dm: i2c: Add a uclass for I2C

The uclass implements the same operations as the current I2C framework but
makes some changes to make it fit driver model better:

- Remove the chip address from API calls
- Remove the address length from API calls
- Remove concept of 'current' I2C bus
- Drop all existing init functions

Acked-by: Heiko Schocher <hs@denx.de>
Reviewed-by: Masahiro Yamada <yamada.m@jp.panasonic.com>
Signed-off-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
Simon Glass 2014-12-10 08:55:47 -07:00
parent 59345b1f0f
commit c6202d857e
5 changed files with 827 additions and 0 deletions

View File

@ -4,6 +4,7 @@
#
# SPDX-License-Identifier: GPL-2.0+
#
obj-$(CONFIG_DM_I2C) += i2c-uclass.o
obj-$(CONFIG_SYS_I2C_ADI) += adi_i2c.o
obj-$(CONFIG_I2C_MV) += mv_i2c.o

466
drivers/i2c/i2c-uclass.c Normal file
View File

@ -0,0 +1,466 @@
/*
* Copyright (c) 2014 Google, Inc
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <i2c.h>
#include <malloc.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/root.h>
DECLARE_GLOBAL_DATA_PTR;
#define I2C_MAX_OFFSET_LEN 4
/**
* i2c_setup_offset() - Set up a new message with a chip offset
*
* @chip: Chip to use
* @offset: Byte offset within chip
* @offset_buf: Place to put byte offset
* @msg: Message buffer
* @return 0 if OK, -EADDRNOTAVAIL if the offset length is 0. In that case the
* message is still set up but will not contain an offset.
*/
static int i2c_setup_offset(struct dm_i2c_chip *chip, uint offset,
uint8_t offset_buf[], struct i2c_msg *msg)
{
int offset_len;
msg->addr = chip->chip_addr;
msg->flags = chip->flags & DM_I2C_CHIP_10BIT ? I2C_M_TEN : 0;
msg->len = chip->offset_len;
msg->buf = offset_buf;
if (!chip->offset_len)
return -EADDRNOTAVAIL;
assert(chip->offset_len <= I2C_MAX_OFFSET_LEN);
offset_len = chip->offset_len;
while (offset_len--)
*offset_buf++ = offset >> (8 * offset_len);
return 0;
}
static int i2c_read_bytewise(struct udevice *dev, uint offset,
uint8_t *buffer, int len)
{
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
struct udevice *bus = dev_get_parent(dev);
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct i2c_msg msg[2], *ptr;
uint8_t offset_buf[I2C_MAX_OFFSET_LEN];
int ret;
int i;
for (i = 0; i < len; i++) {
if (i2c_setup_offset(chip, offset + i, offset_buf, msg))
return -EINVAL;
ptr = msg + 1;
ptr->addr = chip->chip_addr;
ptr->flags = msg->flags | I2C_M_RD;
ptr->len = 1;
ptr->buf = &buffer[i];
ptr++;
ret = ops->xfer(bus, msg, ptr - msg);
if (ret)
return ret;
}
return 0;
}
static int i2c_write_bytewise(struct udevice *dev, uint offset,
const uint8_t *buffer, int len)
{
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
struct udevice *bus = dev_get_parent(dev);
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct i2c_msg msg[1];
uint8_t buf[I2C_MAX_OFFSET_LEN + 1];
int ret;
int i;
for (i = 0; i < len; i++) {
if (i2c_setup_offset(chip, offset + i, buf, msg))
return -EINVAL;
buf[msg->len++] = buffer[i];
ret = ops->xfer(bus, msg, 1);
if (ret)
return ret;
}
return 0;
}
int i2c_read(struct udevice *dev, uint offset, uint8_t *buffer, int len)
{
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
struct udevice *bus = dev_get_parent(dev);
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct i2c_msg msg[2], *ptr;
uint8_t offset_buf[I2C_MAX_OFFSET_LEN];
int msg_count;
if (!ops->xfer)
return -ENOSYS;
if (chip->flags & DM_I2C_CHIP_RD_ADDRESS)
return i2c_read_bytewise(dev, offset, buffer, len);
ptr = msg;
if (!i2c_setup_offset(chip, offset, offset_buf, ptr))
ptr++;
if (len) {
ptr->addr = chip->chip_addr;
ptr->flags = chip->flags & DM_I2C_CHIP_10BIT ? I2C_M_TEN : 0;
ptr->flags |= I2C_M_RD;
ptr->len = len;
ptr->buf = buffer;
ptr++;
}
msg_count = ptr - msg;
return ops->xfer(bus, msg, msg_count);
}
