut_asserteq(-1, ret); return 0; } DM_TEST(dm_test_alias_highest_id, 0); static int dm_test_fdt_pre_reloc(struct unit_test_state *uts) { struct uclass *uc; int ret; ret = dm_scan_fdt(true); ut_assert(!ret); ret = uclass_get(UCLASS_TEST_FDT, &uc); ut_assert(!ret); /* * These are 2 pre-reloc devices: * one with "u-boot,dm-pre-reloc" property (a-test node), and the other * one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node). */ ut_asserteq(2, list_count_items(&uc->dev_head)); return 0; } DM_TEST(dm_test_fdt_pre_reloc, 0); /* Test that sequence numbers are allocated properly */ static int dm_test_fdt_uclass_seq(struct unit_test_state *uts) { struct udevice *dev; /* A few basic santiy tests */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, &dev)); ut_asserteq_str("b-test", dev->name); ut_asserteq(3, dev_seq(dev)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, &dev)); ut_asserteq_str("a-test", dev->name); ut_asserteq(8, dev_seq(dev)); /* * This device has no alias so gets the next value after all available * aliases. The last alias is testfdt12 */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 13, &dev)); ut_asserteq_str("d-test", dev->name); ut_asserteq(13, dev_seq(dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9, &dev)); ut_asserteq_ptr(NULL, dev); /* Test aliases */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev)); ut_asserteq_str("e-test", dev->name); ut_asserteq(6, dev_seq(dev)); /* * Note that c-test nodes are not probed since it is not a top-level * node */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev)); ut_asserteq_str("b-test", dev->name); ut_asserteq(3, dev_seq(dev)); /* * d-test wants sequence number 3 also, but it can't have it because * b-test gets it first. */ ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev)); ut_asserteq_str("d-test", dev->name); ut_asserteq(13, dev_seq(dev)); /* g-test gets the next value after f-test */ ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 15, &dev)); ut_asserteq_str("g-test", dev->name); ut_asserteq(15, dev_seq(dev)); /* And we should still have holes in our sequence numbers */ ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 0, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 1, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 2, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 4, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 10, &dev)); ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 11, &dev)); return 0; } DM_TEST(dm_test_fdt_uclass_seq, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* More tests for sequence numbers */ static int dm_test_fdt_uclass_seq_manual(struct unit_test_state *uts) { struct udevice *dev; /* * Since DM_UC_FLAG_NO_AUTO_SEQ is set for this uclass, only testfdtm1 * should get a sequence number assigned */ ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 0, &dev)); ut_asserteq_str("testfdtm0", dev->name); ut_asserteq(-1, dev_seq(dev)); ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT_MANUAL, 1, &dev)); ut_asserteq_str("testfdtm1", dev->name); ut_asserteq(1, dev_seq(dev)); ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 2, &dev)); ut_asserteq_str("testfdtm2", dev->name); ut_asserteq(-1, dev_seq(dev)); return 0; } DM_TEST(dm_test_fdt_uclass_seq_manual, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_fdt_uclass_seq_more(struct unit_test_state *uts) { struct udevice *dev; ofnode node; /* Check creating a device with an alias */ node = ofnode_path("/some-bus/c-test@1"); ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test), "c-test@1", NULL, node, &dev)); ut_asserteq(12, dev_seq(dev)); ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 12, &dev)); ut_asserteq_str("c-test@1", dev->name); /* * Now bind a device without an alias. It should not get the next * sequence number after all aliases, and existing bound devices. The * last alias is 12, so we have: * * 13 d-test * 14 f-test * 15 g-test * 16 h-test * 17 another-test * 18 chosen-test * * So next available is 19 */ ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test), "fred", NULL, ofnode_null(), &dev)); ut_asserteq(19, dev_seq(dev)); ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test), "fred2", NULL, ofnode_null(), &dev)); ut_asserteq(20, dev_seq(dev)); return 0; } DM_TEST(dm_test_fdt_uclass_seq_more, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test that we can find a device by device tree offset */ static int dm_test_fdt_offset(struct unit_test_state *uts) { const void *blob = gd->fdt_blob; struct udevice *dev; int node; node = fdt_path_offset(blob, "/e-test"); ut_assert(node > 0); ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, &dev)); ut_asserteq_str("e-test", dev->name); /* This node should not be bound */ node = fdt_path_offset(blob, "/junk"); ut_assert(node > 0); ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, &dev)); /* This is not a top level node so should not be probed */ node = fdt_path_offset(blob, "/some-bus/c-test@5"); ut_assert(node > 0); ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node, &dev)); return 0; } DM_TEST(dm_test_fdt_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); /** * Test various error conditions with uclass_first_device() and * uclass_next_device() */ static int dm_test_first_next_device(struct unit_test_state *uts) { struct dm_testprobe_pdata *pdata; struct udevice *dev, *parent = NULL; int count; int ret; /* There should be 4 devices */ for (ret = uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0; dev; ret = uclass_next_device(&dev)) { count++; parent = dev_get_parent(dev); } ut_assertok(ret); ut_asserteq(4, count); /* Remove them and try again, with an error on the second one */ ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev)); pdata = dev_get_plat(dev); pdata->probe_err = -ENOMEM; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(uclass_first_device(UCLASS_TEST_PROBE, &dev)); ut_asserteq(-ENOMEM, uclass_next_device(&dev)); ut_asserteq_ptr(dev, NULL); /* Now an error on the first one */ ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev)); pdata = dev_get_plat(dev); pdata->probe_err = -ENOENT; device_remove(parent, DM_REMOVE_NORMAL); ut_asserteq(-ENOENT, uclass_first_device(UCLASS_TEST_PROBE, &dev)); return 0; } DM_TEST(dm_test_first_next_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test iteration through devices in a uclass */ static int dm_test_uclass_foreach(struct unit_test_state *uts) { struct udevice *dev; struct uclass *uc; int count; count = 0; uclass_id_foreach_dev(UCLASS_TEST_FDT, dev, uc) count++; ut_asserteq(9, count); count = 0; uclass_foreach_dev(dev, uc) count++; ut_asserteq(9, count); return 0; } DM_TEST(dm_test_uclass_foreach, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /** * check_devices() - Check return values and pointers * * This runs through a full sequence of uclass_first_device_check()... * uclass_next_device_check() checking that the return values and devices * are correct. * * @uts: Test state * @devlist: List of expected devices * @mask: Indicates which devices should return an error. Device n should * return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if * bit n is clear. */ static int check_devices(struct unit_test_state *uts, struct udevice *devlist[], int mask) { int expected_ret; struct udevice *dev; int i; expected_ret = (mask & 1) ? -ENOENT : 0; mask >>= 1; ut_asserteq(expected_ret, uclass_first_device_check(UCLASS_TEST_PROBE, &dev)); for (i = 0; i < 4; i++) { ut_asserteq_ptr(devlist[i], dev); expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0; mask >>= 1; ut_asserteq(expected_ret, uclass_next_device_check(&dev)); } ut_asserteq_ptr(NULL, dev); return 0; } /* Test uclass_first_device_check() and uclass_next_device_check() */ static int dm_test_first_next_ok_device(struct unit_test_state *uts) { struct dm_testprobe_pdata *pdata; struct udevice *dev, *parent = NULL, *devlist[4]; int count; int ret; /* There should be 4 devices */ count = 0; for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev); dev; ret = uclass_next_device_check(&dev)) { ut_assertok(ret); devlist[count++] = dev; parent = dev_get_parent(dev); } ut_asserteq(4, count); ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev)); ut_assertok(check_devices(uts, devlist, 0)); /* Remove them and try again, with an error on the second one */ pdata = dev_get_plat(devlist[1]); pdata->probe_err = -ENOENT - 1; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(check_devices(uts, devlist, 1 << 1)); /* Now an error on the first one */ pdata = dev_get_plat(devlist[0]); pdata->probe_err = -ENOENT - 0; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(check_devices(uts, devlist, 3 << 0)); /* Now errors on all */ pdata = dev_get_plat(devlist[2]); pdata->probe_err = -ENOENT - 2; pdata = dev_get_plat(devlist[3]); pdata->probe_err = -ENOENT - 3; device_remove(parent, DM_REMOVE_NORMAL); ut_assertok(check_devices(uts, devlist, 0xf << 0)); return 0; } DM_TEST(dm_test_first_next_ok_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static const struct udevice_id fdt_dummy_ids[] = { { .compatible = "denx,u-boot-fdt-dummy", }, { } }; UCLASS_DRIVER(fdt_dummy) = { .name = "fdt-dummy", .id = UCLASS_TEST_DUMMY, .flags = DM_UC_FLAG_SEQ_ALIAS, }; U_BOOT_DRIVER(fdt_dummy_drv) = { .name = "fdt_dummy_drv", .of_match = fdt_dummy_ids, .id = UCLASS_TEST_DUMMY, }; static int dm_test_fdt_translation(struct unit_test_state *uts) { struct udevice *dev; fdt32_t dma_addr[2]; /* Some simple translations */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); ut_asserteq_str("dev@0,0", dev->name); ut_asserteq(0x8000, dev_read_addr(dev)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev)); ut_asserteq_str("dev@1,100", dev->name); ut_asserteq(0x9000, dev_read_addr(dev)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, &dev)); ut_asserteq_str("dev@2,200", dev->name); ut_asserteq(0xA000, dev_read_addr(dev)); /* No translation for busses with #size-cells == 0 */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, &dev)); ut_asserteq_str("dev@42", dev->name); ut_asserteq(0x42, dev_read_addr(dev)); /* dma address translation */ ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); dma_addr[0] = cpu_to_be32(0); dma_addr[1] = cpu_to_be32(0); ut_asserteq(0x10000000, dev_translate_dma_address(dev, dma_addr)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev)); dma_addr[0] = cpu_to_be32(1); dma_addr[1] = cpu_to_be32(0x100); ut_asserteq(0x20000000, dev_translate_dma_address(dev, dma_addr)); return 0; } DM_TEST(dm_test_fdt_translation, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_fdt_get_addr_ptr_flat(struct unit_test_state *uts) { struct udevice *gpio, *dev; void *ptr; /* Test for missing reg property */ ut_assertok(uclass_first_device_err(UCLASS_GPIO, &gpio)); ut_assertnull(devfdt_get_addr_ptr(gpio)); ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); ptr = devfdt_get_addr_ptr(dev); ut_asserteq_ptr((void *)0x8000, ptr); return 0; } DM_TEST(dm_test_fdt_get_addr_ptr_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); addr = devfdt_get_addr(dev); ut_asserteq(0x8000, addr); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, devfdt_remap_addr(dev)); return 0; } DM_TEST(dm_test_fdt_remap_addr_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); static int dm_test_fdt_remap_addr_index_flat(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; fdt_size_t size; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); addr = devfdt_get_addr_size_index(dev, 0, &size); ut_asserteq(0x8000, addr); ut_asserteq(0x1000, size); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, devfdt_remap_addr_index(dev, 0)); return 0; } DM_TEST(dm_test_fdt_remap_addr_index_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); static int dm_test_fdt_remap_addr_name_flat(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; fdt_size_t size; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); addr = devfdt_get_addr_size_name(dev, "sandbox-dummy-0", &size); ut_asserteq(0x8000, addr); ut_asserteq(0x1000, size); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, devfdt_remap_addr_name(dev, "sandbox-dummy-0")); return 0; } DM_TEST(dm_test_fdt_remap_addr_name_flat, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE); static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); addr = dev_read_addr(dev); ut_asserteq(0x8000, addr); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, dev_remap_addr(dev)); return 0; } DM_TEST(dm_test_fdt_remap_addr_live, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_fdt_remap_addr_index_live(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; fdt_size_t size; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); addr = dev_read_addr_size_index(dev, 0, &size); ut_asserteq(0x8000, addr); ut_asserteq(0x1000, size); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, dev_remap_addr_index(dev, 0)); return 0; } DM_TEST(dm_test_fdt_remap_addr_index_live, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_fdt_remap_addr_name_live(struct unit_test_state *uts) { struct udevice *dev; fdt_addr_t addr; fdt_size_t size; void *paddr; ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev)); addr = dev_read_addr_size_name(dev, "sandbox-dummy-0", &size); ut_asserteq(0x8000, addr); ut_asserteq(0x1000, size); paddr = map_physmem(addr, 0, MAP_NOCACHE); ut_assertnonnull(paddr); ut_asserteq_ptr(paddr, dev_remap_addr_name(dev, "sandbox-dummy-0")); return 0; } DM_TEST(dm_test_fdt_remap_addr_name_live, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_fdt_livetree_writing(struct unit_test_state *uts) { struct udevice *dev; ofnode node; if (!of_live_active()) { printf("Live tree not active; ignore test\n"); return 0; } /* Test enabling devices */ node = ofnode_path("/usb@2"); ut_assert(!of_device_is_available(ofnode_to_np(node))); ofnode_set_enabled(node, true); ut_assert(of_device_is_available(ofnode_to_np(node))); device_bind_driver_to_node(dm_root(), "usb_sandbox", "usb@2", node, &dev); ut_assertok(uclass_find_device_by_seq(UCLASS_USB, 2, &dev)); /* Test string property setting */ ut_assert(device_is_compatible(dev, "sandbox,usb")); ofnode_write_string(node, "compatible", "gdsys,super-usb"); ut_assert(device_is_compatible(dev, "gdsys,super-usb")); ofnode_write_string(node, "compatible", "sandbox,usb"); ut_assert(device_is_compatible(dev, "sandbox,usb")); /* Test setting generic properties */ /* Non-existent in DTB */ ut_asserteq(FDT_ADDR_T_NONE, dev_read_addr(dev)); /* reg = 0x42, size = 0x100 */ ut_assertok(ofnode_write_prop(node, "reg", 8, "\x00\x00\x00\x42\x00\x00\x01\x00")); ut_asserteq(0x42, dev_read_addr(dev)); /* Test disabling devices */ device_remove(dev, DM_REMOVE_NORMAL); device_unbind(dev); ut_assert(of_device_is_available(ofnode_to_np(node))); ofnode_set_enabled(node, false); ut_assert(!of_device_is_available(ofnode_to_np(node))); return 0; } DM_TEST(dm_test_fdt_livetree_writing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts) { ofnode node; if (!of_live_active()) { printf("Live tree not active; ignore test\n"); return 0; } node = ofnode_path("/usb@2"); /* Test enabling devices */ ut_assert(!of_device_is_available(ofnode_to_np(node))); dev_enable_by_path("/usb@2"); ut_assert(of_device_is_available(ofnode_to_np(node))); /* Test disabling devices */ ut_assert(of_device_is_available(ofnode_to_np(node))); dev_disable_by_path("/usb@2"); ut_assert(!of_device_is_available(ofnode_to_np(node))); return 0; } DM_TEST(dm_test_fdt_disable_enable_by_path, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test a few uclass phandle functions */ static int dm_test_fdt_phandle(struct unit_test_state *uts) { struct udevice *back, *dev, *dev2; ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back)); ut_assertnonnull(back); ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR, back, "missing", &dev)); ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back, "power-supply", &dev)); ut_assertnonnull(dev); ut_asserteq(0, device_active(dev)); ut_asserteq_str("ldo1", dev->name); ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back, "power-supply", &dev2)); ut_asserteq_ptr(dev, dev2); return 0; } DM_TEST(dm_test_fdt_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test device_find_first_child_by_uclass() */ static int dm_test_first_child(struct unit_test_state *uts) { struct udevice *i2c, *dev, *dev2; ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c)); ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_RTC, &dev)); ut_asserteq_str("rtc@43", dev->name); ut_assertok(device_find_child_by_name(i2c, "rtc@43", &dev2)); ut_asserteq_ptr(dev, dev2); ut_assertok(device_find_child_by_name(i2c, "rtc@61", &dev2)); ut_asserteq_str("rtc@61", dev2->name); ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_I2C_EEPROM, &dev)); ut_asserteq_str("eeprom@2c", dev->name); ut_assertok(device_find_child_by_name(i2c, "eeprom@2c", &dev2)); ut_asserteq_ptr(dev, dev2); ut_asserteq(-ENODEV, device_find_first_child_by_uclass(i2c, UCLASS_VIDEO, &dev)); ut_asserteq(-ENODEV, device_find_child_by_name(i2c, "missing", &dev)); return 0; } DM_TEST(dm_test_first_child, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test integer functions in dm_read_...() */ static int dm_test_read_int(struct unit_test_state *uts) { struct udevice *dev; u32 val32; s32 sval; uint val; u64 val64; ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); ut_asserteq_str("a-test", dev->name); ut_assertok(dev_read_u32(dev, "int-value", &val32)); ut_asserteq(1234, val32); ut_asserteq(-EINVAL, dev_read_u32(dev, "missing", &val32)); ut_asserteq(6, dev_read_u32_default(dev, "missing", 6)); ut_asserteq(1234, dev_read_u32_default(dev, "int-value", 6)); ut_asserteq(1234, val32); ut_asserteq(-EINVAL, dev_read_s32(dev, "missing", &sval)); ut_asserteq(6, dev_read_s32_default(dev, "missing", 6)); ut_asserteq(-1234, dev_read_s32_default(dev, "uint-value", 6)); ut_assertok(dev_read_s32(dev, "uint-value", &sval)); ut_asserteq(-1234, sval); val = 0; ut_asserteq(-EINVAL, dev_read_u32u(dev, "missing", &val)); ut_assertok(dev_read_u32u(dev, "uint-value", &val)); ut_asserteq(-1234, val); ut_assertok(dev_read_u64(dev, "int64-value", &val64)); ut_asserteq_64(0x1111222233334444, val64); ut_asserteq_64(-EINVAL, dev_read_u64(dev, "missing", &val64)); ut_asserteq_64(6, dev_read_u64_default(dev, "missing", 6)); ut_asserteq_64(0x1111222233334444, dev_read_u64_default(dev, "int64-value", 6)); return 0; } DM_TEST(dm_test_read_int, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_read_int_index(struct unit_test_state *uts) { struct udevice *dev; u32 val32; ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); ut_asserteq_str("a-test", dev->name); ut_asserteq(-EINVAL, dev_read_u32_index(dev, "missing", 0, &val32)); ut_asserteq(19, dev_read_u32_index_default(dev, "missing", 0, 19)); ut_assertok(dev_read_u32_index(dev, "int-array", 0, &val32)); ut_asserteq(5678, val32); ut_assertok(dev_read_u32_index(dev, "int-array", 1, &val32)); ut_asserteq(9123, val32); ut_assertok(dev_read_u32_index(dev, "int-array", 2, &val32)); ut_asserteq(4567, val32); ut_asserteq(-EOVERFLOW, dev_read_u32_index(dev, "int-array", 3, &val32)); ut_asserteq(5678, dev_read_u32_index_default(dev, "int-array", 0, 2)); ut_asserteq(9123, dev_read_u32_index_default(dev, "int-array", 1, 2)); ut_asserteq(4567, dev_read_u32_index_default(dev, "int-array", 2, 2)); ut_asserteq(2, dev_read_u32_index_default(dev, "int-array", 3, 2)); return 0; } DM_TEST(dm_test_read_int_index, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); static int dm_test_read_phandle(struct unit_test_state *uts) { struct udevice *dev; struct ofnode_phandle_args args; int ret; const char prop[] = "test-gpios"; const char cell[] = "#gpio-cells"; const char prop2[] = "phandle-value"; ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); ut_asserteq_str("a-test", dev->name); /* Test dev_count_phandle_with_args with cell name */ ret = dev_count_phandle_with_args(dev, "missing", cell, 0); ut_asserteq(-ENOENT, ret); ret = dev_count_phandle_with_args(dev, prop, "#invalid", 0); ut_asserteq(-EINVAL, ret); ut_asserteq(5, dev_count_phandle_with_args(dev, prop, cell, 0)); /* Test dev_read_phandle_with_args with cell name */ ret = dev_read_phandle_with_args(dev, "missing", cell, 0, 0, &args); ut_asserteq(-ENOENT, ret); ret = dev_read_phandle_with_args(dev, prop, "#invalid", 0, 0, &args); ut_asserteq(-EINVAL, ret); ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 