fs: btrfs: Crossport read_tree_block() from btrfs-progs

This is the one of the basic stone function for btrfs, which:
- Resolves the chunk mappings
- Reads data from disk
- Does various sanity check

With read_tree_block(), we can finally crossport needed btrfs btree
operations to U-Boot.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Marek Behún <marek.behun@nic.cz>
This commit is contained in:
Qu Wenruo 2020-06-24 18:02:55 +02:00 committed by Tom Rini
parent b1f0067aba
commit 75b0817bab
5 changed files with 602 additions and 8 deletions

View File

@ -42,7 +42,7 @@ u16 btrfs_csum_type_size(u16 csum_type)
return btrfs_csums[csum_type].size;
}
int btrfs_comp_keys(struct btrfs_key *a, struct btrfs_key *b)
int __btrfs_comp_keys(struct btrfs_key *a, struct btrfs_key *b)
{
if (a->objectid > b->objectid)
return 1;
@ -82,7 +82,7 @@ static int generic_bin_search(void *addr, int item_size, struct btrfs_key *key,
mid = (low + high) / 2;
tmp = (struct btrfs_key *) ((u8 *) addr + mid*item_size);
ret = btrfs_comp_keys(tmp, key);
ret = __btrfs_comp_keys(tmp, key);
if (ret < 0) {
low = mid + 1;
@ -321,3 +321,187 @@ int btrfs_next_slot(struct btrfs_path *p)
p->slots[0]++;
return 0;
}
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
{
if (k1->objectid > k2->objectid)
return 1;
if (k1->objectid < k2->objectid)
return -1;
if (k1->type > k2->type)
return 1;
if (k1->type < k2->type)
return -1;
if (k1->offset > k2->offset)
return 1;
if (k1->offset < k2->offset)
return -1;
return 0;
}
static int btrfs_comp_keys(struct btrfs_disk_key *disk,
const struct btrfs_key *k2)
{
struct btrfs_key k1;
btrfs_disk_key_to_cpu(&k1, disk);
return btrfs_comp_cpu_keys(&k1, k2);
}
enum btrfs_tree_block_status
btrfs_check_node(struct btrfs_fs_info *fs_info,
struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
{
int i;
struct btrfs_key cpukey;
struct btrfs_disk_key key;
u32 nritems = btrfs_header_nritems(buf);
enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(fs_info))
goto fail;
ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
if (parent_key && parent_key->type) {
btrfs_node_key(buf, &key, 0);
if (memcmp(parent_key, &key, sizeof(key)))
goto fail;
}
ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
btrfs_node_key(buf, &key, i);
btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
if (btrfs_comp_keys(&key, &cpukey) >= 0)
goto fail;
}
return BTRFS_TREE_BLOCK_CLEAN;
fail:
return ret;
}
enum btrfs_tree_block_status
btrfs_check_leaf(struct btrfs_fs_info *fs_info,
struct btrfs_disk_key *parent_key, struct extent_buffer *buf)
{
int i;
struct btrfs_key cpukey;
struct btrfs_disk_key key;
u32 nritems = btrfs_header_nritems(buf);
enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
if (nritems * sizeof(struct btrfs_item) > buf->len) {
fprintf(stderr, "invalid number of items %llu\n",
(unsigned long long)buf->start);
goto fail;
}
if (btrfs_header_level(buf) != 0) {
ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
fprintf(stderr, "leaf is not a leaf %llu\n",
(unsigned long long)btrfs_header_bytenr(buf));
goto fail;
}
if (btrfs_leaf_free_space(buf) < 0) {
ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
fprintf(stderr, "leaf free space incorrect %llu %d\n",
(unsigned long long)btrfs_header_bytenr(buf),
btrfs_leaf_free_space(buf));
goto fail;
}
if (nritems == 0)
return BTRFS_TREE_BLOCK_CLEAN;
btrfs_item_key(buf, &key, 0);
if (parent_key && parent_key->type &&
memcmp(parent_key, &key, sizeof(key))) {
ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
fprintf(stderr, "leaf parent key incorrect %llu\n",
(unsigned long long)btrfs_header_bytenr(buf));
goto fail;
}
for (i = 0; nritems > 1 && i < nritems - 1; i++) {
btrfs_item_key(buf, &key, i);
btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
if (btrfs_comp_keys(&key, &cpukey) >= 0) {
ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
goto fail;
}
if (btrfs_item_offset_nr(buf, i) !=
btrfs_item_end_nr(buf, i + 1)) {
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
fprintf(stderr, "incorrect offsets %u %u\n",
btrfs_item_offset_nr(buf, i),
btrfs_item_end_nr(buf, i + 1));
goto fail;
}
if (i == 0 && btrfs_item_end_nr(buf, i) !=
BTRFS_LEAF_DATA_SIZE(fs_info)) {
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
fprintf(stderr, "bad item end %u wanted %u\n",
btrfs_item_end_nr(buf, i),
(unsigned)BTRFS_LEAF_DATA_SIZE(fs_info));
goto fail;
}
}
for (i = 0; i < nritems; i++) {
if (btrfs_item_end_nr(buf, i) >
BTRFS_LEAF_DATA_SIZE(fs_info)) {
btrfs_item_key(buf, &key, 0);
ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
(unsigned long long)btrfs_item_end_nr(buf, i),
(unsigned long long)BTRFS_LEAF_DATA_SIZE(
fs_info));
goto fail;
}
}
return BTRFS_TREE_BLOCK_CLEAN;
fail:
return ret;
}
/*
* how many bytes are required to store the items in a leaf. start
* and nr indicate which items in the leaf to check. This totals up the
* space used both by the item structs and the item data
*/
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
{
int data_len;
int nritems = btrfs_header_nritems(l);
int end = min(nritems, start + nr) - 1;
if (!nr)
return 0;
data_len = btrfs_item_end_nr(l, start);
data_len = data_len - btrfs_item_offset_nr(l, end);
data_len += sizeof(struct btrfs_item) * nr;
WARN_ON(data_len < 0);
return data_len;
}
/*
* The space between the end of the leaf items and
* the start of the leaf data. IOW, how much room
* the leaf has left for both items and data
*/
int btrfs_leaf_free_space(struct extent_buffer *leaf)
{
int nritems = btrfs_header_nritems(leaf);
u32 leaf_data_size;
int ret;
BUG_ON(leaf->fs_info && leaf->fs_info->nodesize != leaf->len);
leaf_data_size = __BTRFS_LEAF_DATA_SIZE(leaf->len);
ret = leaf_data_size - leaf_space_used(leaf, 0 ,nritems);
if (ret < 0) {
printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
ret, leaf_data_size, leaf_space_used(leaf, 0, nritems),
nritems);
}
return ret;
}

