net: ks8851: Pass around driver private data

Introduce a private data structure for this driver with embedded
struct eth_device and pass it around. This prepares the driver to
work with both DM and non-DM systems.

Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Eugen Hristev <eugen.hristev@microchip.com>
Cc: Joe Hershberger <joe.hershberger@ni.com>
This commit is contained in:
Marek Vasut 2020-03-25 17:35:00 +01:00
parent 8ec27b01bc
commit b7c6ae2e82

View File

@ -21,42 +21,46 @@
/*
* struct ks_net - KS8851 driver private data
* @dev : legacy non-DM ethernet device structure
* @iobase : register base
* @bus_width : i/o bus width.
* @sharedbus : Multipex(addr and data bus) mode indicator.
* @extra_byte : number of extra byte prepended rx pkt.
*/
struct ks_net {
struct eth_device dev;
phys_addr_t iobase;
int bus_width;
u16 sharedbus;
u8 extra_byte;
} ks_str, *ks;
};
#define BE3 0x8000 /* Byte Enable 3 */
#define BE2 0x4000 /* Byte Enable 2 */
#define BE1 0x2000 /* Byte Enable 1 */
#define BE0 0x1000 /* Byte Enable 0 */
static u8 ks_rdreg8(struct eth_device *dev, u16 offset)
static u8 ks_rdreg8(struct ks_net *ks, u16 offset)
{
u8 shift_bit = offset & 0x03;
u8 shift_data = (offset & 1) << 3;
writew(offset | (BE0 << shift_bit), dev->iobase + 2);
writew(offset | (BE0 << shift_bit), ks->iobase + 2);
return (u8)(readw(dev->iobase) >> shift_data);
return (u8)(readw(ks->iobase) >> shift_data);
}
static u16 ks_rdreg16(struct eth_device *dev, u16 offset)
static u16 ks_rdreg16(struct ks_net *ks, u16 offset)
{
writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2);
writew(offset | ((BE1 | BE0) << (offset & 0x02)), ks->iobase + 2);
return readw(dev->iobase);
return readw(ks->iobase);
}
static void ks_wrreg16(struct eth_device *dev, u16 offset, u16 val)
static void ks_wrreg16(struct ks_net *ks, u16 offset, u16 val)
{
writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2);
writew(val, dev->iobase);
writew(offset | ((BE1 | BE0) << (offset & 0x02)), ks->iobase + 2);
writew(val, ks->iobase);
}
/*
@ -66,12 +70,12 @@ static void ks_wrreg16(struct eth_device *dev, u16 offset, u16 val)
* @wptr: buffer address to save data
* @len: length in byte to read
*/
static inline void ks_inblk(struct eth_device *dev, u16 *wptr, u32 len)
static inline void ks_inblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
*wptr++ = readw(dev->iobase);
*wptr++ = readw(ks->iobase);
}
/*
@ -80,42 +84,42 @@ static inline void ks_inblk(struct eth_device *dev, u16 *wptr, u32 len)
* @wptr: buffer address
* @len: length in byte to write
*/
static inline void ks_outblk(struct eth_device *dev, u16 *wptr, u32 len)
static inline void ks_outblk(struct ks_net *ks, u16 *wptr, u32 len)
{
len >>= 1;
while (len--)
writew(*wptr++, dev->iobase);
writew(*wptr++, ks->iobase);
}
static void ks_enable_int(struct eth_device *dev)
static void ks_enable_int(struct ks_net *ks)
{
ks_wrreg16(dev, KS_IER, IRQ_LCI | IRQ_TXI | IRQ_RXI);
ks_wrreg16(ks, KS_IER, IRQ_LCI | IRQ_TXI | IRQ_RXI);
}
static void ks_set_powermode(struct eth_device *dev, unsigned int pwrmode)
static void ks_set_powermode(struct ks_net *ks, unsigned int pwrmode)
{
unsigned int pmecr;
ks_rdreg16(dev, KS_GRR);
pmecr = ks_rdreg16(dev, KS_PMECR);
ks_rdreg16(ks, KS_GRR);
pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_PM_MASK;
pmecr |= pwrmode;
ks_wrreg16(dev, KS_PMECR, pmecr);
ks_wrreg16(ks, KS_PMECR, pmecr);
}
/*
* ks_read_config - read chip configuration of bus width.