int i2c_write(struct udevice *dev, uint offset, const uint8_t *buffer, int len)
{
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
struct udevice *bus = dev_get_parent(dev);
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct i2c_msg msg[1];
if (!ops->xfer)
return -ENOSYS;
if (chip->flags & DM_I2C_CHIP_WR_ADDRESS)
return i2c_write_bytewise(dev, offset, buffer, len);
/*
* The simple approach would be to send two messages here: one to
* set the offset and one to write the bytes. However some drivers
* will not be expecting this, and some chips won't like how the
* driver presents this on the I2C bus.
*
* The API does not support separate offset and data. We could extend
* it with a flag indicating that there is data in the next message
* that needs to be processed in the same transaction. We could
* instead add an additional buffer to each message. For now, handle
* this in the uclass since it isn't clear what the impact on drivers
* would be with this extra complication. Unfortunately this means
* copying the message.
*
* Use the stack for small messages, malloc() for larger ones. We
* need to allow space for the offset (up to 4 bytes) and the message
* itself.
*/
if (len < 64) {
uint8_t buf[I2C_MAX_OFFSET_LEN + len];
i2c_setup_offset(chip, offset, buf, msg);
msg->len += len;
memcpy(buf + chip->offset_len, buffer, len);
return ops->xfer(bus, msg, 1);
} else {
uint8_t *buf;
int ret;
buf = malloc(I2C_MAX_OFFSET_LEN + len);
if (!buf)
return -ENOMEM;
i2c_setup_offset(chip, offset, buf, msg);
msg->len += len;
memcpy(buf + chip->offset_len, buffer, len);
ret = ops->xfer(bus, msg, 1);
free(buf);
return ret;
}
}
/**
* i2c_probe_chip() - probe for a chip on a bus
*
* @bus: Bus to probe
* @chip_addr: Chip address to probe
* @flags: Flags for the chip
* @return 0 if found, -ENOSYS if the driver is invalid, -EREMOTEIO if the chip
* does not respond to probe
*/
static int i2c_probe_chip(struct udevice *bus, uint chip_addr,
enum dm_i2c_chip_flags chip_flags)
{
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct i2c_msg msg[1];
int ret;
if (ops->probe_chip) {
ret = ops->probe_chip(bus, chip_addr, chip_flags);
if (!ret || ret != -ENOSYS)
return ret;
}
if (!ops->xfer)
return -ENOSYS;
/* Probe with a zero-length message */
msg->addr = chip_addr;
msg->flags = chip_flags & DM_I2C_CHIP_10BIT ? I2C_M_TEN : 0;
msg->len = 0;
msg->buf = NULL;
return ops->xfer(bus, msg, 1);
}
static int i2c_bind_driver(struct udevice *bus, uint chip_addr,
struct udevice **devp)
{
struct dm_i2c_chip chip;
char name[30], *str;
struct udevice *dev;
int ret;
snprintf(name, sizeof(name), "generic_%x", chip_addr);
str = strdup(name);
ret = device_bind_driver(bus, "i2c_generic_chip_drv", str, &dev);
debug("%s: device_bind_driver: ret=%d\n", __func__, ret);
if (ret)
goto err_bind;
/* Tell the device what we know about it */
memset(&chip, '\0', sizeof(chip));
chip.chip_addr = chip_addr;
chip.offset_len = 1; /* we assume */
ret = device_probe_child(dev, &chip);
debug("%s: device_probe_child: ret=%d\n", __func__, ret);
if (ret)
goto err_probe;
*devp = dev;
return 0;
err_probe:
device_unbind(dev);
err_bind:
free(str);
return ret;
}
int i2c_get_chip(struct udevice *bus, uint chip_addr, struct udevice **devp)
{
struct udevice *dev;
debug("%s: Searching bus '%s' for address %02x: ", __func__,
bus->name, chip_addr);
for (device_find_first_child(bus, &dev); dev;
device_find_next_child(&dev)) {
struct dm_i2c_chip store;
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
int ret;
if (!chip) {
chip = &store;
i2c_chip_ofdata_to_platdata(gd->fdt_blob,
dev->of_offset, chip);
}
if (chip->chip_addr == chip_addr) {
ret = device_probe(dev);
debug("found, ret=%d\n", ret);
if (ret)
return ret;
*devp = dev;
return 0;
}
}
debug("not found\n");
return i2c_bind_driver(bus, chip_addr, devp);
}
