Commit Graph

2 Commits

Author SHA1 Message Date
Simon Glass
3ab9598df7 binman: Rename 'position' to 'offset'
After some thought, I believe there is an unfortunate naming flaw in
binman. Entries have a position and size, but now that we support
hierarchical sections it is unclear whether a position should be an
absolute position within the image, or a relative position within its
parent section.

At present 'position' actually means the relative position. This indicates
a need for an 'image position' for code that wants to find the location of
an entry without having to do calculations back through parents to
discover this image position.

A better name for the current 'position' or 'pos' is 'offset'. It is not
always an absolute position, but it is always an offset from its parent
offset.

It is unfortunate to rename this concept now, 18 months after binman was
introduced. However I believe it is the right thing to do. The impact is
mostly limited to binman itself and a few changes to in-tree users to
binman:

   tegra
   sunxi
   x86

The change makes old binman definitions (e.g. downstream or out-of-tree)
incompatible if they use the 'pos = <...>' property. Later work will
adjust binman to generate an error when it is used.

Signed-off-by: Simon Glass <sjg@chromium.org>
2018-08-01 16:30:06 -06:00
Simon Glass
1979063264 binman: Support accessing binman tables at run time
Binman construct images consisting of multiple binary files. These files
sometimes need to know (at run timme) where their peers are located. For
example, SPL may want to know where U-Boot is located in the image, so
that it can jump to U-Boot correctly on boot.

In general the positions where the binaries end up after binman has
finished packing them cannot be known at compile time. One reason for
this is that binman does not know the size of the binaries until
everything is compiled, linked and converted to binaries with objcopy.

To make this work, we add a feature to binman which checks each binary
for symbol names starting with '_binman'. These are then decoded to figure
out which entry and property they refer to. Then binman writes the value
of this symbol into the appropriate binary. With this, the symbol will
have the correct value at run time.

Macros are used to make this easier to use. As an example, this declares
a symbol that will access the 'u-boot-spl' entry to find the 'pos' value
(i.e. the position of SPL in the image):

   binman_sym_declare(unsigned long, u_boot_spl, pos);

This converts to a symbol called '_binman_u_boot_spl_prop_pos' in any
binary that includes it. Binman then updates the value in that binary,
ensuring that it can be accessed at runtime with:

   ulong u_boot_pos = binman_sym(ulong, u_boot_spl, pos);

This assigns the variable u_boot_pos to the position of SPL in the image.

Signed-off-by: Simon Glass <sjg@chromium.org>
2017-12-12 19:53:45 -07:00