div64: Use kernel types

These functions still use uint32_t and uint64_t but checkpatch now
requests that the kernel types be used instead. Update them as well as a
few resulting checkpatch errors.

Signed-off-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
Simon Glass 2019-04-08 13:20:48 -06:00
parent 315f60d741
commit ca49b2c6e2
2 changed files with 42 additions and 42 deletions

View File

@ -9,11 +9,11 @@
*
* The semantics of do_div() are:
*
* uint32_t do_div(uint64_t *n, uint32_t base)
* u32 do_div(u64 *n, u32 base)
* {
* uint32_t remainder = *n % base;
* *n = *n / base;
* return remainder;
* u32 remainder = *n % base;
* *n = *n / base;
* return remainder;
* }
*
* NOTE: macro parameter n is evaluated multiple times,
@ -26,10 +26,10 @@
#if BITS_PER_LONG == 64
# define do_div(n,base) ({ \
uint32_t __base = (base); \
uint32_t __rem; \
__rem = ((uint64_t)(n)) % __base; \
(n) = ((uint64_t)(n)) / __base; \
u32 __base = (base); \
u32 __rem; \
__rem = ((u64)(n)) % __base; \
(n) = ((u64)(n)) / __base; \
__rem; \
})
@ -62,8 +62,8 @@
* Hence this monstrous macro (static inline doesn't always \
* do the trick here). \
*/ \
uint64_t ___res, ___x, ___t, ___m, ___n = (n); \
uint32_t ___p, ___bias; \
u64 ___res, ___x, ___t, ___m, ___n = (n); \
u32 ___p, ___bias; \
\
/* determine MSB of b */ \
___p = 1 << ilog2(___b); \
@ -110,7 +110,7 @@
* possible, otherwise that'll need extra overflow \
* handling later. \
*/ \
uint32_t ___bits = -(___m & -___m); \
u32 ___bits = -(___m & -___m); \
___bits |= ___m >> 32; \
___bits = (~___bits) << 1; \
/* \
@ -150,61 +150,61 @@
/*
* Default C implementation for __arch_xprod_64()
*
* Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
* Prototype: u64 __arch_xprod_64(const u64 m, u64 n, bool bias)
* Semantic: retval = ((bias ? m : 0) + m * n) >> 64
*
* The product is a 128-bit value, scaled down to 64 bits.
* Assuming constant propagation to optimize away unused conditional code.
* Architectures may provide their own optimized assembly implementation.
*/
static inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
static inline u64 __arch_xprod_64(const u64 m, u64 n, bool bias)
{
uint32_t m_lo = m;
uint32_t m_hi = m >> 32;
uint32_t n_lo = n;
uint32_t n_hi = n >> 32;
uint64_t res, tmp;
u32 m_lo = m;
u32 m_hi = m >> 32;
u32 n_lo = n;
u32 n_hi = n >> 32;
u64 res, tmp;
if (!bias) {
res = ((uint64_t)m_lo * n_lo) >> 32;
res = ((u64)m_lo * n_lo) >> 32;
} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
/* there can't be any overflow here */
res = (m + (uint64_t)m_lo * n_lo) >> 32;
res = (m + (u64)m_lo * n_lo) >> 32;
} else {
res = m + (uint64_t)m_lo * n_lo;
res = m + (u64)m_lo * n_lo;
tmp = (res < m) ? (1ULL << 32) : 0;
res = (res >> 32) + tmp;
}
if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
/* there can't be any overflow here */
res += (uint64_t)m_lo * n_hi;
res += (uint64_t)m_hi * n_lo;
res += (u64)m_lo * n_hi;
res += (u64)m_hi * n_lo;
res >>= 32;
} else {
tmp = res += (uint64_t)m_lo * n_hi;
res += (uint64_t)m_hi * n_lo;
tmp = res += (u64)m_lo * n_hi;
res += (u64)m_hi * n_lo;
tmp = (res < tmp) ? (1ULL << 32) : 0;
res = (res >> 32) + tmp;
}
res += (uint64_t)m_hi * n_hi;
res += (u64)m_hi * n_hi;
return res;
}
#endif
#ifndef __div64_32
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
extern u32 __div64_32(u64 *dividend, u32 divisor);
#endif
/* The unnecessary pointer compare is there
* to check for type safety (n must be 64bit)
*/
# define do_div(n,base) ({ \
uint32_t __base = (base); \
uint32_t __rem; \
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
u32 __base = (base); \
u32 __rem; \
(void)(((typeof((n)) *)0) == ((u64 *)0)); \
if (__builtin_constant_p(__base) && \
is_power_of_2(__base)) { \
__rem = (n) & (__base - 1); \
@ -212,14 +212,14 @@ extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
} else if (__div64_const32_is_OK && \
__builtin_constant_p(__base) && \
__base != 0) { \
uint32_t __res_lo, __n_lo = (n); \
u32 __res_lo, __n_lo = (n); \
(n) = __div64_const32(n, __base); \
/* the remainder can be computed with 32-bit regs */ \
__res_lo = (n); \
__rem = __n_lo - __res_lo * __base; \
} else if (likely(((n) >> 32) == 0)) { \
__rem = (uint32_t)(n) % __base; \
(n) = (uint32_t)(n) / __base; \
__rem = (u32)(n) % __base; \
(n) = (u32)(n) / __base; \
} else \
__rem = __div64_32(&(n), __base); \
__rem; \
@ -234,9 +234,9 @@ extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
/* Wrapper for do_div(). Doesn't modify dividend and returns
* the result, not remainder.
*/
static inline uint64_t lldiv(uint64_t dividend, uint32_t divisor)
static inline u64 lldiv(u64 dividend, u32 divisor)
{
uint64_t __res = dividend;
u64 __res = dividend;
do_div(__res, divisor);
return(__res);
}

View File

@ -25,19 +25,19 @@
#if BITS_PER_LONG == 32
#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
u32 __attribute__((weak)) __div64_32(u64 *n, u32 base)
{
uint64_t rem = *n;
uint64_t b = base;
uint64_t res, d = 1;
uint32_t high = rem >> 32;
u64 rem = *n;
u64 b = base;
u64 res, d = 1;
u32 high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (uint64_t) high << 32;
rem -= (uint64_t) (high*base) << 32;
res = (u64)high << 32;
rem -= (u64)(high * base) << 32;
}
while ((int64_t)b > 0 && b < rem) {