int i2c_get_chip_for_busnum(int busnum, int chip_addr, struct udevice **devp)
{
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
if (ret) {
debug("Cannot find I2C bus %d\n", busnum);
return ret;
}
ret = i2c_get_chip(bus, chip_addr, devp);
if (ret) {
debug("Cannot find I2C chip %02x on bus %d\n", chip_addr,
busnum);
return ret;
}
return 0;
}
int i2c_probe(struct udevice *bus, uint chip_addr, uint chip_flags,
struct udevice **devp)
{
int ret;
*devp = NULL;
/* First probe that chip */
ret = i2c_probe_chip(bus, chip_addr, chip_flags);
debug("%s: bus='%s', address %02x, ret=%d\n", __func__, bus->name,
chip_addr, ret);
if (ret)
return ret;
/* The chip was found, see if we have a driver, and probe it */
ret = i2c_get_chip(bus, chip_addr, devp);
debug("%s: i2c_get_chip: ret=%d\n", __func__, ret);
return ret;
}
int i2c_set_bus_speed(struct udevice *bus, unsigned int speed)
{
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct dm_i2c_bus *i2c = bus->uclass_priv;
int ret;
/*
* If we have a method, call it. If not then the driver probably wants
* to deal with speed changes on the next transfer. It can easily read
* the current speed from this uclass
*/
if (ops->set_bus_speed) {
ret = ops->set_bus_speed(bus, speed);
if (ret)
return ret;
}
i2c->speed_hz = speed;
return 0;
}
/*
* i2c_get_bus_speed:
*
* Returns speed of selected I2C bus in Hz
*/
int i2c_get_bus_speed(struct udevice *bus)
{
struct dm_i2c_ops *ops = i2c_get_ops(bus);
struct dm_i2c_bus *i2c = bus->uclass_priv;
if (!ops->get_bus_speed)
return i2c->speed_hz;
return ops->get_bus_speed(bus);
}
int i2c_set_chip_flags(struct udevice *dev, uint flags)
{
struct udevice *bus = dev->parent;
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
struct dm_i2c_ops *ops = i2c_get_ops(bus);
int ret;
if (ops->set_flags) {
ret = ops->set_flags(dev, flags);
if (ret)
return ret;
}
chip->flags = flags;
return 0;
}
int i2c_get_chip_flags(struct udevice *dev, uint *flagsp)
{
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
*flagsp = chip->flags;
return 0;
}
int i2c_set_chip_offset_len(struct udevice *dev, uint offset_len)
{
struct dm_i2c_chip *chip = dev_get_parentdata(dev);
if (offset_len > I2C_MAX_OFFSET_LEN)
return -EINVAL;
chip->offset_len = offset_len;
return 0;
}
int i2c_deblock(struct udevice *bus)
{
struct dm_i2c_ops *ops = i2c_get_ops(bus);
/*
* We could implement a software deblocking here if we could get
* access to the GPIOs used by I2C, and switch them to GPIO mode
* and then back to I2C. This is somewhat beyond our powers in
* driver model at present, so for now just fail.
*
* See https://patchwork.ozlabs.org/patch/399040/
*/
if (!ops->deblock)
return -ENOSYS;
return ops->deblock(bus);
}
int i2c_chip_ofdata_to_platdata(const void *blob, int node,
struct dm_i2c_chip *chip)
{
chip->offset_len = 1; /* default */
chip->flags = 0;
chip->chip_addr = fdtdec_get_int(gd->fdt_blob, node, "reg", -1);
if (chip->chip_addr == -1) {
debug("%s: I2C Node '%s' has no 'reg' property\n", __func__,
fdt_get_name(blob, node, NULL));
return -EINVAL;
}
return 0;
}
static int i2c_post_probe(struct udevice *dev)
{
struct dm_i2c_bus *i2c = dev->uclass_priv;
i2c->speed_hz = fdtdec_get_int(gd->fdt_blob, dev->of_offset,
"clock-frequency", 100000);
return i2c_set_bus_speed(dev, i2c->speed_hz);
}
int i2c_post_bind(struct udevice *dev)
{
/* Scan the bus for devices */
return dm_scan_fdt_node(dev, gd->fdt_blob, dev->of_offset, false);
}
UCLASS_DRIVER(i2c) = {
.id = UCLASS_I2C,
.name = "i2c",
.per_device_auto_alloc_size = sizeof(struct dm_i2c_bus),
.post_bind = i2c_post_bind,
.post_probe = i2c_post_probe,
};
UCLASS_DRIVER(i2c_generic) = {
.id = UCLASS_I2C_GENERIC,
.name = "i2c_generic",
};
U_BOOT_DRIVER(i2c_generic_chip_drv) = {
.name = "i2c_generic_chip_drv",
.id = UCLASS_I2C_GENERIC,
};