View File

@ -59,6 +59,16 @@ static inline unsigned long btrfs_chunk_item_size(int num_stripes)
#define BTRFS_MAX_EXTENT_SIZE SZ_128M
enum btrfs_tree_block_status {
BTRFS_TREE_BLOCK_CLEAN,
BTRFS_TREE_BLOCK_INVALID_NRITEMS,
BTRFS_TREE_BLOCK_INVALID_PARENT_KEY,
BTRFS_TREE_BLOCK_BAD_KEY_ORDER,
BTRFS_TREE_BLOCK_INVALID_LEVEL,
BTRFS_TREE_BLOCK_INVALID_FREE_SPACE,
BTRFS_TREE_BLOCK_INVALID_OFFSETS,
};
struct btrfs_device;
struct btrfs_fs_devices;
struct btrfs_fs_info {
@ -88,6 +98,35 @@ struct btrfs_fs_info {
u32 stripesize;
};
static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
{
return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
}
static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
{
return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
}
static inline u32 BTRFS_NODEPTRS_PER_EXTENT_BUFFER(const struct extent_buffer *eb)
{
BUG_ON(eb->fs_info && eb->fs_info->nodesize != eb->len);
return __BTRFS_LEAF_DATA_SIZE(eb->len) / sizeof(struct btrfs_key_ptr);
}
#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
(offsetof(struct btrfs_file_extent_item, disk_bytenr))
static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
{
return BTRFS_MAX_ITEM_SIZE(info) -
BTRFS_FILE_EXTENT_INLINE_DATA_START;
}
static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
{
return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
}
/*
* File system states
*/
@ -1149,7 +1188,7 @@ struct btrfs_root {
u64 root_dirid;
};
int btrfs_comp_keys(struct btrfs_key *, struct btrfs_key *);
int __btrfs_comp_keys(struct btrfs_key *, struct btrfs_key *);
int btrfs_comp_keys_type(struct btrfs_key *, struct btrfs_key *);
int btrfs_bin_search(union btrfs_tree_node *, struct btrfs_key *, int *);
void btrfs_free_path(struct btrfs_path *);
@ -1209,4 +1248,13 @@ const char *btrfs_super_csum_name(u16 csum_type);
u16 btrfs_csum_type_size(u16 csum_type);
size_t btrfs_super_num_csums(void);
/* ctree.c */
int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
enum btrfs_tree_block_status
btrfs_check_node(struct btrfs_fs_info *fs_info,
struct btrfs_disk_key *parent_key, struct extent_buffer *buf);
enum btrfs_tree_block_status
btrfs_check_leaf(struct btrfs_fs_info *fs_info,
struct btrfs_disk_key *parent_key, struct extent_buffer *buf);
int btrfs_leaf_free_space(struct extent_buffer *leaf);
#endif /* __BTRFS_CTREE_H__ */

