dm: spi: Convert Freescale ESPI driver to driver model

Modify the Freescale ESPI driver to support the driver model.
Also resolved the following problems:

===================== WARNING ======================
This board does not use CONFIG_DM_SPI. Please update
the board before v2019.04 for no dm conversion
and v2019.07 for partially dm converted drivers.
Failure to update can lead to driver/board removal
See doc/driver-model/MIGRATION.txt for more info.
====================================================
===================== WARNING ======================
This board does not use CONFIG_DM_SPI_FLASH. Please update
the board to use CONFIG_SPI_FLASH before the v2019.07 release.
Failure to update by the deadline may result in board removal.
See doc/driver-model/MIGRATION.txt for more info.
====================================================

Signed-off-by: Chuanhua Han <chuanhua.han@nxp.com>
Signed-off-by: Xiaowei Bao <xiaowei.bao@nxp.com>
Signed-off-by: Hou Zhiqiang <Zhiqiang.Hou@nxp.com>
Reviewed-by: Jagan Teki <jagan@amarulasolutions.com>
This commit is contained in:
Chuanhua Han 2020-06-04 23:16:30 +08:00 committed by Jagan Teki
parent 47df4b5f2a
commit 8d50551dc7
2 changed files with 338 additions and 124 deletions

View File

@ -3,7 +3,9 @@
* eSPI controller driver.
*
* Copyright 2010-2011 Freescale Semiconductor, Inc.
* Copyright 2020 NXP
* Author: Mingkai Hu (Mingkai.hu@freescale.com)
* Chuanhua Han (chuanhua.han@nxp.com)
*/
#include <common.h>
@ -14,10 +16,16 @@
#include <malloc.h>
#include <spi.h>
#include <asm/immap_85xx.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <dm/platform_data/fsl_espi.h>
struct fsl_spi_slave {
struct spi_slave slave;
ccsr_espi_t *espi;
u32 speed_hz;
unsigned int cs;
unsigned int div16;
unsigned int pm;
int tx_timeout;
@ -31,6 +39,9 @@ struct fsl_spi_slave {
#define to_fsl_spi_slave(s) container_of(s, struct fsl_spi_slave, slave)
#define US_PER_SECOND 1000000UL
/* default SCK frequency, unit: HZ */
#define FSL_ESPI_DEFAULT_SCK_FREQ 10000000
#define ESPI_MAX_CS_NUM 4
#define ESPI_FIFO_WIDTH_BIT 32
@ -65,116 +76,27 @@ struct fsl_spi_slave {
#define ESPI_MAX_DATA_TRANSFER_LEN 0xFFF0
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_spi_slave *fsl;
sys_info_t sysinfo;
unsigned long spibrg = 0;
unsigned long spi_freq = 0;
unsigned char pm = 0;
if (!spi_cs_is_valid(bus, cs))
return NULL;
fsl = spi_alloc_slave(struct fsl_spi_slave, bus, cs);
if (!fsl)
return NULL;
fsl->espi = (void *)(CONFIG_SYS_MPC85xx_ESPI_ADDR);
fsl->mode = mode;
fsl->max_transfer_length = ESPI_MAX_DATA_TRANSFER_LEN;
/* Set eSPI BRG clock source */
get_sys_info(&sysinfo);
spibrg = sysinfo.freq_systembus / 2;
fsl->div16 = 0;
if ((spibrg / max_hz) > 32) {
fsl->div16 = ESPI_CSMODE_DIV16;
pm = spibrg / (max_hz * 16 * 2);
if (pm > 16) {
pm = 16;
debug("Requested speed is too low: %d Hz, %ld Hz "
"is used.\n", max_hz, spibrg / (32 * 16));
}
} else
pm = spibrg / (max_hz * 2);
if (pm)
pm--;
fsl->pm = pm;
if (fsl->div16)
spi_freq = spibrg / ((pm + 1) * 2 * 16);
else
spi_freq = spibrg / ((pm + 1) * 2);
/* set tx_timeout to 10 times of one espi FIFO entry go out */
fsl->tx_timeout = DIV_ROUND_UP((US_PER_SECOND * ESPI_FIFO_WIDTH_BIT
* 10), spi_freq);
return &fsl->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
free(fsl);
}
int spi_claim_bus(struct spi_slave *slave)
void fsl_spi_cs_activate(struct spi_slave *slave, uint cs)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
unsigned char pm = fsl->pm;
unsigned int cs = slave->cs;
unsigned int mode = fsl->mode;
unsigned int div16 = fsl->div16;
int i;
unsigned int com = 0;
size_t data_len = fsl->data_len;
