/* * Copyright 2014-2015 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MP #include #endif #include #include #include #ifdef CONFIG_FSL_ESDHC #include #endif DECLARE_GLOBAL_DATA_PTR; struct mm_region *mem_map = early_map; void cpu_name(char *name) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); unsigned int i, svr, ver; svr = gur_in32(&gur->svr); ver = SVR_SOC_VER(svr); for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) { strcpy(name, cpu_type_list[i].name); if (IS_E_PROCESSOR(svr)) strcat(name, "E"); break; } if (i == ARRAY_SIZE(cpu_type_list)) strcpy(name, "unknown"); } #ifndef CONFIG_SYS_DCACHE_OFF /* * To start MMU before DDR is available, we create MMU table in SRAM. * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three * levels of translation tables here to cover 40-bit address space. * We use 4KB granule size, with 40 bits physical address, T0SZ=24 * Address above EARLY_PGTABLE_SIZE (0x5000) is free for other purpose. * Note, the debug print in cache_v8.c is not usable for debugging * these early MMU tables because UART is not yet available. */ static inline void early_mmu_setup(void) { unsigned int el = current_el(); /* global data is already setup, no allocation yet */ gd->arch.tlb_addr = CONFIG_SYS_FSL_OCRAM_BASE; gd->arch.tlb_fillptr = gd->arch.tlb_addr; gd->arch.tlb_size = EARLY_PGTABLE_SIZE; /* Create early page tables */ setup_pgtables(); /* point TTBR to the new table */ set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL) & ~(TCR_ORGN_MASK | TCR_IRGN_MASK), MEMORY_ATTRIBUTES); set_sctlr(get_sctlr() | CR_M); } /* * The final tables look similar to early tables, but different in detail. * These tables are in DRAM. Sub tables are added to enable cache for * QBMan and OCRAM. * * Put the MMU table in secure memory if gd->arch.secure_ram is valid. * OCRAM will be not used for this purpose so gd->arch.secure_ram can't be 0. */ static inline void final_mmu_setup(void) { u64 tlb_addr_save = gd->arch.tlb_addr; unsigned int el = current_el(); #ifdef CONFIG_SYS_MEM_RESERVE_SECURE int index; #endif mem_map = final_map; #ifdef CONFIG_SYS_MEM_RESERVE_SECURE if (gd->arch.secure_ram & MEM_RESERVE_SECURE_MAINTAINED) { if (el == 3) { /* * Only use gd->arch.secure_ram if the address is * recalculated. Align to 4KB for MMU table. */ /* put page tables in secure ram */ index = ARRAY_SIZE(final_map) - 2; gd->arch.tlb_addr = gd->arch.secure_ram & ~0xfff; final_map[index].virt = gd->arch.secure_ram & ~0x3; final_map[index].phys = final_map[index].virt; final_map[index].size = CONFIG_SYS_MEM_RESERVE_SECURE; final_map[index].attrs = PTE_BLOCK_OUTER_SHARE; gd->arch.secure_ram |= MEM_RESERVE_SECURE_SECURED; tlb_addr_save = gd->arch.tlb_addr; } else { /* Use allocated (board_f.c) memory for TLB */ tlb_addr_save = gd->arch.tlb_allocated; gd->arch.tlb_addr = tlb_addr_save; } } #endif /* Reset the fill ptr */ gd->arch.tlb_fillptr = tlb_addr_save; /* Create normal system page tables */ setup_pgtables(); /* Create emergency page tables */ gd->arch.tlb_addr = gd->arch.tlb_fillptr; gd->arch.tlb_emerg = gd->arch.tlb_addr; setup_pgtables(); gd->arch.tlb_addr = tlb_addr_save; /* flush new MMU table */ flush_dcache_range(gd->arch.tlb_addr, gd->arch.tlb_addr + gd->arch.tlb_size); /* point TTBR to the new table */ set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(el, NULL, NULL), MEMORY_ATTRIBUTES); /* * MMU is already enabled, just need to invalidate TLB to load the * new table. The new table is compatible with the current table, if * MMU somehow walks through the new table before invalidation TLB, * it still works. So we don't need to turn off MMU here. */ } u64 get_page_table_size(void) { return 0x10000; } int arch_cpu_init(void) { icache_enable(); __asm_invalidate_dcache_all(); __asm_invalidate_tlb_all(); early_mmu_setup(); set_sctlr(get_sctlr() | CR_C); return 0; } /* * This function is called from lib/board.c. * It recreates MMU table in main memory. MMU and d-cache are enabled earlier. * There is no need to disable d-cache for this operation. */ void enable_caches(void) { final_mmu_setup(); __asm_invalidate_tlb_all(); } #endif static inline u32 initiator_type(u32 cluster, int init_id) { struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK; u32 type = 0; type = gur_in32(&gur->tp_ityp[idx]); if (type & TP_ITYP_AV) return type; return 0; } u32 cpu_mask(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster, type, mask = 0; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type) { if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) mask |= 1 << count; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return mask; } /* * Return the number of cores on this SOC. */ int cpu_numcores(void) { return hweight32(cpu_mask()); } int fsl_qoriq_core_to_cluster(unsigned int core) { struct ccsr_gur __iomem *gur = (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { if (initiator_type(cluster, j)) { if (count == core) return i; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return -1; /* cannot identify the cluster */ } u32 fsl_qoriq_core_to_type(unsigned int core) { struct ccsr_gur __iomem *gur = (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); int i = 0, count = 0; u32 cluster, type; do { int j; cluster = gur_in32(&gur->tp_cluster[i].lower); for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { type = initiator_type(cluster, j); if (type) { if (count == core) return type; count++; } } i++; } while ((cluster & TP_CLUSTER_EOC) == 0x0); return -1; /* cannot identify the cluster */ } uint get_svr(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); return gur_in32(&gur->svr); } #ifdef CONFIG_DISPLAY_CPUINFO int print_cpuinfo(void) { struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); struct sys_info sysinfo; char buf[32]; unsigned int i, core; u32 type, rcw, svr = gur_in32(&gur->svr); puts("SoC: "); cpu_name(buf); printf(" %s (0x%x)\n", buf, svr); memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); get_sys_info(&sysinfo); puts("Clock Configuration:"); for_each_cpu(i, core, cpu_numcores(), cpu_mask()) { if (!(i % 3)) puts("\n "); type = TP_ITYP_VER(fsl_qoriq_core_to_type(core)); printf("CPU%d(%s):%-4s MHz ", core, type == TY_ITYP_VER_A7 ? "A7 " : (type == TY_ITYP_VER_A53 ? "A53" : (type == TY_ITYP_VER_A57 ? "A57" : " ")), strmhz(buf, sysinfo.freq_processor[core])); } printf("\n Bus: %-4s MHz ", strmhz(buf, sysinfo.freq_systembus)); printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus)); #ifdef CONFIG_SYS_DPAA_FMAN printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0])); #endif #ifdef CONFIG_SYS_FSL_HAS_DP_DDR if (soc_has_dp_ddr()) { printf(" DP-DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus2)); } #endif puts("\n"); /* * Display the RCW, so that no one gets confused as to what RCW * we're actually using for this boot. */ puts("Reset Configuration Word (RCW):"); for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) { rcw = gur_in32(&gur->rcwsr[i]); if ((i % 4) == 0) printf("\n %08x:", i * 4); printf(" %08x", rcw); } puts("\n"); return 0; } #endif #ifdef CONFIG_FSL_ESDHC int cpu_mmc_init(bd_t *bis) { return fsl_esdhc_mmc_init(bis); } #endif int cpu_eth_init(bd_t *bis) { int error = 0; #ifdef CONFIG_FSL_MC_ENET error = fsl_mc_ldpaa_init(bis); #endif #ifdef CONFIG_FMAN_ENET fm_standard_init(bis); #endif return error; } int arch_early_init_r(void) { #ifdef CONFIG_MP int rv = 1; #endif #ifdef CONFIG_SYS_FSL_ERRATUM_A009635 erratum_a009635(); #endif #ifdef CONFIG_MP rv = fsl_layerscape_wake_seconday_cores(); if (rv) printf("Did not wake secondary cores\n"); #endif #ifdef CONFIG_SYS_HAS_SERDES fsl_serdes_init(); #endif #ifdef CONFIG_FMAN_ENET fman_enet_init(); #endif return 0; } int timer_init(void) { u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR; #ifdef CONFIG_FSL_LSCH3 u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR; #endif #ifdef CONFIG_LS2080A u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET; #endif #ifdef COUNTER_FREQUENCY_REAL unsigned long cntfrq = COUNTER_FREQUENCY_REAL; /* Update with accurate clock frequency */ asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory"); #endif #ifdef CONFIG_FSL_LSCH3 /* Enable timebase for all clusters. * It is safe to do so even some clusters are not enabled. */ out_le32(cltbenr, 0xf); #endif #ifdef CONFIG_LS2080A /* * In certain Layerscape SoCs, the clock for each core's * has an enable bit in the PMU Physical Core Time Base Enable * Register (PCTBENR), which allows the watchdog to operate. */ setbits_le32(pctbenr, 0xff); #endif /* Enable clock for timer * This is a global setting. */ out_le32(cntcr, 0x1); return 0; } void reset_cpu(ulong addr) { u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR; u32 val; /* Raise RESET_REQ_B */ val = scfg_in32(rstcr); val |= 0x02; scfg_out32(rstcr, val); } phys_size_t board_reserve_ram_top(phys_size_t ram_size) { phys_size_t ram_top = ram_size; #ifdef CONFIG_SYS_MEM_TOP_HIDE #error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function #endif /* Carve the Debug Server private DRAM block from the end of DRAM */ #ifdef CONFIG_FSL_DEBUG_SERVER ram_top -= debug_server_get_dram_block_size(); #endif /* Carve the MC private DRAM block from the end of DRAM */ #ifdef CONFIG_FSL_MC_ENET ram_top -= mc_get_dram_block_size(); ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1); #endif return ram_top; }