// SPDX-License-Identifier: GPL-2.0+ /* * K3: Common Architecture initialization * * Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/ * Lokesh Vutla */ #include #include #include #include #include #include #include #include "common.h" #include #include #include #include #include #include #include #include #include #include #include #include #include struct ti_sci_handle *get_ti_sci_handle(void) { struct udevice *dev; int ret; ret = uclass_get_device_by_driver(UCLASS_FIRMWARE, DM_DRIVER_GET(ti_sci), &dev); if (ret) panic("Failed to get SYSFW (%d)\n", ret); return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev); } void k3_sysfw_print_ver(void) { struct ti_sci_handle *ti_sci = get_ti_sci_handle(); char fw_desc[sizeof(ti_sci->version.firmware_description) + 1]; /* * Output System Firmware version info. Note that since the * 'firmware_description' field is not guaranteed to be zero- * terminated we manually add a \0 terminator if needed. Further * note that we intentionally no longer rely on the extended * printf() formatter '%.*s' to not having to require a more * full-featured printf() implementation. */ strncpy(fw_desc, ti_sci->version.firmware_description, sizeof(ti_sci->version.firmware_description)); fw_desc[sizeof(fw_desc) - 1] = '\0'; printf("SYSFW ABI: %d.%d (firmware rev 0x%04x '%s')\n", ti_sci->version.abi_major, ti_sci->version.abi_minor, ti_sci->version.firmware_revision, fw_desc); } void mmr_unlock(phys_addr_t base, u32 partition) { /* Translate the base address */ phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE; /* Unlock the requested partition if locked using two-step sequence */ writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0); writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1); } bool is_rom_loaded_sysfw(struct rom_extended_boot_data *data) { if (strncmp(data->header, K3_ROM_BOOT_HEADER_MAGIC, 7)) return false; return data->num_components > 1; } DECLARE_GLOBAL_DATA_PTR; #ifdef CONFIG_K3_EARLY_CONS int early_console_init(void) { struct udevice *dev; int ret; gd->baudrate = CONFIG_BAUDRATE; ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX, &dev); if (ret) { printf("Error getting serial dev for early console! (%d)\n", ret); return ret; } gd->cur_serial_dev = dev; gd->flags |= GD_FLG_SERIAL_READY; gd->have_console = 1; return 0; } #endif #ifdef CONFIG_SYS_K3_SPL_ATF void init_env(void) { #ifdef CONFIG_SPL_ENV_SUPPORT char *part; env_init(); env_relocate(); switch (spl_boot_device()) { case BOOT_DEVICE_MMC2: part = env_get("bootpart"); env_set("storage_interface", "mmc"); env_set("fw_dev_part", part); break; case BOOT_DEVICE_SPI: env_set("storage_interface", "ubi"); env_set("fw_ubi_mtdpart", "UBI"); env_set("fw_ubi_volume", "UBI0"); break; default: printf("%s from device %u not supported!\n", __func__, spl_boot_device()); return; } #endif } #ifdef CONFIG_FS_LOADER int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr) { struct udevice *fsdev; char *name = NULL; int size = 0; *loadaddr = 0; #ifdef CONFIG_SPL_ENV_SUPPORT switch (spl_boot_device()) { case BOOT_DEVICE_MMC2: name = env_get(name_fw); *loadaddr = env_get_hex(name_loadaddr, *loadaddr); break; default: printf("Loading rproc fw image from device %u not supported!\n", spl_boot_device()); return 0; } #endif if (!