debug("%s: bus:%i cs:%i\n", __func__, slave->bus, cs);
/* Enable eSPI interface */
out_be32(&espi->mode, ESPI_MODE_RXTHR(3)
| ESPI_MODE_TXTHR(4) | ESPI_MODE_EN);
out_be32(&espi->event, 0xffffffff); /* Clear all eSPI events */
out_be32(&espi->mask, 0x00000000); /* Mask all eSPI interrupts */
/* Init CS mode interface */
for (i = 0; i < ESPI_MAX_CS_NUM; i++)
out_be32(&espi->csmode[i], ESPI_CSMODE_INIT_VAL);
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) &
~(ESPI_CSMODE_PM(0xF) | ESPI_CSMODE_DIV16
| ESPI_CSMODE_CI_INACTIVEHIGH | ESPI_CSMODE_CP_BEGIN_EDGCLK
| ESPI_CSMODE_REV_MSB_FIRST | ESPI_CSMODE_LEN(0xF)));
/* Set eSPI BRG clock source */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_PM(pm) | div16);
/* Set eSPI mode */
if (mode & SPI_CPHA)
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_CP_BEGIN_EDGCLK);
if (mode & SPI_CPOL)
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_CI_INACTIVEHIGH);
/* Character bit order: msb first */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_REV_MSB_FIRST);
/* Character length in bits, between 0x3~0xf, i.e. 4bits~16bits */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_LEN(7));
return 0;
com &= ~(ESPI_COM_CS(0x3) | ESPI_COM_TRANLEN(0xFFFF));
com |= ESPI_COM_CS(cs);
com |= ESPI_COM_TRANLEN(data_len - 1);
out_be32(&espi->com, com);
}
void spi_release_bus(struct spi_slave *slave)
void fsl_spi_cs_deactivate(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
/* clear the RXCNT and TXCNT */
out_be32(&espi->mode, in_be32(&espi->mode) & (~ESPI_MODE_EN));
out_be32(&espi->mode, in_be32(&espi->mode) | ESPI_MODE_EN);
}
static void fsl_espi_tx(struct fsl_spi_slave *fsl, const void *dout)
@ -207,7 +129,8 @@ static void fsl_espi_tx(struct fsl_spi_slave *fsl, const void *dout)
debug("***spi_xfer:...Tx timeout! event = %08x\n", event);
}
static int fsl_espi_rx(struct fsl_spi_slave *fsl, void *din, unsigned int bytes)
static int fsl_espi_rx(struct fsl_spi_slave *fsl, void *din,
unsigned int bytes)
{
ccsr_espi_t *espi = fsl->espi;
unsigned int tmpdin, rx_times;
@ -239,10 +162,17 @@ static int fsl_espi_rx(struct fsl_spi_slave *fsl, void *din, unsigned int bytes)
return bytes;
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out,
void *data_in, unsigned long flags)
void espi_release_bus(struct fsl_spi_slave *fsl)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
/* Disable the SPI hardware */
out_be32(&fsl->espi->mode,
in_be32(&fsl->espi->mode) & (~ESPI_MODE_EN));
}
int espi_xfer(struct fsl_spi_slave *fsl, uint cs, unsigned int bitlen,
const void *data_out, void *data_in, unsigned long flags)
{
struct spi_slave *slave = &fsl->slave;
ccsr_espi_t *espi = fsl->espi;
unsigned int event, rx_bytes;
const void *dout = NULL;
@ -261,13 +191,14 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out,
max_tran_len = fsl->max_transfer_length;
switch (flags) {
case SPI_XFER_BEGIN:
cmd_len = fsl->cmd_len = data_len;
cmd_len = data_len;
fsl->cmd_len = cmd_len;
memcpy(cmd_buf, data_out, cmd_len);
return 0;
case 0:
case SPI_XFER_END:
if (bitlen == 0) {
spi_cs_deactivate(slave);
fsl_spi_cs_deactivate(slave);
return 0;
}
buf_len = 2 * cmd_len + min(data_len, (size_t)max_tran_len);
@ -307,7 +238,7 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out,
num_blks = DIV_ROUND_UP(tran_len + cmd_len, 4);
num_bytes = (tran_len + cmd_len) % 4;
fsl->data_len = tran_len + cmd_len;
spi_cs_activate(slave);
fsl_spi_cs_activate(slave, cs);
/* Clear all eSPI events */
out_be32(&espi->event , 0xffffffff);
@ -350,37 +281,304 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *data_out,
*(int *)buffer += tran_len;
}
}
spi_cs_deactivate(slave);
