#!/usr/bin/python # SPDX-License-Identifier: GPL-2.0+ # # Copyright (C) 2017 Google, Inc # Written by Simon Glass # """Device tree to platform data class This supports converting device tree data to C structures definitions and static data. See doc/driver-model/of-plat.rst for more informaiton """ import collections import copy import os import re import sys from dtoc import fdt from dtoc import fdt_util # When we see these properties we ignore them - i.e. do not create a structure # member PROP_IGNORE_LIST = [ '#address-cells', '#gpio-cells', '#size-cells', 'compatible', 'linux,phandle', "status", 'phandle', 'u-boot,dm-pre-reloc', 'u-boot,dm-tpl', 'u-boot,dm-spl', ] # C type declarations for the types we support TYPE_NAMES = { fdt.Type.INT: 'fdt32_t', fdt.Type.BYTE: 'unsigned char', fdt.Type.STRING: 'const char *', fdt.Type.BOOL: 'bool', fdt.Type.INT64: 'fdt64_t', } STRUCT_PREFIX = 'dtd_' VAL_PREFIX = 'dtv_' # This holds information about a property which includes phandles. # # max_args: integer: Maximum number or arguments that any phandle uses (int). # args: Number of args for each phandle in the property. The total number of # phandles is len(args). This is a list of integers. PhandleInfo = collections.namedtuple('PhandleInfo', ['max_args', 'args']) # Holds a single phandle link, allowing a C struct value to be assigned to point # to a device # # var_node: C variable to assign (e.g. 'dtv_mmc.clocks[0].node') # dev_name: Name of device to assign to (e.g. 'clock') PhandleLink = collections.namedtuple('PhandleLink', ['var_node', 'dev_name']) def conv_name_to_c(name): """Convert a device-tree name to a C identifier This uses multiple replace() calls instead of re.sub() since it is faster (400ms for 1m calls versus 1000ms for the 're' version). Args: name (str): Name to convert Return: str: String containing the C version of this name """ new = name.replace('@', '_at_') new = new.replace('-', '_') new = new.replace(',', '_') new = new.replace('.', '_') return new def tab_to(num_tabs, line): """Append tabs to a line of text to reach a tab stop. Args: num_tabs (int): Tab stop to obtain (0 = column 0, 1 = column 8, etc.) line (str): Line of text to append to Returns: str: line with the correct number of tabs appeneded. If the line already extends past that tab stop then a single space is appended. """ if len(line) >= num_tabs * 8: return line + ' ' return line + '\t' * (num_tabs - len(line) // 8) def get_value(ftype, value): """Get a value as a C expression For integers this returns a byte-swapped (little-endian) hex string For bytes this returns a hex string, e.g. 0x12 For strings this returns a literal string enclosed in quotes For booleans this return 'true' Args: ftype (fdt.Type): Data type (fdt_util) value (bytes): Data value, as a string of bytes Returns: str: String representation of the value """ if ftype == fdt.Type.INT: val = '%#x' % fdt_util.fdt32_to_cpu(value) elif ftype == fdt.Type.BYTE: char = value[0] val = '%#x' % (ord(char) if isinstance(char, str) else char) elif ftype == fdt.Type.STRING: # Handle evil ACPI backslashes by adding another backslash before them. # So "\\_SB.GPO0" in the device tree effectively stays like that in C val = '"%s"' % value.replace('\\', '\\\\') elif ftype == fdt.Type.BOOL: val = 'true' else: # ftype == fdt.Type.INT64: val = '%#x' % value return val def get_compat_name(node): """Get the node's list of compatible string as a C identifiers Args: node (fdt.Node): Node object to check Return: list of str: List of C identifiers for all the compatible strings """ compat = node.props['compatible'].value if not isinstance(compat, list): compat = [compat] return [conv_name_to_c(c) for c in compat] class DtbPlatdata(): """Provide a means to convert device tree binary data to platform data The output of this process is C structures which can be used in space- constrained encvironments where the ~3KB code overhead of device tree code is not affordable. Properties: _fdt: Fdt object, referencing the device tree _dtb_fname: Filename of the input device tree binary file _valid_nodes: A list of Node object with compatible strings. The list is ordered by conv_name_to_c(node.name) _include_disabled: true to include nodes marked status = "disabled" _outfile: The current output file (sys.stdout or a real file) _warning_disabled: true to disable warnings