*loadaddr) return 0; if (!uclass_get_device(UCLASS_FS_FIRMWARE_LOADER, 0, &fsdev)) { size = request_firmware_into_buf(fsdev, name, (void *)*loadaddr, 0, 0); } return size; } #else int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr) { return 0; } #endif __weak void start_non_linux_remote_cores(void) { } void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image) { typedef void __noreturn (*image_entry_noargs_t)(void); struct ti_sci_handle *ti_sci = get_ti_sci_handle(); u32 loadaddr = 0; int ret, size; /* Release all the exclusive devices held by SPL before starting ATF */ ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci); ret = rproc_init(); if (ret) panic("rproc failed to be initialized (%d)\n", ret); init_env(); start_non_linux_remote_cores(); size = load_firmware("name_mcur5f0_0fw", "addr_mcur5f0_0load", &loadaddr); /* * It is assumed that remoteproc device 1 is the corresponding * Cortex-A core which runs ATF. Make sure DT reflects the same. */ ret = rproc_load(1, spl_image->entry_point, 0x200); if (ret) panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret); /* Add an extra newline to differentiate the ATF logs from SPL */ printf("Starting ATF on ARM64 core...\n\n"); ret = rproc_start(1); if (ret) panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret); if (!(size > 0 && valid_elf_image(loadaddr))) { debug("Shutting down...\n"); release_resources_for_core_shutdown(); while (1) asm volatile("wfe"); } image_entry_noargs_t image_entry = (image_entry_noargs_t)load_elf_image_phdr(loadaddr); image_entry(); } #endif #if defined(CONFIG_OF_LIBFDT) int fdt_fixup_msmc_ram(void *blob, char *parent_path, char *node_name) { u64 msmc_start = 0, msmc_end = 0, msmc_size, reg[2]; struct ti_sci_handle *ti_sci = get_ti_sci_handle(); int ret, node, subnode, len, prev_node; u32 range[4], addr, size; const fdt32_t *sub_reg; ti_sci->ops.core_ops.query_msmc(ti_sci, &msmc_start, &msmc_end); msmc_size = msmc_end - msmc_start + 1; debug("%s: msmc_start = 0x%llx, msmc_size = 0x%llx\n", __func__, msmc_start, msmc_size); /* find or create "msmc_sram node */ ret = fdt_path_offset(blob, parent_path); if (ret < 0) return ret; node = fdt_find_or_add_subnode(blob, ret, node_name); if (node < 0) return node; ret = fdt_setprop_string(blob, node, "compatible", "mmio-sram"); if (ret < 0) return ret; reg[0] = cpu_to_fdt64(msmc_start); reg[1] = cpu_to_fdt64(msmc_size); ret = fdt_setprop(blob, node, "reg", reg, sizeof(reg)); if (ret < 0) return ret; fdt_setprop_cell(blob, node, "#address-cells", 1); fdt_setprop_cell(blob, node, "#size-cells", 1); range[0] = 0; range[1] = cpu_to_fdt32(msmc_start >> 32); range[2] = cpu_to_fdt32(msmc_start & 0xffffffff); range[3] = cpu_to_fdt32(msmc_size); ret = fdt_setprop(blob, node, "ranges", range, sizeof(range)); if (ret < 0) return ret; subnode = fdt_first_subnode(blob, node); prev_node = 0; /* Look for invalid subnodes and delete them */ while (subnode >= 0) { sub_reg = fdt_getprop(blob, subnode, "reg", &len); addr = fdt_read_number(sub_reg, 1); sub_reg++; size = fdt_read_number(sub_reg, 1); debug("%s: subnode = %d, addr = 0x%x. size = 0x%x\n", __func__, subnode, addr, size); if (addr + size > msmc_size || !strncmp(fdt_get_name(blob, subnode, &len), "sysfw", 5) || !strncmp(fdt_get_name(blob, subnode, &len), "l3cache", 7)) { fdt_del_node(blob, subnode); debug("%s: deleting subnode %d\n", __func__, subnode); if (!prev_node) subnode = fdt_first_subnode(blob, node); else subnode = fdt_next_subnode(blob, prev_node); } else { prev_node = subnode; subnode = fdt_next_subnode(blob, prev_node); } } return 0; } int fdt_disable_node(void *blob, char *node_path) { int offs; int ret; offs = fdt_path_offset(blob, node_path); if (offs < 0) { printf("Node %s not found.