View File

@ -91,4 +91,10 @@
#undef CONFIG_IMAGE_FORMAT_LEGACY
#endif
#ifdef CONFIG_DM_I2C
# ifdef CONFIG_SYS_I2C
# error "Cannot define CONFIG_SYS_I2C when CONFIG_DM_I2C is used"
# endif
#endif
#endif /* __CONFIG_FALLBACKS_H */

View File

@ -29,6 +29,8 @@ enum uclass_id {
UCLASS_SPI_FLASH, /* SPI flash */
UCLASS_CROS_EC, /* Chrome OS EC */
UCLASS_THERMAL, /* Thermal sensor */
UCLASS_I2C, /* I2C bus */
UCLASS_I2C_GENERIC, /* Generic I2C device */
UCLASS_COUNT,
UCLASS_INVALID = -1,

View File

@ -17,6 +17,355 @@
#ifndef _I2C_H_
#define _I2C_H_
/*
* For now there are essentially two parts to this file - driver model
* here at the top, and the older code below (with CONFIG_SYS_I2C being
* most recent). The plan is to migrate everything to driver model.
* The driver model structures and API are separate as they are different
* enough as to be incompatible for compilation purposes.
*/
#ifdef CONFIG_DM_I2C
enum dm_i2c_chip_flags {
DM_I2C_CHIP_10BIT = 1 << 0, /* Use 10-bit addressing */
DM_I2C_CHIP_RD_ADDRESS = 1 << 1, /* Send address for each read byte */
DM_I2C_CHIP_WR_ADDRESS = 1 << 2, /* Send address for each write byte */
};
/**
* struct dm_i2c_chip - information about an i2c chip
*
* An I2C chip is a device on the I2C bus. It sits at a particular address
* and normally supports 7-bit or 10-bit addressing.
*
* To obtain this structure, use dev_get_parentdata(dev) where dev is the
* chip to examine.
*
* @chip_addr: Chip address on bus
* @offset_len: Length of offset in bytes. A single byte offset can
* represent up to 256 bytes. A value larger than 1 may be
* needed for larger devices.
* @flags: Flags for this chip (dm_i2c_chip_flags)
* @emul: Emulator for this chip address (only used for emulation)
*/
struct dm_i2c_chip {
uint chip_addr;
uint offset_len;
uint flags;
#ifdef CONFIG_SANDBOX
struct udevice *emul;
#endif
};
/**
* struct dm_i2c_bus- information about an i2c bus
*
* An I2C bus contains 0 or more chips on it, each at its own address. The
* bus can operate at different speeds (measured in Hz, typically 100KHz
* or 400KHz).
*
* To obtain this structure, use bus->uclass_priv where bus is the I2C
* bus udevice.
*
* @speed_hz: Bus speed in hertz (typically 100000)
*/
struct dm_i2c_bus {
int speed_hz;
};
/**
* i2c_read() - read bytes from an I2C chip
*
* To obtain an I2C device (called a 'chip') given the I2C bus address you
* can use i2c_get_chip(). To obtain a bus by bus number use
* uclass_get_device_by_seq(UCLASS_I2C, <bus number>).
*
* To set the address length of a devce use i2c_set_addr_len(). It
* defaults to 1.
*
* @dev: Chip to read from
* @offset: Offset within chip to start reading
* @buffer: Place to put data
* @len: Number of bytes to read
*
* @return 0 on success, -ve on failure
*/
int i2c_read(struct udevice *dev, uint offset, uint8_t *buffer,
int len);
/**
* i2c_write() - write bytes to an I2C chip
*
* See notes for i2c_read() above.
*
* @dev: Chip to write to
* @offset: Offset within chip to start writing
* @buffer: Buffer containing data to write
* @len: Number of bytes to write
*
* @return 0 on success, -ve on failure
*/
int i2c_write(struct udevice *dev, uint offset, const uint8_t *buffer,
int len);
/**
* i2c_probe() - probe a particular chip address
*
* This can be useful to check for the existence of a chip on the bus.
* It is typically implemented by writing the chip address to the bus
* and checking that the chip replies with an ACK.
*
* @bus: Bus to probe
* @chip_addr: 7-bit address to probe (10-bit and others are not supported)
* @chip_flags: Flags for the probe (see enum dm_i2c_chip_flags)
* @devp: Returns the device found, or NULL if none
* @return 0 if a chip was found at that address, -ve if not
*/
int i2c_probe(struct udevice *bus, uint chip_addr, uint chip_flags,
