// SPDX-License-Identifier: GPL-2.0+ /* * Freescale i.MX28 SPI driver * * Copyright (C) 2019 DENX Software Engineering * Lukasz Majewski, DENX Software Engineering, lukma@denx.de * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * NOTE: This driver only supports the SPI-controller chipselects, * GPIO driven chipselects are not supported. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MXS_SPI_MAX_TIMEOUT 1000000 #define MXS_SPI_PORT_OFFSET 0x2000 #define MXS_SSP_CHIPSELECT_MASK 0x00300000 #define MXS_SSP_CHIPSELECT_SHIFT 20 #define MXSSSP_SMALL_TRANSFER 512 /* Base numbers of i.MX2[38] clk for ssp0 IP block */ #define MXS_SSP_IMX23_CLKID_SSP0 33 #define MXS_SSP_IMX28_CLKID_SSP0 46 struct mxs_spi_plat { #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_fsl_imx23_spi dtplat; #endif s32 frequency; /* Default clock frequency, -1 for none */ fdt_addr_t base; /* SPI IP block base address */ int num_cs; /* Number of CSes supported */ int dma_id; /* ID of the DMA channel */ int clk_id; /* ID of the SSP clock */ }; struct mxs_spi_priv { struct mxs_ssp_regs *regs; unsigned int dma_channel; unsigned int max_freq; unsigned int clk_id; unsigned int mode; }; static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs) { writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set); writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr); } static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs) { writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr); writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set); } static int mxs_spi_xfer_pio(struct mxs_spi_priv *priv, char *data, int length, int write, unsigned long flags) { struct mxs_ssp_regs *ssp_regs = priv->regs; if (flags & SPI_XFER_BEGIN) mxs_spi_start_xfer(ssp_regs); while (length--) { /* We transfer 1 byte */ #if defined(CONFIG_MX23) writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr); writel(1, &ssp_regs->hw_ssp_ctrl0_set); #elif defined(CONFIG_MX28) writel(1, &ssp_regs->hw_ssp_xfer_size); #endif if ((flags & SPI_XFER_END) && !length) mxs_spi_end_xfer(ssp_regs); if (write) writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr); else writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set); writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set); if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg, SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) { printf("MXS SPI: Timeout waiting for start\n"); return -ETIMEDOUT; } if (write) writel(*data++, &ssp_regs->hw_ssp_data); writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set); if (!write) { if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg, SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) { printf("MXS SPI: Timeout waiting for data\n"); return -ETIMEDOUT; } *data = readl(&ssp_regs->hw_ssp_data); data++; } if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg, SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) { printf("MXS SPI: Timeout waiting for finish\n"); return -ETIMEDOUT; } } return 0; } static int mxs_spi_xfer_dma(struct mxs_spi_priv *priv, char *data, int length, int write, unsigned long flags) { struct mxs_ssp_regs *ssp_regs = priv->regs; const int xfer_max_sz = 0xff00; const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1; struct mxs_dma_desc *dp; uint32_t ctrl0; uint32_t cache_data_count; const uint32_t dstart = (uint32_t)data; int dmach; int tl; int ret = 0; #if defined(CONFIG_MX23) const int mxs_spi_pio_words = 1; #elif defined(CONFIG_MX28) const int mxs_spi_pio_words = 4; #endif ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count); memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count); ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0); ctrl0 |= SSP_CTRL0_DATA_XFER; if (flags & SPI_XFER_BEGIN) ctrl0 |= SSP_CTRL0_LOCK_CS; if (!write) ctrl0 |= SSP_CTRL0_READ; if (length % ARCH_DMA_MINALIGN) cache_data_count = roundup(length, ARCH_DMA_MINALIGN); else cache_data_count = length; /* Flush data to DRAM so DMA can pick them up */ if (write) flush_dcache_range(dstart, dstart + cache_data_count); /* Invalidate the area, so no writeback into the RAM races with DMA */ invalidate_dcache_range(dstart, dstart + cache_data_count); dmach = priv->dma_channel; dp = desc; while (length) { dp->address = (dma_addr_t)dp; dp->cmd.address = (dma_addr_t)data; /* * This is correct, even though it does indeed look insane. * I hereby have to, wholeheartedly, thank Freescale Inc., * for always inventing insane hardware and keeping me busy * and employed ;-) */ if (write) dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ; else dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE; /* * The DMA controller can transfer large chunks (64kB) at * time by setting the transfer length to 0. Setting tl to * 0x10000 will overflow below and make .data contain 0. * Otherwise, 0xff00 is the transfer maximum. */ if (length >= 0x10000) tl = 0x10000; else tl = min(length, xfer_max_sz); dp->cmd.data |= ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) | (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) | MXS_DMA_DESC_HALT_ON_TERMINATE | MXS_DMA_DESC_TERMINATE_FLUSH; data += tl; length -= tl; if (!length) { dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM; if (flags & SPI_XFER_END) { ctrl0 &= ~SSP_CTRL0_LOCK_CS; ctrl0 |= SSP_CTRL0_IGNORE_CRC; } } /* * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in * case of MX28, write only CTRL0 in case of MX23 due * to the difference in register layout. It is utterly * essential that the XFER_SIZE register is written on * a per-descriptor basis with the same size as is the * descriptor! */ dp->cmd.pio_words[0] = ctrl0; #ifdef CONFIG_MX28 dp->cmd.pio_words[1] = 0; dp->cmd.pio_words[2] = 0; dp->cmd.pio_words[3] = tl; #endif mxs_dma_desc_append(dmach, dp); dp++; } if (mxs_dma_go(dmach)) ret = -EINVAL; /* The data arrived into DRAM, invalidate cache over them */ if (!write) invalidate_dcache_range(dstart, dstart + cache_data_count); return ret; } int mxs_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev_get_parent(dev); struct mxs_spi_priv *priv = dev_get_priv(bus); struct mxs_ssp_regs *ssp_regs = priv->regs; int len = bitlen / 8; char dummy; int write = 0; char *data = NULL; int dma = 1; if (bitlen == 0) { if (flags & SPI_XFER_END) { din = (void *)&dummy; len = 1; } else return 0; } /* Half-duplex only */ if (din && dout) return -EINVAL; /* No data */ if (!din && !dout) return 0; if (dout) { data = (char *)dout; write = 1; } else if (din) { data = (char *)din; write = 0; } /* * Check for alignment, if the buffer is aligned, do DMA transfer, * PIO otherwise. This is a temporary workaround until proper bounce * buffer is in place. */ if (dma) { if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1)) dma = 0; if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1)) dma = 0; } if (!dma || (len < MXSSSP_SMALL_TRANSFER)) { writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr); return mxs_spi_xfer_pio(priv, data, len, write, flags); } else { writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set); return mxs_spi_xfer_dma(priv, data, len, write, flags); } } static int mxs_spi_probe(struct udevice *bus) { struct mxs_spi_plat *plat = dev_get_plat(bus); struct mxs_spi_priv *priv = dev_get_priv(bus); int ret; debug("%s: probe\n", __func__); #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_fsl_imx23_spi *dtplat = &plat->dtplat; struct phandle_1_arg *p1a = &dtplat->clocks[0]; priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0]; priv->dma_channel = dtplat->dmas[1]; priv->clk_id = p1a->arg[0]; priv->max_freq = dtplat->spi_max_frequency; plat->num_cs = dtplat->num_cs; debug("OF_PLATDATA: regs: 0x%x max freq: %d clkid: %d\n", (unsigned int)priv->regs, priv->max_freq, priv->clk_id); #else priv->regs = (struct