0, &args)); ut_asserteq(1, args.args_count); ut_asserteq(1, args.args[0]); ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 1, &args)); ut_asserteq(1, args.args_count); ut_asserteq(4, args.args[0]); ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 2, &args)); ut_asserteq(5, args.args_count); ut_asserteq(5, args.args[0]); ut_asserteq(1, args.args[4]); ret = dev_read_phandle_with_args(dev, prop, cell, 0, 3, &args); ut_asserteq(-ENOENT, ret); ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 4, &args)); ut_asserteq(1, args.args_count); ut_asserteq(12, args.args[0]); ret = dev_read_phandle_with_args(dev, prop, cell, 0, 5, &args); ut_asserteq(-ENOENT, ret); /* Test dev_count_phandle_with_args with cell count */ ret = dev_count_phandle_with_args(dev, "missing", NULL, 2); ut_asserteq(-ENOENT, ret); ut_asserteq(3, dev_count_phandle_with_args(dev, prop2, NULL, 1)); /* Test dev_read_phandle_with_args with cell count */ ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 0, &args)); ut_asserteq(1, ofnode_valid(args.node)); ut_asserteq(1, args.args_count); ut_asserteq(10, args.args[0]); ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 1, &args); ut_asserteq(-EINVAL, ret); ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 2, &args)); ut_asserteq(1, ofnode_valid(args.node)); ut_asserteq(1, args.args_count); ut_asserteq(30, args.args[0]); ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 3, &args); ut_asserteq(-ENOENT, ret); return 0; } DM_TEST(dm_test_read_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test iteration through devices by drvdata */ static int dm_test_uclass_drvdata(struct unit_test_state *uts) { struct udevice *dev; ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT, DM_TEST_TYPE_FIRST, &dev)); ut_asserteq_str("a-test", dev->name); ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT, DM_TEST_TYPE_SECOND, &dev)); ut_asserteq_str("d-test", dev->name); ut_asserteq(-ENODEV, uclass_first_device_drvdata(UCLASS_TEST_FDT, DM_TEST_TYPE_COUNT, &dev)); return 0; } DM_TEST(dm_test_uclass_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test device_first_child_ofdata_err(), etc. */ static int dm_test_child_ofdata(struct unit_test_state *uts) { struct udevice *bus, *dev; int count; ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus)); count = 0; device_foreach_child_of_to_plat(dev, bus) { ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID); ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED)); count++; } ut_asserteq(3, count); return 0; } DM_TEST(dm_test_child_ofdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test device_first_child_err(), etc. */ static int dm_test_first_child_probe(struct unit_test_state *uts) { struct udevice *bus, *dev; int count; ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus)); count = 0; device_foreach_child_probe(dev, bus) { ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID); ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED); count++; } ut_asserteq(3, count); return 0; } DM_TEST(dm_test_first_child_probe, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test that ofdata is read for parents before children */ static int dm_test_ofdata_order(struct unit_test_state *uts) { struct udevice *bus, *dev; ut_assertok(uclass_find_first_device(UCLASS_I2C, &bus)); ut_assertnonnull(bus); ut_assert(!(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID)); ut_assertok(device_find_first_child(bus, &dev)); ut_assertnonnull(dev); ut_assert(!(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID)); /* read the child's ofdata which should cause the parent's to be read */ ut_assertok(device_of_to_plat(dev)); ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID); ut_assert(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID); ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED)); ut_assert(!