// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2019 Google LLC */ #include #include #include #include #include #include #include static bool is_tpm1(struct udevice *dev) { return IS_ENABLED(CONFIG_TPM_V1) && tpm_get_version(dev) == TPM_V1; } static bool is_tpm2(struct udevice *dev) { return IS_ENABLED(CONFIG_TPM_V2) && tpm_get_version(dev) == TPM_V2; } u32 tpm_startup(struct udevice *dev, enum tpm_startup_type mode) { if (is_tpm1(dev)) { return tpm1_startup(dev, mode); } else if (is_tpm2(dev)) { enum tpm2_startup_types type; switch (mode) { case TPM_ST_CLEAR: type = TPM2_SU_CLEAR; break; case TPM_ST_STATE: type = TPM2_SU_STATE; break; default: case TPM_ST_DEACTIVATED: return -EINVAL; } return tpm2_startup(dev, type); } else { return -ENOSYS; } } u32 tpm_resume(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_startup(dev, TPM_ST_STATE); else if (is_tpm2(dev)) return tpm2_startup(dev, TPM2_SU_STATE); else return -ENOSYS; } u32 tpm_self_test_full(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_self_test_full(dev); else if (is_tpm2(dev)) return tpm2_self_test(dev, TPMI_YES); else return -ENOSYS; } u32 tpm_continue_self_test(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_continue_self_test(dev); else if (is_tpm2(dev)) return tpm2_self_test(dev, TPMI_NO); else return -ENOSYS; } u32 tpm_clear_and_reenable(struct udevice *dev) { u32 ret; log_info("TPM: Clear and re-enable\n"); ret = tpm_force_clear(dev); if (ret != TPM_SUCCESS) { log_err("Can't initiate a force clear\n"); return ret; } if (is_tpm1(dev)) { ret = tpm1_physical_enable(dev); if (ret != TPM_SUCCESS) { log_err("TPM: Can't set enabled state\n"); return ret; } ret = tpm1_physical_set_deactivated(dev, 0); if (ret != TPM_SUCCESS) { log_err("TPM: Can't set deactivated state\n"); return ret; } } return TPM_SUCCESS; } u32 tpm_nv_enable_locking(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_nv_define_space(dev, TPM_NV_INDEX_LOCK, 0, 0); else if (is_tpm2(dev)) return -ENOSYS; else return -ENOSYS; } u32 tpm_nv_read_value(struct udevice *dev, u32 index, void *data, u32 count) { if (is_tpm1(dev)) return tpm1_nv_read_value(dev, index, data, count); else if (is_tpm2(dev)) return tpm2_nv_read_value(dev, index, data, count); else return -ENOSYS; } u32 tpm_nv_write_value(struct udevice *dev, u32 index, const void *data, u32 count) { if (is_tpm1(dev)) return tpm1_nv_write_value(dev, index, data, count); else if (is_tpm2(dev)) return tpm2_nv_write_value(dev, index, data, count); else return -ENOSYS; } u32 tpm_set_global_lock(struct udevice *dev) { return tpm_nv_write_value(dev, TPM_NV_INDEX_0, NULL, 0); } u32 tpm_write_lock(struct udevice *dev, u32 index) { if (is_tpm1(dev)) return -ENOSYS; else if (is_tpm2(dev)) return tpm2_write_lock(dev, index); else return -ENOSYS; } u32 tpm_pcr_extend(struct udevice *dev, u32 index, const void *in_digest, void *out_digest) { if (is_tpm1(dev)) return tpm1_extend(dev, index, in_digest, out_digest); else if (is_tpm2(dev)) return tpm2_pcr_extend(dev, index, TPM2_ALG_SHA256, in_digest, TPM2_DIGEST_LEN); else return -ENOSYS; } u32 tpm_pcr_read(struct udevice *dev, u32 index, void *data, size_t count) { if (is_tpm1(dev)) return tpm1_pcr_read(dev, index, data, count); else if (is_tpm2(dev)) return -ENOSYS; else return -ENOSYS; } u32 tpm_tsc_physical_presence(struct udevice *dev, u16 presence) { if (is_tpm1(dev)) return tpm1_tsc_physical_presence(dev, presence); /* * Nothing to do on TPM2 for this; use platform hierarchy availability * instead. */ else if (is_tpm2(dev)) return 0; else return -ENOSYS; } u32 tpm_finalise_physical_presence(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_finalise_physical_presence(dev); /* Nothing needs to be done with tpm2 */ else if (is_tpm2(dev)) return 0; else return -ENOSYS; } u32 tpm_read_pubek(struct udevice *dev, void *data, size_t count) { if (is_tpm1(dev)) return tpm1_read_pubek(dev, data, count); else if (is_tpm2(dev)) return -ENOSYS; /* not implemented yet */ else return -ENOSYS; } u32 tpm_force_clear(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_force_clear(dev); else if (is_tpm2(dev)) return tpm2_clear(dev, TPM2_RH_PLATFORM, NULL, 0); else return -ENOSYS; } u32 tpm_physical_enable(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_physical_enable(dev); /* Nothing needs to be done with tpm2 */ else if (is_tpm2(dev)) return 0; else return -ENOSYS; } u32 tpm_physical_disable(struct udevice *dev) { if (is_tpm1(dev)) return tpm1_physical_disable(dev); /* Nothing needs to be done with tpm2 */ else if (is_tpm2(dev)) return 0; else return -ENOSYS; } u32 tpm_physical_set_deactivated(struct udevice *dev, u8 state) { if (is_tpm1(dev)) return tpm1_physical_set_deactivated(dev, state); /* Nothing needs to be done with tpm2 */ else if (is_tpm2(dev)) return 0; else return -ENOSYS; } u32 tpm_get_capability(struct udevice *dev, u32 cap_area, u32 sub_cap, void *cap, size_t count) { if (is_tpm1(dev)) return tpm1_get_capability(dev, cap_area, sub_cap, cap, count); else if (is_tpm2(dev)) return tpm2_get_capability(dev, cap_area, sub_cap, cap, count); else return -ENOSYS; } u32 tpm_get_permissions(struct udevice *dev, u32 index, u32 *perm) { if (is_tpm1(dev)) return tpm1_get_permissions(dev, index, perm); else if (is_tpm2(dev)) return -ENOSYS; /* not implemented yet */ else return -ENOSYS; } u32 tpm_get_random(struct udevice *dev, void *data, u32 count) { if (is_tpm1(dev)) return tpm1_get_random(dev, data, count); else if (is_tpm2(dev)) return -ENOSYS; /* not implemented yet */ else return -ENOSYS; }