struct udevice **devp);
/**
* i2c_set_bus_speed() - set the speed of a bus
*
* @bus: Bus to adjust
* @speed: Requested speed in Hz
* @return 0 if OK, -EINVAL for invalid values
*/
int i2c_set_bus_speed(struct udevice *bus, unsigned int speed);
/**
* i2c_get_bus_speed() - get the speed of a bus
*
* @bus: Bus to check
* @return speed of selected I2C bus in Hz, -ve on error
*/
int i2c_get_bus_speed(struct udevice *bus);
/**
* i2c_set_chip_flags() - set flags for a chip
*
* Typically addresses are 7 bits, but for 10-bit addresses you should set
* flags to DM_I2C_CHIP_10BIT. All accesses will then use 10-bit addressing.
*
* @dev: Chip to adjust
* @flags: New flags
* @return 0 if OK, -EINVAL if value is unsupported, other -ve value on error
*/
int i2c_set_chip_flags(struct udevice *dev, uint flags);
/**
* i2c_get_chip_flags() - get flags for a chip
*
* @dev: Chip to check
* @flagsp: Place to put flags
* @return 0 if OK, other -ve value on error
*/
int i2c_get_chip_flags(struct udevice *dev, uint *flagsp);
/**
* i2c_set_offset_len() - set the offset length for a chip
*
* The offset used to access a chip may be up to 4 bytes long. Typically it
* is only 1 byte, which is enough for chips with 256 bytes of memory or
* registers. The default value is 1, but you can call this function to
* change it.
*
* @offset_len: New offset length value (typically 1 or 2)
*/
int i2c_set_chip_offset_len(struct udevice *dev, uint offset_len);
/**
* i2c_deblock() - recover a bus that is in an unknown state
*
* See the deblock() method in 'struct dm_i2c_ops' for full information
*
* @bus: Bus to recover
* @return 0 if OK, -ve on error
*/
int i2c_deblock(struct udevice *bus);
/*
* Not all of these flags are implemented in the U-Boot API
*/
enum dm_i2c_msg_flags {
I2C_M_TEN = 0x0010, /* ten-bit chip address */
I2C_M_RD = 0x0001, /* read data, from slave to master */
I2C_M_STOP = 0x8000, /* send stop after this message */
I2C_M_NOSTART = 0x4000, /* no start before this message */
I2C_M_REV_DIR_ADDR = 0x2000, /* invert polarity of R/W bit */
I2C_M_IGNORE_NAK = 0x1000, /* continue after NAK */
I2C_M_NO_RD_ACK = 0x0800, /* skip the Ack bit on reads */
I2C_M_RECV_LEN = 0x0400, /* length is first received byte */
};
/**
* struct i2c_msg - an I2C message
*
* @addr: Slave address
* @flags: Flags (see enum dm_i2c_msg_flags)
* @len: Length of buffer in bytes, may be 0 for a probe
* @buf: Buffer to send/receive, or NULL if no data
*/
struct i2c_msg {
uint addr;
uint flags;
uint len;
u8 *buf;
};
/**
* struct i2c_msg_list - a list of I2C messages
*
* This is called i2c_rdwr_ioctl_data in Linux but the name does not seem
* appropriate in U-Boot.
*
* @msg: Pointer to i2c_msg array
* @nmsgs: Number of elements in the array
*/
struct i2c_msg_list {
struct i2c_msg *msgs;
uint nmsgs;
};
/**
* struct dm_i2c_ops - driver operations for I2C uclass
*
* Drivers should support these operations unless otherwise noted. These
* operations are intended to be used by uclass code, not directly from
* other code.
*/
struct dm_i2c_ops {
/**
* xfer() - transfer a list of I2C messages
*
* @bus: Bus to read from
* @msg: List of messages to transfer
* @nmsgs: Number of messages in the list
* @return 0 if OK, -EREMOTEIO if the slave did not ACK a byte,
* -ECOMM if the speed cannot be supported, -EPROTO if the chip
* flags cannot be supported, other -ve value on some other error
*/
int (*xfer)(struct udevice *bus, struct i2c_msg *msg, int nmsgs);
/**
* probe_chip() - probe for the presense of a chip address
*
* This function is optional. If omitted, the uclass will send a zero
* length message instead.
*
* @bus: Bus to probe
* @chip_addr: Chip address to probe
* @chip_flags: Probe flags (enum dm_i2c_chip_flags)
* @return 0 if chip was found, -EREMOTEIO if not, -ENOSYS to fall back