View File

@ -7,8 +7,113 @@
#include "disk-io.h"
#include "ctree.h"
#include "btrfs.h"
#include "volumes.h"
#include "extent-io.h"
#include "crypto/hash.h"
/* specified errno for check_tree_block */
#define BTRFS_BAD_BYTENR (-1)
#define BTRFS_BAD_FSID (-2)
#define BTRFS_BAD_LEVEL (-3)
#define BTRFS_BAD_NRITEMS (-4)
/* Calculate max possible nritems for a leaf/node */
static u32 max_nritems(u8 level, u32 nodesize)
{
if (level == 0)
return ((nodesize - sizeof(struct btrfs_header)) /
sizeof(struct btrfs_item));
return ((nodesize - sizeof(struct btrfs_header)) /
sizeof(struct btrfs_key_ptr));
}
static int check_tree_block(struct btrfs_fs_info *fs_info,
struct extent_buffer *buf)
{
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
u32 nodesize = fs_info->nodesize;
bool fsid_match = false;
int ret = BTRFS_BAD_FSID;
if (buf->start != btrfs_header_bytenr(buf))
return BTRFS_BAD_BYTENR;
if (btrfs_header_level(buf) >= BTRFS_MAX_LEVEL)
return BTRFS_BAD_LEVEL;
if (btrfs_header_nritems(buf) > max_nritems(btrfs_header_level(buf),
nodesize))
return BTRFS_BAD_NRITEMS;
/* Only leaf can be empty */
if (btrfs_header_nritems(buf) == 0 &&
btrfs_header_level(buf) != 0)
return BTRFS_BAD_NRITEMS;
while (fs_devices) {
/*
* Checking the incompat flag is only valid for the current
* fs. For seed devices it's forbidden to have their uuid
* changed so reading ->fsid in this case is fine
*/
if (fs_devices == fs_info->fs_devices &&
btrfs_fs_incompat(fs_info, METADATA_UUID))
fsid_match = !memcmp_extent_buffer(buf,
fs_devices->metadata_uuid,
btrfs_header_fsid(),
BTRFS_FSID_SIZE);
else
fsid_match = !memcmp_extent_buffer(buf,
fs_devices->fsid,
btrfs_header_fsid(),
BTRFS_FSID_SIZE);
if (fsid_match) {
ret = 0;
break;
}
fs_devices = fs_devices->seed;
}
return ret;
}
static void print_tree_block_error(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb,
int err)
{
char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'};
char found_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'};
u8 buf[BTRFS_UUID_SIZE];
if (!err)
return;
fprintf(stderr, "bad tree block %llu, ", eb->start);
switch (err) {
case BTRFS_BAD_FSID:
read_extent_buffer(eb, buf, btrfs_header_fsid(),
BTRFS_UUID_SIZE);
uuid_unparse(buf, found_uuid);
uuid_unparse(fs_info->fs_devices->metadata_uuid, fs_uuid);
fprintf(stderr, "fsid mismatch, want=%s, have=%s\n",
fs_uuid, found_uuid);
break;
case BTRFS_BAD_BYTENR:
fprintf(stderr, "bytenr mismatch, want=%llu, have=%llu\n",
eb->start, btrfs_header_bytenr(eb));
break;
case BTRFS_BAD_LEVEL:
fprintf(stderr, "bad level, %u > %d\n",
btrfs_header_level(eb), BTRFS_MAX_LEVEL);
break;
case BTRFS_BAD_NRITEMS:
fprintf(stderr, "invalid nr_items: %u\n",
btrfs_header_nritems(eb));
break;
}
}
int btrfs_csum_data(u16 csum_type, const u8 *data, u8 *out, size_t len)
{
memset(out, 0, BTRFS_CSUM_SIZE);
@ -233,3 +338,246 @@ int btrfs_read_superblock(void)
return 0;
}
static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size,
int verify, int silent, u16 csum_type)
{
u8 result[BTRFS_CSUM_SIZE];
u32 len;
len = buf->len - BTRFS_CSUM_SIZE;
btrfs_csum_data(csum_type, (u8 *)buf->data + BTRFS_CSUM_SIZE,
result, len);
if (verify) {
if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
/* FIXME: format */
if (!silent)
printk("checksum verify failed on %llu found %08X wanted %08X\n",
(unsigned long long)buf->start,
result[0],
buf->data[0]);
return 1;
}
} else {
write_extent_buffer(buf, result, 0, csum_size);
}
return 0;
}
int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify,
u16 csum_type)
{
return __csum_tree_block_size(buf, csum_size, verify, 0, csum_type);
}
static int csum_tree_block(struct btrfs_fs_info *fs_info,
struct extent_buffer *buf, int verify)
{
u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
u16 csum_type = btrfs_super_csum_type(fs_info->super_copy);
return csum_tree_block_size(buf, csum_size, verify, csum_type);
}
struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
u64 bytenr, u32 blocksize)
{
return find_extent_buffer(&fs_info->extent_cache,
bytenr, blocksize);
}
struct extent_buffer* btrfs_find_create_tree_block(
struct btrfs_fs_info *fs_info, u64 bytenr)
{
return alloc_extent_buffer(fs_info, bytenr, fs_info->nodesize);