* @ks: The chip information
*/
static void ks_read_config(struct eth_device *dev)
static void ks_read_config(struct ks_net *ks)
{
u16 reg_data = 0;
/* Regardless of bus width, 8 bit read should always work. */
reg_data = ks_rdreg8(dev, KS_CCR) & 0x00FF;
reg_data |= ks_rdreg8(dev, KS_CCR + 1) << 8;
reg_data = ks_rdreg8(ks, KS_CCR) & 0x00FF;
reg_data |= ks_rdreg8(ks, KS_CCR + 1) << 8;
/* addr/data bus are multiplexed */
ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED;
@ -149,58 +153,58 @@ static void ks_read_config(struct eth_device *dev)
* not currently specify the exact sequence, we have chosen something
* that seems to work with our device.
*/
static void ks_soft_reset(struct eth_device *dev, unsigned int op)
static void ks_soft_reset(struct ks_net *ks, unsigned int op)
{
/* Disable interrupt first */
ks_wrreg16(dev, KS_IER, 0x0000);
ks_wrreg16(dev, KS_GRR, op);
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_GRR, op);
mdelay(10); /* wait a short time to effect reset */
ks_wrreg16(dev, KS_GRR, 0);
ks_wrreg16(ks, KS_GRR, 0);
mdelay(1); /* wait for condition to clear */
}
void ks_enable_qmu(struct eth_device *dev)
void ks_enable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(dev, KS_TXCR);
w = ks_rdreg16(ks, KS_TXCR);
/* Enables QMU Transmit (TXCR). */
ks_wrreg16(dev, KS_TXCR, w | TXCR_TXE);
ks_wrreg16(ks, KS_TXCR, w | TXCR_TXE);
/* Enable RX Frame Count Threshold and Auto-Dequeue RXQ Frame */
w = ks_rdreg16(dev, KS_RXQCR);
ks_wrreg16(dev, KS_RXQCR, w | RXQCR_RXFCTE);
w = ks_rdreg16(ks, KS_RXQCR);
ks_wrreg16(ks, KS_RXQCR, w | RXQCR_RXFCTE);
/* Enables QMU Receive (RXCR1). */
w = ks_rdreg16(dev, KS_RXCR1);
ks_wrreg16(dev, KS_RXCR1, w | RXCR1_RXE);
w = ks_rdreg16(ks, KS_RXCR1);
ks_wrreg16(ks, KS_RXCR1, w | RXCR1_RXE);
}
static void ks_disable_qmu(struct eth_device *dev)
static void ks_disable_qmu(struct ks_net *ks)
{
u16 w;
w = ks_rdreg16(dev, KS_TXCR);
w = ks_rdreg16(ks, KS_TXCR);
/* Disables QMU Transmit (TXCR). */
w &= ~TXCR_TXE;
ks_wrreg16(dev, KS_TXCR, w);
ks_wrreg16(ks, KS_TXCR, w);
/* Disables QMU Receive (RXCR1). */
w = ks_rdreg16(dev, KS_RXCR1);
w = ks_rdreg16(ks, KS_RXCR1);
w &= ~RXCR1_RXE;
ks_wrreg16(dev, KS_RXCR1, w);
ks_wrreg16(ks, KS_RXCR1, w);
}
static inline void ks_read_qmu(struct eth_device *dev, u16 *buf, u32 len)
static inline void ks_read_qmu(struct ks_net *ks, u16 *buf, u32 len)
{
u32 r = ks->extra_byte & 0x1;
u32 w = ks->extra_byte - r;
/* 1. set sudo DMA mode */
ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg16(dev, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA);
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA);
/*
* 2. read prepend data
@ -210,41 +214,41 @@ static inline void ks_read_qmu(struct eth_device *dev, u16 *buf, u32 len)
*/
if (r)
ks_rdreg8(dev, 0);
ks_rdreg8(ks, 0);
ks_inblk(dev, buf, w + 2 + 2);
ks_inblk(ks, buf, w + 2 + 2);
/* 3. read pkt data */
ks_inblk(dev, buf, ALIGN(len, 4));
ks_inblk(ks, buf, ALIGN(len, 4));
/* 4. reset sudo DMA Mode */
ks_wrreg16(dev, KS_RXQCR, RXQCR_CMD_CNTL);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
}
static void ks_rcv(struct eth_device *dev, uchar **pv_data)