about driver names not found _lines: Stashed list of output lines for outputting in the future _drivers: List of valid driver names found in drivers/ _driver_aliases: Dict that holds aliases for driver names key: Driver alias declared with U_BOOT_DRIVER_ALIAS(driver_alias, driver_name) value: Driver name declared with U_BOOT_DRIVER(driver_name) _drivers_additional: List of additional drivers to use during scanning """ def __init__(self, dtb_fname, include_disabled, warning_disabled, drivers_additional=None): self._fdt = None self._dtb_fname = dtb_fname self._valid_nodes = None self._include_disabled = include_disabled self._outfile = None self._warning_disabled = warning_disabled self._lines = [] self._drivers = [] self._driver_aliases = {} self._drivers_additional = drivers_additional or [] def get_normalized_compat_name(self, node): """Get a node's normalized compat name Returns a valid driver name by retrieving node's list of compatible string as a C identifier and performing a check against _drivers and a lookup in driver_aliases printing a warning in case of failure. Args: node (Node): Node object to check Return: Tuple: Driver name associated with the first compatible string List of C identifiers for all the other compatible strings (possibly empty) In case of no match found, the return will be the same as get_compat_name() """ compat_list_c = get_compat_name(node) for compat_c in compat_list_c: if not compat_c in self._drivers: compat_c = self._driver_aliases.get(compat_c) if not compat_c: continue aliases_c = compat_list_c if compat_c in aliases_c: aliases_c.remove(compat_c) return compat_c, aliases_c if not self._warning_disabled: print('WARNING: the driver %s was not found in the driver list' % (compat_list_c[0])) return compat_list_c[0], compat_list_c[1:] def setup_output(self, fname): """Set up the output destination Once this is done, future calls to self.out() will output to this file. Args: fname (str): Filename to send output to, or '-' for stdout """ if fname == '-': self._outfile = sys.stdout else: self._outfile = open(fname, 'w') def out(self, line): """Output a string to the output file Args: line (str): String to output """ self._outfile.write(line) def buf(self, line): """Buffer up a string to send later Args: line (str): String to add to our 'buffer' list """ self._lines.append(line) def get_buf(self): """Get the contents of the output buffer, and clear it Returns: list(str): The output buffer, which is then cleared for future use """ lines = self._lines self._lines = [] return lines def out_header(self): """Output a message indicating that this is an auto-generated file""" self.out('''/* * DO NOT MODIFY * * This file was generated by dtoc from a .dtb (device tree binary) file. */ ''') def get_phandle_argc(self, prop, node_name): """Check if a node contains phandles We have no reliable way of detecting whether a node uses a phandle or not. As an interim measure, use a list of known property names. Args: prop (fdt.Prop): Prop object to check node_name (str): Node name, only used for raising an error Returns: int or None: Number of argument cells is this is a phandle, else None Raises: ValueError: if the phandle cannot be parsed or the required property is not present """ if prop.name in ['clocks', 'cd-gpios']: if not isinstance(prop.value, list): prop.value = [prop.value] val = prop.value i = 0 max_args = 0 args = [] while i < len(val): phandle = fdt_util.fdt32_to_cpu(val[i]) # If we get to the end of the list, stop. This can happen # since some nodes have more phandles in the list than others, # but we allocate enough space for the largest list. So those # nodes with shorter lists end up with zeroes at the end. if not phandle: break target = self._fdt.phandle_to_node.get(phandle) if not target: raise ValueError("Cannot parse '%s' in node '%s'" % (prop.name, node_name)) cells = None for prop_name in ['#clock-cells', '#gpio-cells']: cells = target.props.get(prop_name) if cells: break if not cells: raise ValueError("Node '%s' has no cells property" % (target.name)) num_args = fdt_util.fdt32_to_cpu(cells.value) max_args = max(max_args, num_args) args.append(num_args) i += 1 + num_args return PhandleInfo(max_args, args) return None def scan_driver(self, fname): """Scan a driver file to build a list of driver names and aliases This procedure will populate self._drivers and self._driver_aliases Args fname: Driver filename to scan """ with open(fname, encoding='utf-8') as inf: try: buff = inf.read() except UnicodeDecodeError: # This seems to happen on older Python versions print("Skipping file '%s' due to unicode error" % fname) return # The following re will search for driver names declared as # U_BOOT_DRIVER(driver_name) drivers = re.findall(r'U_BOOT_DRIVER\((.