\n", node_path); return offs; } ret = fdt_setprop_string(blob, offs, "status", "disabled"); if (ret < 0) { printf("Could not add status property to node %s: %s\n", node_path, fdt_strerror(ret)); return ret; } return 0; } #endif #ifndef CONFIG_SYSRESET void reset_cpu(ulong ignored) { } #endif #if defined(CONFIG_DISPLAY_CPUINFO) int print_cpuinfo(void) { struct udevice *soc; char name[64]; int ret; printf("SoC: "); ret = soc_get(&soc); if (ret) { printf("UNKNOWN\n"); return 0; } ret = soc_get_family(soc, name, 64); if (!ret) { printf("%s ", name); } ret = soc_get_revision(soc, name, 64); if (!ret) { printf("%s\n", name); } return 0; } #endif bool soc_is_j721e(void) { u32 soc; soc = (readl(CTRLMMR_WKUP_JTAG_ID) & JTAG_ID_PARTNO_MASK) >> JTAG_ID_PARTNO_SHIFT; return soc == J721E; } bool soc_is_j7200(void) { u32 soc; soc = (readl(CTRLMMR_WKUP_JTAG_ID) & JTAG_ID_PARTNO_MASK) >> JTAG_ID_PARTNO_SHIFT; return soc == J7200; } #ifdef CONFIG_ARM64 void board_prep_linux(bootm_headers_t *images) { debug("Linux kernel Image start = 0x%lx end = 0x%lx\n", images->os.start, images->os.end); __asm_flush_dcache_range(images->os.start, ROUND(images->os.end, CONFIG_SYS_CACHELINE_SIZE)); } #endif #ifdef CONFIG_CPU_V7R void disable_linefill_optimization(void) { u32 actlr; /* * On K3 devices there are 2 conditions where R5F can deadlock: * 1.When software is performing series of store operations to * cacheable write back/write allocate memory region and later * on software execute barrier operation (DSB or DMB). R5F may * hang at the barrier instruction. * 2.When software is performing a mix of load and store operations * within a tight loop and store operations are all writing to * cacheable write back/write allocates memory regions, R5F may * hang at one of the load instruction. * * To avoid the above two conditions disable linefill optimization * inside Cortex R5F. */ asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr)); actlr |= (1 << 13); /* Set DLFO bit */ asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr)); } #endif void remove_fwl_configs(struct fwl_data *fwl_data, size_t fwl_data_size) { struct ti_sci_msg_fwl_region region; struct ti_sci_fwl_ops *fwl_ops; struct ti_sci_handle *ti_sci; size_t i, j; ti_sci = get_ti_sci_handle(); fwl_ops = &ti_sci->ops.fwl_ops; for (i = 0; i < fwl_data_size; i++) { for (j = 0; j < fwl_data[i].regions; j++) { region.fwl_id = fwl_data[i].fwl_id; region.region = j; region.n_permission_regs = 3; fwl_ops->get_fwl_region(ti_sci, ®ion); if (region.control != 0) { pr_debug("Attempting to disable firewall %5d (%25s)\n", region.fwl_id, fwl_data[i].name); region.control = 0; if (fwl_ops->set_fwl_region(ti_sci, ®ion)) pr_err("Could not disable firewall %5d (%25s)\n", region.fwl_id, fwl_data[i].name); } } } } void spl_enable_dcache(void) { #if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF)) phys_addr_t ram_top = CONFIG_SYS_SDRAM_BASE; dram_init_banksize(); /* reserve TLB table */ gd->arch.tlb_size = PGTABLE_SIZE; ram_top += get_effective_memsize(); /* keep ram_top in the 32-bit address space */ if (ram_top >= 0x100000000) ram_top = (phys_addr_t) 0x100000000; gd->arch.tlb_addr = ram_top - gd->arch.tlb_size; debug("TLB table from %08lx to %08lx\n", gd->arch.tlb_addr, gd->arch.tlb_addr + gd->arch.tlb_size); dcache_enable(); #endif } #if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF)) void spl_board_prepare_for_boot(void) { dcache_disable(); } void spl_board_prepare_for_linux(void) { dcache_disable(); } #endif