static void ks_rcv(struct ks_net *ks, uchar **pv_data)
{
unsigned int frame_cnt;
u16 sts, len;
int i;
frame_cnt = ks_rdreg16(dev, KS_RXFCTR) >> 8;
frame_cnt = ks_rdreg16(ks, KS_RXFCTR) >> 8;
/* read all header information */
for (i = 0; i < frame_cnt; i++) {
/* Checking Received packet status */
sts = ks_rdreg16(dev, KS_RXFHSR);
sts = ks_rdreg16(ks, KS_RXFHSR);
/* Get packet len from hardware */
len = ks_rdreg16(dev, KS_RXFHBCR);
len = ks_rdreg16(ks, KS_RXFHBCR);
if ((sts & RXFSHR_RXFV) && len && (len < RX_BUF_SIZE)) {
/* read data block including CRC 4 bytes */
ks_read_qmu(dev, (u16 *)(*pv_data), len);
ks_read_qmu(ks, (u16 *)(*pv_data), len);
/* net_rx_packets buffer size is ok (*pv_data) */
net_process_received_packet(*pv_data, len);
pv_data++;
} else {
ks_wrreg16(dev, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_RRXEF);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_RRXEF);
printf(DRIVERNAME ": bad packet\n");
}
}
@ -256,13 +260,13 @@ static void ks_rcv(struct eth_device *dev, uchar **pv_data)
*
* Read and check the TX/RX memory selftest information.
*/
static int ks_read_selftest(struct eth_device *dev)
static int ks_read_selftest(struct ks_net *ks)
{
u16 both_done = MBIR_TXMBF | MBIR_RXMBF;
u16 mbir;
int ret = 0;
mbir = ks_rdreg16(dev, KS_MBIR);
mbir = ks_rdreg16(ks, KS_MBIR);
if ((mbir & both_done) != both_done) {
printf(DRIVERNAME ": Memory selftest not finished\n");
@ -284,55 +288,55 @@ static int ks_read_selftest(struct eth_device *dev)
return ret;
}
static void ks_setup(struct eth_device *dev)
static void ks_setup(struct ks_net *ks)
{
u16 w;
/* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI);
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
/* Setup Receive Frame Data Pointer Auto-Increment */
ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI);
ks_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI);
/* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
ks_wrreg16(dev, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
ks_wrreg16(ks, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK);
/* Setup RxQ Command Control (RXQCR) */
ks_wrreg16(dev, KS_RXQCR, RXQCR_CMD_CNTL);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
/*
* set the force mode to half duplex, default is full duplex
* because if the auto-negotiation fails, most switch uses
* half-duplex.
*/
w = ks_rdreg16(dev, KS_P1MBCR);
w = ks_rdreg16(ks, KS_P1MBCR);
w &= ~P1MBCR_FORCE_FDX;
ks_wrreg16(dev, KS_P1MBCR, w);
ks_wrreg16(ks, KS_P1MBCR, w);
w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP;
ks_wrreg16(dev, KS_TXCR, w);
ks_wrreg16(ks, KS_TXCR, w);
w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC;
/* Normal mode */
w |= RXCR1_RXPAFMA;
ks_wrreg16(dev, KS_RXCR1, w);
ks_wrreg16(ks, KS_RXCR1, w);
}
static void ks_setup_int(struct eth_device *dev)
static void ks_setup_int(struct ks_net *ks)
{
/* Clear the interrupts status of the hardware. */
ks_wrreg16(dev, KS_ISR, 0xffff);
ks_wrreg16(ks, KS_ISR, 0xffff);
}
static int ks8851_mll_detect_chip(struct eth_device *dev)
static int ks8851_mll_detect_chip(struct ks_net *ks)
{
unsigned short val;
ks_read_config(dev);
ks_read_config(ks);