*)\)', buff) for driver in drivers: self._drivers.append(driver) # The following re will search for driver aliases declared as # U_BOOT_DRIVER_ALIAS(alias, driver_name) driver_aliases = re.findall( r'U_BOOT_DRIVER_ALIAS\(\s*(\w+)\s*,\s*(\w+)\s*\)', buff) for alias in driver_aliases: # pragma: no cover if len(alias) != 2: continue self._driver_aliases[alias[1]] = alias[0] def scan_drivers(self): """Scan the driver folders to build a list of driver names and aliases This procedure will populate self._drivers and self._driver_aliases """ basedir = sys.argv[0].replace('tools/dtoc/dtoc', '') if basedir == '': basedir = './' for (dirpath, _, filenames) in os.walk(basedir): for fname in filenames: if not fname.endswith('.c'): continue self.scan_driver(dirpath + '/' + fname) for fname in self._drivers_additional: if not isinstance(fname, str) or len(fname) == 0: continue if fname[0] == '/': self.scan_driver(fname) else: self.scan_driver(basedir + '/' + fname) def scan_dtb(self): """Scan the device tree to obtain a tree of nodes and properties Once this is done, self._fdt.GetRoot() can be called to obtain the device tree root node, and progress from there. """ self._fdt = fdt.FdtScan(self._dtb_fname) def scan_node(self, root, valid_nodes): """Scan a node and subnodes to build a tree of node and phandle info This adds each node to self._valid_nodes. Args: root (Node): Root node for scan valid_nodes (list of Node): List of Node objects to add to """ for node in root.subnodes: if 'compatible' in node.props: status = node.props.get('status') if (not self._include_disabled and not status or status.value != 'disabled'): valid_nodes.append(node) # recurse to handle any subnodes self.scan_node(node, valid_nodes) def scan_tree(self): """Scan the device tree for useful information This fills in the following properties: _valid_nodes: A list of nodes we wish to consider include in the platform data """ valid_nodes = [] self.scan_node(self._fdt.GetRoot(), valid_nodes) self._valid_nodes = sorted(valid_nodes, key=lambda x: conv_name_to_c(x.name)) for idx, node in enumerate(self._valid_nodes): node.idx = idx @staticmethod def get_num_cells(node): """Get the number of cells in addresses and sizes for this node Args: node (fdt.None): Node to check Returns: Tuple: Number of address cells for this node Number of size cells for this node """ parent = node.parent num_addr, num_size = 2, 2 if parent: addr_prop = parent.props.get('#address-cells') size_prop = parent.props.get('#size-cells') if addr_prop: num_addr = fdt_util.fdt32_to_cpu(addr_prop.value) if size_prop: num_size = fdt_util.fdt32_to_cpu(size_prop.value) return num_addr, num_size def scan_reg_sizes(self): """Scan for 64-bit 'reg' properties and update the values This finds 'reg' properties with 64-bit data and converts the value to an array of 64-values. This allows it to be output in a way that the C code can read. """ for node in self._valid_nodes: reg = node.props.get('reg') if not reg: continue num_addr, num_size = self.get_num_cells(node) total = num_addr + num_size if reg.type != fdt.Type.INT: raise ValueError("Node '%s' reg property is not an int" % node.name) if len(reg.value) % total: raise ValueError( "Node '%s' reg property has %d cells " 'which is not a multiple of na + ns = %d + %d)' % (node.name, len(reg.value), num_addr, num_size)) reg.num_addr = num_addr reg.num_size = num_size if num_addr != 1 or num_size != 1: reg.type = fdt.Type.INT64 i = 0 new_value = [] val = reg.value if not isinstance(val, list): val = [val] while i < len(val): addr = fdt_util.fdt_cells_to_cpu(val[i:], reg.num_addr) i += num_addr size = fdt_util.fdt_cells_to_cpu(val[i:], reg.num_size) i += num_size new_value += [addr, size] reg.value = new_value def scan_structs(self): """Scan the device tree building up the C structures we will use. Build a dict keyed by C struct name containing a dict of Prop object for each struct field (keyed by