* to default probem other -ve value on error
*/
int (*probe_chip)(struct udevice *bus, uint chip_addr, uint chip_flags);
/**
* set_bus_speed() - set the speed of a bus (optional)
*
* The bus speed value will be updated by the uclass if this function
* does not return an error. This method is optional - if it is not
* provided then the driver can read the speed from
* bus->uclass_priv->speed_hz
*
* @bus: Bus to adjust
* @speed: Requested speed in Hz
* @return 0 if OK, -EINVAL for invalid values
*/
int (*set_bus_speed)(struct udevice *bus, unsigned int speed);
/**
* get_bus_speed() - get the speed of a bus (optional)
*
* Normally this can be provided by the uclass, but if you want your
* driver to check the bus speed by looking at the hardware, you can
* implement that here. This method is optional. This method would
* normally be expected to return bus->uclass_priv->speed_hz.
*
* @bus: Bus to check
* @return speed of selected I2C bus in Hz, -ve on error
*/
int (*get_bus_speed)(struct udevice *bus);
/**
* set_flags() - set the flags for a chip (optional)
*
* This is generally implemented by the uclass, but drivers can
* check the value to ensure that unsupported options are not used.
* This method is optional. If provided, this method will always be
* called when the flags change.
*
* @dev: Chip to adjust
* @flags: New flags value
* @return 0 if OK, -EINVAL if value is unsupported
*/
int (*set_flags)(struct udevice *dev, uint flags);
/**
* deblock() - recover a bus that is in an unknown state
*
* I2C is a synchronous protocol and resets of the processor in the
* middle of an access can block the I2C Bus until a powerdown of
* the full unit is done. This is because slaves can be stuck
* waiting for addition bus transitions for a transaction that will
* never complete. Resetting the I2C master does not help. The only
* way is to force the bus through a series of transitions to make
* sure that all slaves are done with the transaction. This method
* performs this 'deblocking' if support by the driver.
*
* This method is optional.
*/
int (*deblock)(struct udevice *bus);
};
#define i2c_get_ops(dev) ((struct dm_i2c_ops *)(dev)->driver->ops)
/**
* i2c_get_chip() - get a device to use to access a chip on a bus
*
* This returns the device for the given chip address. The device can then
* be used with calls to i2c_read(), i2c_write(), i2c_probe(), etc.
*
* @bus: Bus to examine
* @chip_addr: Chip address for the new device
* @devp: Returns pointer to new device if found or -ENODEV if not
* found
*/
int i2c_get_chip(struct udevice *bus, uint chip_addr, struct udevice **devp);
/**
* i2c_get_chip() - get a device to use to access a chip on a bus number
*
* This returns the device for the given chip address on a particular bus
* number.
*
* @busnum: Bus number to examine
* @chip_addr: Chip address for the new device
* @devp: Returns pointer to new device if found or -ENODEV if not
* found
*/
int i2c_get_chip_for_busnum(int busnum, int chip_addr, struct udevice **devp);
/**
* i2c_chip_ofdata_to_platdata() - Decode standard I2C platform data
*
* This decodes the chip address from a device tree node and puts it into
* its dm_i2c_chip structure. This should be called in your driver's
* ofdata_to_platdata() method.
*
* @blob: Device tree blob
* @node: Node offset to read from
* @spi: Place to put the decoded information
*/
int i2c_chip_ofdata_to_platdata(const void *blob, int node,
struct dm_i2c_chip *chip);
#endif
#ifndef CONFIG_DM_I2C
/*
* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
*
@ -451,4 +800,7 @@ int i2c_get_bus_num_fdt(int node);
* @return 0 if port was reset, -1 if not found
*/
int i2c_reset_port_fdt(const void *blob, int node);
#endif /* !CONFIG_DM_I2C */
#endif /* _I2C_H_ */