val = ks_rdreg16(dev, KS_CIDER);
val = ks_rdreg16(ks, KS_CIDER);
if (val == 0xffff) {
/* Special case -- no chip present */
@ -353,63 +357,65 @@ static int ks8851_mll_detect_chip(struct eth_device *dev)
return 0;
}
static void ks8851_mll_reset(struct eth_device *dev)
static void ks8851_mll_reset(struct ks_net *ks)
{
/* wake up powermode to normal mode */
ks_set_powermode(dev, PMECR_PM_NORMAL);
ks_set_powermode(ks, PMECR_PM_NORMAL);
mdelay(1); /* wait for normal mode to take effect */
/* Disable interrupt and reset */
ks_soft_reset(dev, GRR_GSR);
ks_soft_reset(ks, GRR_GSR);
/* turn off the IRQs and ack any outstanding */
ks_wrreg16(dev, KS_IER, 0x0000);
ks_wrreg16(dev, KS_ISR, 0xffff);
ks_wrreg16(ks, KS_IER, 0x0000);
ks_wrreg16(ks, KS_ISR, 0xffff);
/* shutdown RX/TX QMU */
ks_disable_qmu(dev);
ks_disable_qmu(ks);
}
static void ks8851_mll_phy_configure(struct eth_device *dev)
static void ks8851_mll_phy_configure(struct ks_net *ks)
{
u16 data;
ks_setup(dev);
ks_setup_int(dev);
ks_setup(ks);
ks_setup_int(ks);
/* Probing the phy */
data = ks_rdreg16(dev, KS_OBCR);
ks_wrreg16(dev, KS_OBCR, data | OBCR_ODS_16MA);
data = ks_rdreg16(ks, KS_OBCR);
ks_wrreg16(ks, KS_OBCR, data | OBCR_ODS_16MA);
debug(DRIVERNAME ": phy initialized\n");
}
static void ks8851_mll_enable(struct eth_device *dev)
static void ks8851_mll_enable(struct ks_net *ks)
{
ks_wrreg16(dev, KS_ISR, 0xffff);
ks_enable_int(dev);
ks_enable_qmu(dev);
ks_wrreg16(ks, KS_ISR, 0xffff);
ks_enable_int(ks);
ks_enable_qmu(ks);
}
static int ks8851_mll_init(struct eth_device *dev, bd_t *bd)
{
if (ks_read_selftest(dev)) {
struct ks_net *ks = container_of(dev, struct ks_net, dev);
if (ks_read_selftest(ks)) {
printf(DRIVERNAME ": Selftest failed\n");
return -1;
}
ks8851_mll_reset(dev);
ks8851_mll_reset(ks);
/* Configure the PHY, initialize the link state */
ks8851_mll_phy_configure(dev);
ks8851_mll_phy_configure(ks);
/* Turn on Tx + Rx */
ks8851_mll_enable(dev);
ks8851_mll_enable(ks);
return 0;
}
static void ks_write_qmu(struct eth_device *dev, u8 *pdata, u16 len)
static void ks_write_qmu(struct ks_net *ks, u8 *pdata, u16 len)
{
__le16 txw[2];
/* start header at txb[0] to align txw entries */
@ -417,22 +423,23 @@ static void ks_write_qmu(struct eth_device *dev, u8 *pdata, u16 len)
txw[1] = cpu_to_le16(len);
/* 1. set sudo-DMA mode */
ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI);
ks_wrreg16(dev, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA);
ks_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL | RXQCR_SDA);
/* 2. write status/length info */
ks_outblk(dev, txw, 4);
ks_outblk(ks, txw, 4);
/* 3. write pkt data */
ks_outblk(dev, (u16 *)pdata, ALIGN(len, 4));
ks_outblk(ks, (u16 *)pdata, ALIGN(len, 4));
/* 4. reset sudo-DMA mode */
ks_wrreg16(dev, KS_RXQCR, RXQCR_CMD_CNTL);
ks_wrreg16(ks, KS_RXQCR, RXQCR_CMD_CNTL);
/* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
ks_wrreg16(dev, KS_TXQCR, TXQCR_METFE);
ks_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
/* 6. wait until TXQCR_METFE is auto-cleared */
do { } while (ks_rdreg16(dev, KS_TXQCR) & TXQCR_METFE);
do { } while (ks_rdreg16(ks, KS_TXQCR) & TXQCR_METFE);
}