property name). Where the same struct appears multiple times, try to use the 'widest' property, i.e. the one with a type which can express all others. Once the widest property is determined, all other properties are updated to match that width. Returns: dict of dict: dict containing structures: key (str): Node name, as a C identifier value: dict containing structure fields: key (str): Field name value: Prop object with field information """ structs = collections.OrderedDict() for node in self._valid_nodes: node_name, _ = self.get_normalized_compat_name(node) fields = {} # Get a list of all the valid properties in this node. for name, prop in node.props.items(): if name not in PROP_IGNORE_LIST and name[0] != '#': fields[name] = copy.deepcopy(prop) # If we've seen this node_name before, update the existing struct. if node_name in structs: struct = structs[node_name] for name, prop in fields.items(): oldprop = struct.get(name) if oldprop: oldprop.Widen(prop) else: struct[name] = prop # Otherwise store this as a new struct. else: structs[node_name] = fields for node in self._valid_nodes: node_name, _ = self.get_normalized_compat_name(node) struct = structs[node_name] for name, prop in node.props.items(): if name not in PROP_IGNORE_LIST and name[0] != '#': prop.Widen(struct[name]) return structs def scan_phandles(self): """Figure out what phandles each node uses We need to be careful when outputing nodes that use phandles since they must come after the declaration of the phandles in the C file. Otherwise we get a compiler error since the phandle struct is not yet declared. This function adds to each node a list of phandle nodes that the node depends on. This allows us to output things in the right order. """ for node in self._valid_nodes: node.phandles = set() for pname, prop in node.props.items(): if pname in PROP_IGNORE_LIST or pname[0] == '#': continue info = self.get_phandle_argc(prop, node.name) if info: # Process the list as pairs of (phandle, id) pos = 0 for args in info.args: phandle_cell = prop.value[pos] phandle = fdt_util.fdt32_to_cpu(phandle_cell) target_node = self._fdt.phandle_to_node[phandle] node.phandles.add(target_node) pos += 1 + args def generate_structs(self, structs): """Generate struct defintions for the platform data This writes out the body of a header file consisting of structure definitions for node in self._valid_nodes. See the documentation in doc/driver-model/of-plat.rst for more information. Args: structs (dict): dict containing structures: key (str): Node name, as a C identifier value: dict containing structure fields: key (str): Field name value: Prop object with field information """ self.out_header() self.out('#include \n') self.out('#include \n') # Output the struct definition for name in sorted(structs): self.out('struct %s%s {\n' % (STRUCT_PREFIX, name)) for pname in sorted(structs[name]): prop = structs[name][pname] info = self.get_phandle_argc(prop, structs[name]) if info: # For phandles, include a reference to the target struct_name = 'struct phandle_%d_arg' % info.max_args self.out('\t%s%s[%d]' % (tab_to(2, struct_name), conv_name_to_c(prop.name), len(info.args))) else: ptype = TYPE_NAMES[prop.type] self.out('\t%s%s' % (tab_to(2, ptype), conv_name_to_c(prop.name))) if isinstance(prop.value, list): self.out('[%d]' % len(prop.value)) self.out(';\n') self.out('};\n') def _output_list(self, node, prop): """Output the C code for a devicetree property that holds a list Args: node (fdt.Node): Node to output prop (fdt.Prop): Prop to output """ self.buf('{') vals = [] # For phandles, output a reference to the platform data # of the target node. info = self.get_phandle_argc(prop, node.name) if info: # Process the list as pairs of (phandle, id) pos = 0 for args in info.args: phandle_cell = prop.value[pos] phandle = fdt_util.fdt32_to_cpu(phandle_cell) target_node = self._fdt.phandle_to_node[phandle] arg_values = [] for i in range(args): arg_values.append( str(fdt_util.fdt32_to_cpu(prop.value[pos + 1 + i]))) pos += 1 + args vals.append('\t{%d, {%s}}' % (target_node.idx, ', '.join(arg_values))) for val in vals: self.buf('\n\t\t%s,' % val) else: for val in prop.value: vals.append(get_value(prop.type, val)) # Put 8 values per line to avoid very long lines. for i in range(0, len(vals), 8): if i: self.buf(',\n\t\t') self.buf(', '.join(vals[i:i + 