}
static int verify_parent_transid(struct extent_io_tree *io_tree,
struct extent_buffer *eb, u64 parent_transid,
int ignore)
{
int ret;
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 0;
if (extent_buffer_uptodate(eb) &&
btrfs_header_generation(eb) == parent_transid) {
ret = 0;
goto out;
}
printk("parent transid verify failed on %llu wanted %llu found %llu\n",
(unsigned long long)eb->start,
(unsigned long long)parent_transid,
(unsigned long long)btrfs_header_generation(eb));
if (ignore) {
eb->flags |= EXTENT_BAD_TRANSID;
printk("Ignoring transid failure\n");
return 0;
}
ret = 1;
out:
clear_extent_buffer_uptodate(eb);
return ret;
}
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
{
int ret;
ret = extent_buffer_uptodate(buf);
if (!ret)
return ret;
ret = verify_parent_transid(&buf->fs_info->extent_cache, buf,
parent_transid, 1);
return !ret;
}
int btrfs_set_buffer_uptodate(struct extent_buffer *eb)
{
return set_extent_buffer_uptodate(eb);
}
int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror)
{
unsigned long offset = 0;
struct btrfs_multi_bio *multi = NULL;
struct btrfs_device *device;
int ret = 0;
u64 read_len;
unsigned long bytes_left = eb->len;
while (bytes_left) {
read_len = bytes_left;
device = NULL;
ret = btrfs_map_block(info, READ, eb->start + offset,
&read_len, &multi, mirror, NULL);
if (ret) {
printk("Couldn't map the block %Lu\n", eb->start + offset);
kfree(multi);
return -EIO;
}
device = multi->stripes[0].dev;
if (!device->desc || !device->part) {
kfree(multi);
return -EIO;
}
if (read_len > bytes_left)
read_len = bytes_left;
ret = read_extent_from_disk(device->desc, device->part,
multi->stripes[0].physical, eb,
offset, read_len);
kfree(multi);
multi = NULL;
if (ret)
return -EIO;
offset += read_len;
bytes_left -= read_len;
}
return 0;
}
struct extent_buffer* read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
u64 parent_transid)
{
int ret;
struct extent_buffer *eb;
u64 best_transid = 0;
u32 sectorsize = fs_info->sectorsize;
int mirror_num = 1;
int good_mirror = 0;
int candidate_mirror = 0;
int num_copies;
int ignore = 0;
/*
* Don't even try to create tree block for unaligned tree block
* bytenr.
* Such unaligned tree block will free overlapping extent buffer,
* causing use-after-free bugs for fuzzed images.
*/
if (bytenr < sectorsize || !IS_ALIGNED(bytenr, sectorsize)) {
error("tree block bytenr %llu is not aligned to sectorsize %u",
bytenr, sectorsize);
return ERR_PTR(-EIO);
}
eb = btrfs_find_create_tree_block(fs_info, bytenr);
if (!eb)
return ERR_PTR(-ENOMEM);
if (btrfs_buffer_uptodate(eb, parent_transid))
return eb;
num_copies = btrfs_num_copies(fs_info, eb->start, eb->len);
while (1) {
ret = read_whole_eb(fs_info, eb, mirror_num);
if (ret == 0 && csum_tree_block(fs_info, eb, 1) == 0 &&
check_tree_block(fs_info, eb) == 0 &&
verify_parent_transid(&fs_info->extent_cache, eb,
parent_transid, ignore) == 0) {
/*
* check_tree_block() is less strict to allow btrfs
* check to get raw eb with bad key order and fix it.
* But we still need to try to get a good copy if
* possible, or bad key order can go into tools like
* btrfs ins dump-tree.
*/
if (btrfs_header_level(eb))
ret = btrfs_check_node(fs_info, NULL, eb);
else
ret = btrfs_check_leaf(fs_info, NULL, eb);
if (!ret || candidate_mirror == mirror_num) {
btrfs_set_buffer_uptodate(eb);
return eb;
}
if (candidate_mirror <= 0)
candidate_mirror = mirror_num;
}
if (ignore) {
if (candidate_mirror > 0) {
mirror_num = candidate_mirror;
continue;
}
if (check_tree_block(fs_info, eb))
print_tree_block_error(fs_info, eb,
check_tree_block(fs_info, eb));
else
fprintf(stderr, "Csum didn't match\n");
ret = -EIO;
break;
}
if (num_copies == 1) {
ignore = 1;
continue;
}
if (btrfs_header_generation(eb) > best_transid) {
best_transid = btrfs_header_generation(eb);
good_mirror = mirror_num;
}
mirror_num++;
if (mirror_num > num_copies) {
if (candidate_mirror > 0)
mirror_num = candidate_mirror;
else
mirror_num = good_mirror;
ignore = 1;
continue;
}
}
/*
* We failed to read this tree block, it be should deleted right now
* to avoid stale cache populate the cache.
*/
free_extent_buffer(eb);
return ERR_PTR(ret);
}