static int ks8851_mll_send(struct eth_device *dev, void *packet, int length)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
u8 *data = (u8 *)packet;
u16 tmplen = (u16)length;
u16 retv;
@ -441,9 +448,9 @@ static int ks8851_mll_send(struct eth_device *dev, void *packet, int length)
* Extra space are required:
* 4 byte for alignment, 4 for status/length, 4 for CRC
*/
retv = ks_rdreg16(dev, KS_TXMIR) & 0x1fff;
retv = ks_rdreg16(ks, KS_TXMIR) & 0x1fff;
if (retv >= tmplen + 12) {
ks_write_qmu(dev, data, tmplen);
ks_write_qmu(ks, data, tmplen);
return 0;
}
@ -453,7 +460,9 @@ static int ks8851_mll_send(struct eth_device *dev, void *packet, int length)
static void ks8851_mll_halt(struct eth_device *dev)
{
ks8851_mll_reset(dev);
struct ks_net *ks = container_of(dev, struct ks_net, dev);
ks8851_mll_reset(ks);
}
/*
@ -464,20 +473,21 @@ static void ks8851_mll_halt(struct eth_device *dev)
*/
static int ks8851_mll_recv(struct eth_device *dev)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
u16 status;
status = ks_rdreg16(dev, KS_ISR);
status = ks_rdreg16(ks, KS_ISR);
ks_wrreg16(dev, KS_ISR, status);
ks_wrreg16(ks, KS_ISR, status);
if (status & IRQ_RXI)
ks_rcv(dev, (uchar **)net_rx_packets);
ks_rcv(ks, (uchar **)net_rx_packets);
if (status & IRQ_LDI) {
u16 pmecr = ks_rdreg16(dev, KS_PMECR);
u16 pmecr = ks_rdreg16(ks, KS_PMECR);
pmecr &= ~PMECR_WKEVT_MASK;
ks_wrreg16(dev, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
ks_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
}
return 0;
@ -485,45 +495,44 @@ static int ks8851_mll_recv(struct eth_device *dev)
static int ks8851_mll_write_hwaddr(struct eth_device *dev)
{
struct ks_net *ks = container_of(dev, struct ks_net, dev);
u16 addrl, addrm, addrh;
addrh = (dev->enetaddr[0] << 8) | dev->enetaddr[1];
addrm = (dev->enetaddr[2] << 8) | dev->enetaddr[3];
addrl = (dev->enetaddr[4] << 8) | dev->enetaddr[5];
addrh = (ks->dev.enetaddr[0] << 8) | ks->dev.enetaddr[1];
addrm = (ks->dev.enetaddr[2] << 8) | ks->dev.enetaddr[3];
addrl = (ks->dev.enetaddr[4] << 8) | ks->dev.enetaddr[5];
ks_wrreg16(dev, KS_MARH, addrh);
ks_wrreg16(dev, KS_MARM, addrm);
ks_wrreg16(dev, KS_MARL, addrl);
ks_wrreg16(ks, KS_MARH, addrh);
ks_wrreg16(ks, KS_MARM, addrm);
ks_wrreg16(ks, KS_MARL, addrl);
return 0;
}
int ks8851_mll_initialize(u8 dev_num, int base_addr)
{
struct eth_device *dev;
struct ks_net *ks;
dev = calloc(1, sizeof(*dev));
if (!dev)
ks = calloc(1, sizeof(*ks));
if (!ks)
return -ENOMEM;
dev->iobase = base_addr;
ks = &ks_str;
ks->iobase = base_addr;
/* Try to detect chip. Will fail if not present. */
if (ks8851_mll_detect_chip(dev)) {
free(dev);
if (ks8851_mll_detect_chip(ks)) {
free(ks);
return -1;
}
dev->init = ks8851_mll_init;
dev->halt = ks8851_mll_halt;
dev->send = ks8851_mll_send;
dev->recv = ks8851_mll_recv;
dev->write_hwaddr = ks8851_mll_write_hwaddr;
sprintf(dev->name, "%s-%hu", DRIVERNAME, dev_num);
ks->dev.init = ks8851_mll_init;
ks->dev.halt = ks8851_mll_halt;
ks->dev.send = ks8851_mll_send;
ks->dev.recv = ks8851_mll_recv;
ks->dev.write_hwaddr = ks8851_mll_write_hwaddr;
sprintf(ks->dev.name, "%s-%hu", DRIVERNAME, dev_num);
eth_register(dev);
eth_register(&ks->dev);
return 0;
}