8])) self.buf('}') def _declare_device(self, var_name, struct_name, node_parent): """Add a device declaration to the output This declares a U_BOOT_DEVICE() for the device being processed Args: var_name (str): C name for the node struct_name (str): Name for the dt struct associated with the node node_parent (Node): Parent of the node (or None if none) """ self.buf('U_BOOT_DEVICE(%s) = {\n' % var_name) self.buf('\t.name\t\t= "%s",\n' % struct_name) self.buf('\t.plat\t= &%s%s,\n' % (VAL_PREFIX, var_name)) self.buf('\t.plat_size\t= sizeof(%s%s),\n' % (VAL_PREFIX, var_name)) idx = -1 if node_parent and node_parent in self._valid_nodes: idx = node_parent.idx self.buf('\t.parent_idx\t= %d,\n' % idx) self.buf('};\n') self.buf('\n') def _output_prop(self, node, prop): """Output a line containing the value of a struct member Args: node (Node): Node being output prop (Prop): Prop object to output """ if prop.name in PROP_IGNORE_LIST or prop.name[0] == '#': return member_name = conv_name_to_c(prop.name) self.buf('\t%s= ' % tab_to(3, '.' + member_name)) # Special handling for lists if isinstance(prop.value, list): self._output_list(node, prop) else: self.buf(get_value(prop.type, prop.value)) self.buf(',\n') def _output_values(self, var_name, struct_name, node): """Output the definition of a device's struct values Args: var_name (str): C name for the node struct_name (str): Name for the dt struct associated with the node node (Node): Node being output """ self.buf('static struct %s%s %s%s = {\n' % (STRUCT_PREFIX, struct_name, VAL_PREFIX, var_name)) for pname in sorted(node.props): self._output_prop(node, node.props[pname]) self.buf('};\n') def output_node(self, node): """Output the C code for a node Args: node (fdt.Node): node to output """ struct_name, _ = self.get_normalized_compat_name(node) var_name = conv_name_to_c(node.name) self.buf('/* Node %s index %d */\n' % (node.path, node.idx)) self._output_values(var_name, struct_name, node) self._declare_device(var_name, struct_name, node.parent) self.out(''.join(self.get_buf())) def generate_tables(self): """Generate device defintions for the platform data This writes out C platform data initialisation data and U_BOOT_DEVICE() declarations for each valid node. Where a node has multiple compatible strings, a #define is used to make them equivalent. See the documentation in doc/driver-model/of-plat.rst for more information. """ self.out_header() self.out('/* Allow use of U_BOOT_DEVICE() in this file */\n') self.out('#define DT_PLATDATA_C\n') self.out('\n') self.out('#include \n') self.out('#include \n') self.out('#include \n') self.out('\n') nodes_to_output = list(self._valid_nodes) # Keep outputing nodes until there is none left while nodes_to_output: node = nodes_to_output[0] # Output all the node's dependencies first for req_node in node.phandles: if req_node in nodes_to_output: self.output_node(req_node) nodes_to_output.remove(req_node) self.output_node(node) nodes_to_output.remove(node) # Define dm_populate_phandle_data() which will add the linking between # nodes using DM_GET_DEVICE # dtv_dmc_at_xxx.clocks[0].node = DM_GET_DEVICE(clock_controller_at_xxx) self.buf('void dm_populate_phandle_data(void) {\n') self.buf('}\n') self.out(''.join(self.get_buf())) def run_steps(args, dtb_file, include_disabled, output, warning_disabled=False, drivers_additional=None): """Run all the steps of the dtoc tool Args: args (list): List of non-option arguments provided to the problem dtb_file (str): Filename of dtb file to process include_disabled (bool): True to include disabled nodes output (str): Name of output file warning_disabled (bool): True to avoid showing warnings about missing drivers drivers_additional (list): List of additional drivers to use during scanning Raises: ValueError: if args has no command, or an unknown command """ if not args: raise ValueError('Please specify a command: struct, platdata') plat = DtbPlatdata(dtb_file, include_disabled, warning_disabled, drivers_additional) plat.scan_drivers() plat.scan_dtb() plat.scan_tree() plat.scan_reg_sizes() plat.setup_output(output) structs = plat.scan_structs() plat.scan_phandles() for cmd in args[0].split(','): if cmd == 'struct': plat.generate_structs(structs) elif cmd == 'platdata': plat.generate_tables() else: raise ValueError("Unknown command '%s': (use: struct, platdata)" % cmd)