/* * Copyright (C) 2013, Intel Corporation * Copyright (C) 2014, Bin Meng * * SPDX-License-Identifier: Intel */ #include #include #include /** * Reads a 64-bit value from memory that may be unaligned. * * This function returns the 64-bit value pointed to by buf. The function * guarantees that the read operation does not produce an alignment fault. * * If the buf is NULL, then ASSERT(). * * @buf: Pointer to a 64-bit value that may be unaligned. * * @return: The 64-bit value read from buf. */ static u64 read_unaligned64(const u64 *buf) { ASSERT(buf != NULL); return *buf; } /** * Compares two GUIDs * * If the GUIDs are identical then TRUE is returned. * If there are any bit differences in the two GUIDs, then FALSE is returned. * * If guid1 is NULL, then ASSERT(). * If guid2 is NULL, then ASSERT(). * * @guid1: A pointer to a 128 bit GUID. * @guid2: A pointer to a 128 bit GUID. * * @retval TRUE: guid1 and guid2 are identical. * @retval FALSE: guid1 and guid2 are not identical. */ static unsigned char compare_guid(const struct efi_guid_t *guid1, const struct efi_guid_t *guid2) { u64 guid1_low; u64 guid2_low; u64 guid1_high; u64 guid2_high; guid1_low = read_unaligned64((const u64 *)guid1); guid2_low = read_unaligned64((const u64 *)guid2); guid1_high = read_unaligned64((const u64 *)guid1 + 1); guid2_high = read_unaligned64((const u64 *)guid2 + 1); return (unsigned char)(guid1_low == guid2_low && guid1_high == guid2_high); } u32 __attribute__((optimize("O0"))) find_fsp_header(void) { volatile register u8 *fsp asm("eax"); /* Initalize the FSP base */ fsp = (u8 *)CONFIG_FSP_LOCATION; /* Check the FV signature, _FVH */ if (((struct fv_header_t *)fsp)->sign == 0x4856465F) { /* Go to the end of the FV header and align the address */ fsp += ((struct fv_header_t *)fsp)->ext_hdr_off; fsp += ((struct fv_ext_header_t *)fsp)->ext_hdr_size; fsp = (u8 *)(((u32)fsp + 7) & 0xFFFFFFF8); } else { fsp = 0; } /* Check the FFS GUID */ if (fsp && (((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[0] == 0x912740BE) && (((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[1] == 0x47342284) && (((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[2] == 0xB08471B9) && (((u32 *)&(((struct ffs_file_header_t *)fsp)->name))[3] == 0x0C3F3527)) { /* Add the FFS header size to find the raw section header */ fsp += sizeof(struct ffs_file_header_t); } else { fsp = 0; } if (fsp && ((struct raw_section_t *)fsp)->type == EFI_SECTION_RAW) { /* Add the raw section header size to find the FSP header */ fsp += sizeof(struct raw_section_t); } else { fsp = 0; } return (u32)fsp; } void fsp_continue(struct shared_data_t *shared_data, u32 status, void *hob_list) { u32 stack_len; u32 stack_base; u32 stack_top; post_code(POST_MRC); ASSERT(status == 0); /* Get the migrated stack in normal memory */ stack_base = (u32)get_bootloader_tmp_mem(hob_list, &stack_len); ASSERT(stack_base != 0); stack_top = stack_base + stack_len - sizeof(u32); /* * Old stack base is stored at the very end of the stack top, * use it to calculate the migrated shared data base */ shared_data = (struct shared_data_t *)(stack_base + ((u32)shared_data - *(u32 *)stack_top)); /* The boot loader main function entry */ fsp_init_done(hob_list); } void fsp_init(u32 stack_top, u32 