fsl_spi_cs_deactivate(slave);
}
free(buffer);
return 0;
}
void espi_claim_bus(struct fsl_spi_slave *fsl, unsigned int cs)
{
ccsr_espi_t *espi = fsl->espi;
unsigned char pm = fsl->pm;
unsigned int mode = fsl->mode;
unsigned int div16 = fsl->div16;
int i;
/* Enable eSPI interface */
out_be32(&espi->mode, ESPI_MODE_RXTHR(3)
| ESPI_MODE_TXTHR(4) | ESPI_MODE_EN);
out_be32(&espi->event, 0xffffffff); /* Clear all eSPI events */
out_be32(&espi->mask, 0x00000000); /* Mask all eSPI interrupts */
/* Init CS mode interface */
for (i = 0; i < ESPI_MAX_CS_NUM; i++)
out_be32(&espi->csmode[i], ESPI_CSMODE_INIT_VAL);
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) &
~(ESPI_CSMODE_PM(0xF) | ESPI_CSMODE_DIV16
| ESPI_CSMODE_CI_INACTIVEHIGH | ESPI_CSMODE_CP_BEGIN_EDGCLK
| ESPI_CSMODE_REV_MSB_FIRST | ESPI_CSMODE_LEN(0xF)));
/* Set eSPI BRG clock source */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_PM(pm) | div16);
/* Set eSPI mode */
if (mode & SPI_CPHA)
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_CP_BEGIN_EDGCLK);
if (mode & SPI_CPOL)
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_CI_INACTIVEHIGH);
/* Character bit order: msb first */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_REV_MSB_FIRST);
/* Character length in bits, between 0x3~0xf, i.e. 4bits~16bits */
out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs])
| ESPI_CSMODE_LEN(7));
}
void espi_setup_slave(struct fsl_spi_slave *fsl)
{
unsigned int max_hz;
sys_info_t sysinfo;
unsigned long spibrg = 0;
unsigned long spi_freq = 0;
unsigned char pm = 0;
max_hz = fsl->speed_hz;
get_sys_info(&sysinfo);
spibrg = sysinfo.freq_systembus / 2;
fsl->div16 = 0;
if ((spibrg / max_hz) > 32) {
fsl->div16 = ESPI_CSMODE_DIV16;
pm = spibrg / (max_hz * 16 * 2);
if (pm > 16) {
pm = 16;
debug("max_hz is too low: %d Hz, %ld Hz is used.\n",
max_hz, spibrg / (32 * 16));
}
} else {
pm = spibrg / (max_hz * 2);
}
if (pm)
pm--;
fsl->pm = pm;
if (fsl->div16)
spi_freq = spibrg / ((pm + 1) * 2 * 16);
else
spi_freq = spibrg / ((pm + 1) * 2);
/* set tx_timeout to 10 times of one espi FIFO entry go out */
fsl->tx_timeout = DIV_ROUND_UP((US_PER_SECOND * ESPI_FIFO_WIDTH_BIT
* 10), spi_freq);/* Set eSPI BRG clock source */
}
#if !CONFIG_IS_ENABLED(DM_SPI)
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
return bus == 0 && cs < ESPI_MAX_CS_NUM;
}
void spi_cs_activate(struct spi_slave *slave)
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
unsigned int com = 0;
size_t data_len = fsl->data_len;
struct fsl_spi_slave *fsl;
com &= ~(ESPI_COM_CS(0x3) | ESPI_COM_TRANLEN(0xFFFF));
com |= ESPI_COM_CS(slave->cs);
com |= ESPI_COM_TRANLEN(data_len - 1);
out_be32(&espi->com, com);
if (!spi_cs_is_valid(bus, cs))
return NULL;
fsl = spi_alloc_slave(struct fsl_spi_slave, bus, cs);
if (!fsl)
return NULL;
fsl->espi = (void *)(CONFIG_SYS_MPC85xx_ESPI_ADDR);
fsl->mode = mode;
fsl->max_transfer_length = ESPI_MAX_DATA_TRANSFER_LEN;
fsl->speed_hz = max_hz;
espi_setup_slave(fsl);
return &fsl->slave;
}
void spi_cs_deactivate(struct spi_slave *slave)
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
ccsr_espi_t *espi = fsl->espi;
/* clear the RXCNT and TXCNT */
out_be32(&espi->mode, in_be32(&espi->mode) & (~ESPI_MODE_EN));
out_be32(&espi->mode, in_be32(&espi->mode) | ESPI_MODE_EN);
free(fsl);
}
int spi_claim_bus(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
espi_claim_bus(fsl, slave->cs);
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave);
espi_release_bus(fsl);
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct fsl_spi_slave *fsl = (struct fsl_spi_slave *)slave;
return espi_xfer(fsl, slave->cs, bitlen, dout, din, flags);