View File

@ -10,9 +10,23 @@
#define BTRFS_SUPER_INFO_OFFSET SZ_64K
#define BTRFS_SUPER_INFO_SIZE SZ_4K
int btrfs_csum_data(u16 csum_type, const u8 *data, u8 *out, size_t len);
/* U-boot specific */
int btrfs_read_superblock(void);
/* From btrfs-progs */
int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror);
struct extent_buffer* read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
u64 parent_transid);
struct extent_buffer* btrfs_find_create_tree_block(
struct btrfs_fs_info *fs_info, u64 bytenr);
struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
u64 bytenr, u32 blocksize);
int btrfs_read_dev_super(struct blk_desc *desc, struct disk_partition *part,
struct btrfs_super_block *sb);
int btrfs_read_superblock(void);
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid);
int btrfs_set_buffer_uptodate(struct extent_buffer *buf);
int btrfs_csum_data(u16 csum_type, const u8 *data, u8 *out, size_t len);
int csum_tree_block_size(struct extent_buffer *buf, u16 csum_sectorsize,
int verify, u16 csum_type);
#endif

View File

@ -65,7 +65,7 @@ int btrfs_lookup_inode(const struct btrfs_root *root,
if (btrfs_search_tree(&tmp_root, location, &path))
return res;
if (btrfs_comp_keys(location, btrfs_path_leaf_key(&path)))
if (__btrfs_comp_keys(location, btrfs_path_leaf_key(&path)))
goto out;
if (item) {
@ -98,7 +98,7 @@ int btrfs_readlink(const struct btrfs_root *root, u64 inr, char *target)
if (btrfs_search_tree(root, &key, &path))
return -1;
if (btrfs_comp_keys(&key, btrfs_path_leaf_key(&path)))
if (__btrfs_comp_keys(&key, btrfs_path_leaf_key(&path)))
goto out;
extent = btrfs_path_item_ptr(&path, struct btrfs_file_extent_item);
@ -333,7 +333,7 @@ u64 btrfs_file_read(const struct btrfs_root *root, u64 inr, u64 offset,
if (btrfs_search_tree(root, &key, &path))
return -1ULL;
if (btrfs_comp_keys(&key, btrfs_path_leaf_key(&path)) < 0) {
if (__btrfs_comp_keys(&key, btrfs_path_leaf_key(&path)) < 0) {
if (btrfs_prev_slot(&path))
goto out;