mxs_ssp_regs *)plat->base; priv->max_freq = plat->frequency; priv->dma_channel = plat->dma_id; priv->clk_id = plat->clk_id; #endif mxs_reset_block(&priv->regs->hw_ssp_ctrl0_reg); ret = mxs_dma_init_channel(priv->dma_channel); if (ret) { printf("%s: DMA init channel error %d\n", __func__, ret); return ret; } return 0; } static int mxs_spi_claim_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct mxs_spi_priv *priv = dev_get_priv(bus); struct mxs_ssp_regs *ssp_regs = priv->regs; int cs = spi_chip_select(dev); /* * i.MX28 supports up to 3 CS (SSn0, SSn1, SSn2) * To set them it uses following tuple (WAIT_FOR_IRQ,WAIT_FOR_CMD), * where: * * WAIT_FOR_IRQ is bit 21 of HW_SSP_CTRL0 * WAIT_FOR_CMD is bit 20 (#defined as MXS_SSP_CHIPSELECT_SHIFT here) of * HW_SSP_CTRL0 * SSn0 b00 * SSn1 b01 * SSn2 b10 (which require setting WAIT_FOR_IRQ) * * However, for now i.MX28 SPI driver will support up till 2 CSes * (SSn0, and SSn1). */ /* Ungate SSP clock and set active CS */ clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0, BIT(MXS_SSP_CHIPSELECT_SHIFT) | SSP_CTRL0_CLKGATE, (cs << MXS_SSP_CHIPSELECT_SHIFT)); return 0; } static int mxs_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct mxs_spi_priv *priv = dev_get_priv(bus); struct mxs_ssp_regs *ssp_regs = priv->regs; /* Gate SSP clock */ setbits_le32(&ssp_regs->hw_ssp_ctrl0, SSP_CTRL0_CLKGATE); return 0; } static int mxs_spi_set_speed(struct udevice *bus, uint speed) { struct mxs_spi_priv *priv = dev_get_priv(bus); #ifdef CONFIG_MX28 int clkid = priv->clk_id - MXS_SSP_IMX28_CLKID_SSP0; #else /* CONFIG_MX23 */ int clkid = priv->clk_id - MXS_SSP_IMX23_CLKID_SSP0; #endif if (speed > priv->max_freq) speed = priv->max_freq; debug("%s speed: %u [Hz] clkid: %d\n", __func__, speed, clkid); mxs_set_ssp_busclock(clkid, speed / 1000); return 0; } static int mxs_spi_set_mode(struct udevice *bus, uint mode) { struct mxs_spi_priv *priv = dev_get_priv(bus); struct mxs_ssp_regs *ssp_regs = priv->regs; u32 reg; priv->mode = mode; debug("%s: mode 0x%x\n", __func__, mode); reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS; reg |= (priv->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0; reg |= (priv->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0; writel(reg, &ssp_regs->hw_ssp_ctrl1); /* Single bit SPI support */ writel(SSP_CTRL0_BUS_WIDTH_ONE_BIT, &ssp_regs->hw_ssp_ctrl0); return 0; } static const struct dm_spi_ops mxs_spi_ops = { .claim_bus = mxs_spi_claim_bus, .release_bus = mxs_spi_release_bus, .xfer = mxs_spi_xfer, .set_speed = mxs_spi_set_speed, .set_mode = mxs_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) static int mxs_of_to_plat(struct udevice *bus) { struct mxs_spi_plat *plat = dev_get_plat(bus); u32 prop[2]; int ret; plat->base = dev_read_addr(bus); plat->frequency = dev_read_u32_default(bus, "spi-max-frequency", 40000000); plat->num_cs = dev_read_u32_default(bus, "num-cs", 2); ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop)); if (ret) { printf("%s: Reading 'dmas' property failed!\n", __func__); return ret; } plat->dma_id = prop[1]; ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop)); if (ret) { printf("%s: Reading 'clocks' property failed!\n", __func__); return ret; } plat->clk_id = prop[1]; debug("%s: base=0x%x, max-frequency=%d num-cs=%d dma_id=%d clk_id=%d\n", __func__, (uint)plat->base, plat->frequency, plat->num_cs, plat->dma_id, plat->clk_id); return 0; } static const struct udevice_id mxs_spi_ids[] = { { .compatible = "fsl,imx23-spi" }, { .compatible = "fsl,imx28-spi" }, { } }; #endif U_BOOT_DRIVER(fsl_imx23_spi) = { .name = "fsl_imx23_spi", .id = UCLASS_SPI, #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) .of_match = mxs_spi_ids, .of_to_plat = mxs_of_to_plat, #endif .plat_auto = sizeof(struct mxs_spi_plat), .ops = &mxs_spi_ops, .priv_auto = sizeof(struct mxs_spi_priv), .probe = mxs_spi_probe, }; DM_DRIVER_ALIAS(fsl_imx23_spi, fsl_imx28_spi)