(dev_get_flags(bus) & DM_FLAG_ACTIVATED)); return 0; } DM_TEST(dm_test_ofdata_order, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test dev_decode_display_timing() */ static int dm_test_decode_display_timing(struct unit_test_state *uts) { struct udevice *dev; struct display_timing timing; ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev)); ut_asserteq_str("a-test", dev->name); ut_assertok(dev_decode_display_timing(dev, 0, &timing)); ut_assert(timing.hactive.typ == 240); ut_assert(timing.hback_porch.typ == 7); ut_assert(timing.hfront_porch.typ == 6); ut_assert(timing.hsync_len.typ == 1); ut_assert(timing.vactive.typ == 320); ut_assert(timing.vback_porch.typ == 5); ut_assert(timing.vfront_porch.typ == 8); ut_assert(timing.vsync_len.typ == 2); ut_assert(timing.pixelclock.typ == 6500000); ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH); ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW)); ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH)); ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_LOW); ut_assert(timing.flags & DISPLAY_FLAGS_DE_HIGH); ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW)); ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE); ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)); ut_assert(timing.flags & DISPLAY_FLAGS_INTERLACED); ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLESCAN); ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLECLK); ut_assertok(dev_decode_display_timing(dev, 1, &timing)); ut_assert(timing.hactive.typ == 480); ut_assert(timing.hback_porch.typ == 59); ut_assert(timing.hfront_porch.typ == 10); ut_assert(timing.hsync_len.typ == 12); ut_assert(timing.vactive.typ == 800); ut_assert(timing.vback_porch.typ == 15); ut_assert(timing.vfront_porch.typ == 17); ut_assert(timing.vsync_len.typ == 16); ut_assert(timing.pixelclock.typ == 9000000); ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH)); ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_LOW); ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH); ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH)); ut_assert(timing.flags & DISPLAY_FLAGS_DE_LOW); ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)); ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE); ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK)); ut_assertok(dev_decode_display_timing(dev, 2, &timing)); ut_assert(timing.hactive.typ == 800); ut_assert(timing.hback_porch.typ == 89); ut_assert(timing.hfront_porch.typ == 164); ut_assert(timing.hsync_len.typ == 11); ut_assert(timing.vactive.typ == 480); ut_assert(timing.vback_porch.typ == 23); ut_assert(timing.vfront_porch.typ == 10); ut_assert(timing.vsync_len.typ == 13); ut_assert(timing.pixelclock.typ == 33500000); ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH)); ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW)); ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH)); ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW)); ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE)); ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE)); ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN)); ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK)); ut_assert(dev_decode_display_timing(dev, 3, &timing)); return 0; } DM_TEST(dm_test_decode_display_timing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT); /* Test read_resourcee() */ static int dm_test_read_resource(struct unit_test_state *uts) { struct udevice *dev; struct resource res; /* test resource without translation */ ut_assertok(uclass_find_device_by_name(UCLASS_SIMPLE_BUS, "syscon@2", &dev)); ut_assertok(dev_read_resource(dev, 0, &res)); ut_asserteq(0x40, res.start); ut_asserteq(0x44, res.end); ut_assertok(dev_read_resource(dev, 1, &res)); ut_asserteq(0x48, res.start); ut_asserteq(0x4d, res.end); /* test resource with translation */ ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@1,100", &dev)); ut_assertok(dev_read_resource(dev, 0, &res)); ut_asserteq(0x9000, res.start); ut_asserteq(0x9fff, res.end); /* test named resource */ ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@0,0", &dev)); ut_assertok(dev_read_resource_byname(dev, "sandbox-dummy-0", &res)); ut_asserteq(0x8000, res.start); ut_asserteq(0x8fff, res.end); return 0; } DM_TEST(dm_test_read_resource, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);