boot_mode, void *nvs_buf) { struct shared_data_t shared_data; fsp_init_f init; struct fsp_init_params_t params; struct fspinit_rtbuf_t rt_buf; struct vpd_region_t *fsp_vpd; struct fsp_header_t *fsp_hdr; struct fsp_init_params_t *params_ptr; struct upd_region_t *fsp_upd; fsp_hdr = (struct fsp_header_t *)find_fsp_header(); if (fsp_hdr == NULL) { /* No valid FSP info header was found */ ASSERT(FALSE); } fsp_upd = (struct upd_region_t *)&shared_data.fsp_upd; memset((void *)&rt_buf, 0, sizeof(struct fspinit_rtbuf_t)); /* Reserve a gap in stack top */ rt_buf.common.stack_top = (u32 *)stack_top - 32; rt_buf.common.boot_mode = boot_mode; rt_buf.common.upd_data = (struct upd_region_t *)fsp_upd; /* Get VPD region start */ fsp_vpd = (struct vpd_region_t *)(fsp_hdr->img_base + fsp_hdr->cfg_region_off); /* Verifify the VPD data region is valid */ ASSERT((fsp_vpd->img_rev == VPD_IMAGE_REV) && (fsp_vpd->sign == VPD_IMAGE_ID)); /* Copy default data from Flash */ memcpy(fsp_upd, (void *)(fsp_hdr->img_base + fsp_vpd->upd_offset), sizeof(struct upd_region_t)); /* Verifify the UPD data region is valid */ ASSERT(fsp_upd->terminator == 0x55AA); /* Override any UPD setting if required */ update_fsp_upd(fsp_upd); memset((void *)¶ms, 0, sizeof(struct fsp_init_params_t)); params.nvs_buf = nvs_buf; params.rt_buf = (struct fspinit_rtbuf_t *)&rt_buf; params.continuation = (fsp_continuation_f)asm_continuation; init = (fsp_init_f)(fsp_hdr->img_base + fsp_hdr->fsp_init); params_ptr = ¶ms; shared_data.fsp_hdr = fsp_hdr; shared_data.stack_top = (u32 *)stack_top; post_code(POST_PRE_MRC); /* * Use ASM code to ensure the register value in EAX & ECX * will be passed into BlContinuationFunc */ asm volatile ( "pushl %0;" "call *%%eax;" ".global asm_continuation;" "asm_continuation:;" "movl %%ebx, %%eax;" /* shared_data */ "movl 4(%%esp), %%edx;" /* status */ "movl 8(%%esp), %%ecx;" /* hob_list */ "jmp fsp_continue;" : : "m"(params_ptr), "a"(init), "b"(&shared_data) ); /* * Should never get here. * Control will continue from romstage_main_continue_asm. * This line below is to prevent the compiler from optimizing * structure intialization. */ init(¶ms); /* * Should never return. * Control will continue from ContinuationFunc */ ASSERT(FALSE); } u32 fsp_notify(struct fsp_header_t *fsp_hdr, u32 phase) { fsp_notify_f notify; struct fsp_notify_params_t params; struct fsp_notify_params_t *params_ptr; u32 status; if (!fsp_hdr) fsp_hdr = (struct fsp_header_t *)find_fsp_header(); if (fsp_hdr == NULL) { /* No valid FSP info header */ ASSERT(FALSE); } notify = (fsp_notify_f)(fsp_hdr->img_base + fsp_hdr->fsp_notify); params.phase = phase; params_ptr = ¶ms; /* * Use ASM code to ensure correct parameter is on the stack for * FspNotify as U-Boot is using different ABI from FSP */ asm volatile ( "pushl %1;" /* push notify phase */ "call *%%eax;" /* call FspNotify */ "addl $4, %%esp;" /* clean up the stack */ : "=a"(status) : "m"(params_ptr), "a"(notify), "m"(*params_ptr) ); return status; } u32 get_usable_lowmem_top(const void *hob_list) { union hob_pointers_t hob; phys_addr_t phys_start; u32 top; /* Get the HOB list for processing */ hob.raw = (void *)hob_list; /* * Collect memory ranges */ top = 0x100000; while (!END_OF_HOB(hob)) { if (hob.hdr->type == HOB_TYPE_RES_DESC) { if (hob.res_desc->type == RES_SYS_MEM) { phys_start = hob.res_desc->phys_start; /* Need memory above 1MB to be collected here */ if (phys_start >= 0x100000 && phys_start < (phys_addr_t)0x100000000) top += (u32)(hob.res_desc->len); } } hob.raw = GET_NEXT_HOB(hob); } return top; } u64 get_usable_highmem_top(const void *hob_list) { union hob_pointers_t hob; phys_addr_t phys_start; u64 top; /* Get the HOB list for processing */ hob.raw = (void *)hob_list; /* Collect memory ranges */ top = 0x100000000; while (!END_OF_HOB(hob)) { if (hob.hdr->type == HOB_TYPE_RES_DESC) { if (hob.res_desc->type == RES_SYS_MEM) { phys_start = hob.res_desc->phys_start; /* Need memory above 1MB to be collected here */ if (phys_start >= (phys_addr_t)0x100000000) top += (u32)(hob.res_desc->len); } } hob.raw = GET_NEXT_HOB(hob); } return top; } u64 get_fsp_reserved_mem_from_guid(const void *hob_list, u64 *len, struct efi_guid_t *guid) { union hob_pointers_t hob; /* Get the HOB list for processing */ hob.raw = (void *)hob_list; /* Collect memory ranges */ while (!END_OF_HOB(hob)) { if (hob.hdr->type == HOB_TYPE_RES_DESC) { if (hob.res_desc->type == RES_MEM_RESERVED) { if (compare_guid(&hob.res_desc->owner, guid)) { if (len) *len = (u32)(hob.res_desc->len); return (u64)(hob.res_desc->phys_start); } } } hob.raw = GET_NEXT_HOB(hob); } return 0; } u32 get_fsp_reserved_mem(const void *hob_list, u32 *len) { const struct efi_guid_t guid = FSP_HOB_RESOURCE_OWNER_FSP_GUID; u64 length; u32 base; base = (u32)get_fsp_reserved_mem_from_guid(hob_list, &length, (struct efi_guid_t *)&guid); if ((len != 0) && (base != 0)) *len = (u32)length; return base; } u32 get_tseg_reserved_mem(const void *hob_list, u32 *len) { const struct efi_guid_t guid = FSP_HOB_RESOURCE_OWNER_TSEG_GUID; u64 length; u32 base; base = (u32)get_fsp_reserved_mem_from_guid(hob_list, &length, (struct efi_guid_t *)&guid); if ((len != 0) && (base != 0)) *len = (u32)length; return base; } void *get_next_hob(u16 type, const void *hob_list) { union hob_pointers_t hob; ASSERT(hob_list != NULL); hob.raw = (u8 *)hob_list; /* Parse the HOB list until end of list or matching type is found */ while (!END_OF_HOB(hob)) { if (hob.hdr->type == type) return hob.raw; hob.raw = GET_NEXT_HOB(hob); } return NULL; } void *get_next_guid_hob(const struct efi_guid_t *guid, const void *hob_list) { union hob_pointers_t hob; hob.raw = (u8 *)hob_list; while ((hob.raw = get_next_hob(HOB_TYPE_GUID_EXT, hob.raw)) != NULL) { if (compare_guid(guid, &hob.guid->name)) break; hob.raw = GET_NEXT_HOB(hob); } return hob.raw; } void *get_guid_hob_data(const void *hob_list, u32 *len, struct efi_guid_t *guid) { u8 *guid_hob; guid_hob = get_next_guid_hob(guid, hob_list); if (guid_hob == NULL) { return NULL; } else { if (len) *len = GET_GUID_HOB_DATA_SIZE(guid_hob); return GET_GUID_HOB_DATA(guid_hob); } } void *get_fsp_nvs_data(const void *hob_list, u32 *len) { const struct efi_guid_t guid = FSP_NON_VOLATILE_STORAGE_HOB_GUID; return get_guid_hob_data(hob_list, len, (struct efi_guid_t *)&guid); } void *get_bootloader_tmp_mem(const void *hob_list, u32 *len) { const struct efi_guid_t guid = FSP_BOOTLOADER_TEMP_MEM_HOB_GUID; return get_guid_hob_data(hob_list, len, (struct efi_guid_t *)&guid); }