// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2012 * Armando Visconti, ST Microelectronics, armando.visconti@st.com. * * (C) Copyright 2018 * Quentin Schulz, Bootlin, quentin.schulz@bootlin.com * * Driver for ARM PL022 SPI Controller. */ #include #include #include #include #include #include #include #define SSP_CR0 0x000 #define SSP_CR1 0x004 #define SSP_DR 0x008 #define SSP_SR 0x00C #define SSP_CPSR 0x010 #define SSP_IMSC 0x014 #define SSP_RIS 0x018 #define SSP_MIS 0x01C #define SSP_ICR 0x020 #define SSP_DMACR 0x024 #define SSP_CSR 0x030 /* vendor extension */ #define SSP_ITCR 0x080 #define SSP_ITIP 0x084 #define SSP_ITOP 0x088 #define SSP_TDR 0x08C #define SSP_PID0 0xFE0 #define SSP_PID1 0xFE4 #define SSP_PID2 0xFE8 #define SSP_PID3 0xFEC #define SSP_CID0 0xFF0 #define SSP_CID1 0xFF4 #define SSP_CID2 0xFF8 #define SSP_CID3 0xFFC /* SSP Control Register 0 - SSP_CR0 */ #define SSP_CR0_SPO (0x1 << 6) #define SSP_CR0_SPH (0x1 << 7) #define SSP_CR0_BIT_MODE(x) ((x) - 1) #define SSP_SCR_MIN (0x00) #define SSP_SCR_MAX (0xFF) #define SSP_SCR_SHFT 8 #define DFLT_CLKRATE 2 /* SSP Control Register 1 - SSP_CR1 */ #define SSP_CR1_MASK_SSE (0x1 << 1) #define SSP_CPSR_MIN (0x02) #define SSP_CPSR_MAX (0xFE) #define DFLT_PRESCALE (0x40) /* SSP Status Register - SSP_SR */ #define SSP_SR_MASK_TFE (0x1 << 0) /* Transmit FIFO empty */ #define SSP_SR_MASK_TNF (0x1 << 1) /* Transmit FIFO not full */ #define SSP_SR_MASK_RNE (0x1 << 2) /* Receive FIFO not empty */ #define SSP_SR_MASK_RFF (0x1 << 3) /* Receive FIFO full */ #define SSP_SR_MASK_BSY (0x1 << 4) /* Busy Flag */ struct pl022_spi_slave { void *base; unsigned int freq; }; /* * ARM PL022 exists in different 'flavors'. * This drivers currently support the standard variant (0x00041022), that has a * 16bit wide and 8 locations deep TX/RX FIFO. */ static int pl022_is_supported(struct pl022_spi_slave *ps) { /* PL022 version is 0x00041022 */ if ((readw(ps->base + SSP_PID0) == 0x22) && (readw(ps->base + SSP_PID1) == 0x10) && ((readw(ps->base + SSP_PID2) & 0xf) == 0x04) && (readw(ps->base + SSP_PID3) == 0x00)) return 1; return 0; } static int pl022_spi_probe(struct udevice *bus) { struct pl022_spi_pdata *plat = dev_get_plat(bus); struct pl022_spi_slave *ps = dev_get_priv(bus); ps->base = ioremap(plat->addr, plat->size); ps->freq = plat->freq; /* Check the PL022 version */ if (!pl022_is_supported(ps)) return -ENOTSUPP; /* 8 bits per word, high polarity and default clock rate */ writew(SSP_CR0_BIT_MODE(8), ps->base + SSP_CR0); writew(DFLT_PRESCALE, ps->base + SSP_CPSR); return 0; } static void flush(struct pl022_spi_slave *ps) { do { while (readw(ps->base + SSP_SR) & SSP_SR_MASK_RNE) readw(ps->base + SSP_DR); } while (readw(ps->base + SSP_SR) & SSP_SR_MASK_BSY); } static int pl022_spi_claim_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct pl022_spi_slave *ps = dev_get_priv(bus); u16 reg; /* Enable the SPI hardware */ reg = readw(ps->base + SSP_CR1); reg |= SSP_CR1_MASK_SSE; writew(reg, ps->base + SSP_CR1); flush(ps); return 0; } static int pl022_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct pl022_spi_slave *ps = dev_get_priv(bus); u16 reg; flush(ps); /* Disable the SPI hardware */ reg = readw(ps->base + SSP_CR1); reg &= ~SSP_CR1_MASK_SSE; writew(reg, ps->base + SSP_CR1); return 0; } static int pl022_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct pl022_spi_slave *ps = dev_get_priv(bus); u32 len_tx = 0, len_rx = 0, len; u32 ret = 