}
#else
static void __espi_set_speed(struct fsl_spi_slave *fsl)
{
espi_setup_slave(fsl);
/* Set eSPI BRG clock source */
out_be32(&fsl->espi->csmode[fsl->cs],
in_be32(&fsl->espi->csmode[fsl->cs])
| ESPI_CSMODE_PM(fsl->pm) | fsl->div16);
}
static void __espi_set_mode(struct fsl_spi_slave *fsl)
{
/* Set eSPI mode */
if (fsl->mode & SPI_CPHA)
out_be32(&fsl->espi->csmode[fsl->cs],
in_be32(&fsl->espi->csmode[fsl->cs])
| ESPI_CSMODE_CP_BEGIN_EDGCLK);
if (fsl->mode & SPI_CPOL)
out_be32(&fsl->espi->csmode[fsl->cs],
in_be32(&fsl->espi->csmode[fsl->cs])
| ESPI_CSMODE_CI_INACTIVEHIGH);
}
static int fsl_espi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct fsl_spi_slave *fsl = dev_get_priv(bus);
espi_claim_bus(fsl, fsl->cs);
return 0;
}
static int fsl_espi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct fsl_spi_slave *fsl = dev_get_priv(bus);
espi_release_bus(fsl);
return 0;
}
static int fsl_espi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct fsl_spi_slave *fsl = dev_get_priv(bus);
return espi_xfer(fsl, fsl->cs, bitlen, dout, din, flags);
}
static int fsl_espi_set_speed(struct udevice *bus, uint speed)
{
struct fsl_spi_slave *fsl = dev_get_priv(bus);
debug("%s speed %u\n", __func__, speed);
fsl->speed_hz = speed;
__espi_set_speed(fsl);
return 0;
}
static int fsl_espi_set_mode(struct udevice *bus, uint mode)
{
struct fsl_spi_slave *fsl = dev_get_priv(bus);
debug("%s mode %u\n", __func__, mode);
fsl->mode = mode;
__espi_set_mode(fsl);
return 0;
}
static int fsl_espi_child_pre_probe(struct udevice *dev)
{
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
struct udevice *bus = dev->parent;
struct fsl_spi_slave *fsl = dev_get_priv(bus);
debug("%s cs %u\n", __func__, slave_plat->cs);
fsl->cs = slave_plat->cs;
return 0;
}
static int fsl_espi_probe(struct udevice *bus)
{
struct fsl_espi_platdata *plat = dev_get_platdata(bus);
struct fsl_spi_slave *fsl = dev_get_priv(bus);
fsl->espi = (ccsr_espi_t *)((u32)plat->regs_addr);
fsl->max_transfer_length = ESPI_MAX_DATA_TRANSFER_LEN;
fsl->speed_hz = plat->speed_hz;
debug("%s probe done, bus-num %d.\n", bus->name, bus->seq);
return 0;
}
static const struct dm_spi_ops fsl_espi_ops = {
.claim_bus = fsl_espi_claim_bus,
.release_bus = fsl_espi_release_bus,
.xfer = fsl_espi_xfer,
.set_speed = fsl_espi_set_speed,
.set_mode = fsl_espi_set_mode,
};
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
static int fsl_espi_ofdata_to_platdata(struct udevice *bus)
{
fdt_addr_t addr;
struct fsl_espi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
addr = dev_read_addr(bus);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
plat->regs_addr = lower_32_bits(addr);
plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
FSL_ESPI_DEFAULT_SCK_FREQ);
debug("ESPI: regs=%p, max-frequency=%d\n",
&plat->regs_addr, plat->speed_hz);
return 0;
}
static const struct udevice_id fsl_espi_ids[] = {
{ .compatible = "fsl,mpc8536-espi" },
{ }
};
#endif
U_BOOT_DRIVER(fsl_espi) = {
.name = "fsl_espi",
.id = UCLASS_SPI,
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
.of_match = fsl_espi_ids,
.ofdata_to_platdata = fsl_espi_ofdata_to_platdata,
#endif
.ops = &fsl_espi_ops,
.platdata_auto_alloc_size = sizeof(struct fsl_espi_platdata),
.priv_auto_alloc_size = sizeof(struct fsl_spi_slave),
.probe = fsl_espi_probe,
.child_pre_probe = fsl_espi_child_pre_probe,
};
#endif

View File

@ -0,0 +1,16 @@
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright 2019 NXP
*/
#ifndef __fsl_espi_h
#define __fsl_espi_h
struct fsl_espi_platdata {
uint flags;
uint speed_hz;
uint num_chipselect;
fdt_addr_t regs_addr;
};
#endif /* __fsl_espi_h */