0; const u8 *txp = dout; u8 *rxp = din, value; if (bitlen == 0) /* Finish any previously submitted transfers */ return 0; /* * TODO: The controller can do non-multiple-of-8 bit * transfers, but this driver currently doesn't support it. * * It's also not clear how such transfers are supposed to be * represented as a stream of bytes...this is a limitation of * the current SPI interface. */ if (bitlen % 8) { /* Errors always terminate an ongoing transfer */ flags |= SPI_XFER_END; return -1; } len = bitlen / 8; while (len_tx < len) { if (readw(ps->base + SSP_SR) & SSP_SR_MASK_TNF) { value = txp ? *txp++ : 0; writew(value, ps->base + SSP_DR); len_tx++; } if (readw(ps->base + SSP_SR) & SSP_SR_MASK_RNE) { value = readw(ps->base + SSP_DR); if (rxp) *rxp++ = value; len_rx++; } } while (len_rx < len_tx) { if (readw(ps->base + SSP_SR) & SSP_SR_MASK_RNE) { value = readw(ps->base + SSP_DR); if (rxp) *rxp++ = value; len_rx++; } } return ret; } static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) { return rate / (cpsdvsr * (1 + scr)); } static int pl022_spi_set_speed(struct udevice *bus, uint speed) { struct pl022_spi_slave *ps = dev_get_priv(bus); u16 scr = SSP_SCR_MIN, cr0 = 0, cpsr = SSP_CPSR_MIN, best_scr = scr, best_cpsr = cpsr; u32 min, max, best_freq = 0, tmp; u32 rate = ps->freq; bool found = false; max = spi_rate(rate, SSP_CPSR_MIN, SSP_SCR_MIN); min = spi_rate(rate, SSP_CPSR_MAX, SSP_SCR_MAX); if (speed > max || speed < min) { pr_err("Tried to set speed to %dHz but min=%d and max=%d\n", speed, min, max); return -EINVAL; } while (cpsr <= SSP_CPSR_MAX && !found) { while (scr <= SSP_SCR_MAX) { tmp = spi_rate(rate, cpsr, scr); if (abs(speed - tmp) < abs(speed - best_freq)) { best_freq = tmp; best_cpsr = cpsr; best_scr = scr; if (tmp == speed) { found = true; break; } } scr++; } cpsr += 2; scr = SSP_SCR_MIN; } writew(best_cpsr, ps->base + SSP_CPSR); cr0 = readw(ps->base + SSP_CR0); writew(cr0 | (best_scr << SSP_SCR_SHFT), ps->base + SSP_CR0); return 0; } static int pl022_spi_set_mode(struct udevice *bus, uint mode) { struct pl022_spi_slave *ps = dev_get_priv(bus); u16 reg; reg = readw(ps->base + SSP_CR0); reg &= ~(SSP_CR0_SPH | SSP_CR0_SPO); if (mode & SPI_CPHA) reg |= SSP_CR0_SPH; if (mode & SPI_CPOL) reg |= SSP_CR0_SPO; writew(reg, ps->base + SSP_CR0); return 0; } static int pl022_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info) { return 0; } static const struct dm_spi_ops pl022_spi_ops = { .claim_bus = pl022_spi_claim_bus, .release_bus = pl022_spi_release_bus, .xfer = pl022_spi_xfer, .set_speed = pl022_spi_set_speed, .set_mode = pl022_spi_set_mode, .cs_info = pl022_cs_info, }; #if !CONFIG_IS_ENABLED(OF_PLATDATA) static int pl022_spi_of_to_plat(struct udevice *bus) { struct pl022_spi_pdata *plat = dev_get_plat(bus); const void *fdt = gd->fdt_blob; int node = dev_of_offset(bus); struct clk clkdev; int ret; plat->addr = fdtdec_get_addr_size(fdt, node, "reg", &plat->size); ret = clk_get_by_index(bus, 0, &clkdev); if (ret) return ret; plat->freq = clk_get_rate(&clkdev); return 0; } static const struct udevice_id pl022_spi_ids[] = { { .compatible = "arm,pl022-spi" }, { } }; #endif U_BOOT_DRIVER(pl022_spi) = { .name = "pl022_spi", .id = UCLASS_SPI, #if !CONFIG_IS_ENABLED(OF_PLATDATA) .of_match = pl022_spi_ids, .of_to_plat = pl022_spi_of_to_plat, #endif .ops = &pl022_spi_ops, .plat_auto = sizeof(struct pl022_spi_pdata), .priv_auto = sizeof(struct pl022_spi_slave), .probe = pl022_spi_probe, };