Merge branch 'next' of git://git.denx.de/u-boot-sh

This is part 1 of big network cleanup / DM conversion.
The dc2114x/rtl8139/pcnet/tulip PCI adapter drivers received checkpatch
cleanups in preparation for DM conversion. The smc911x is converted to
DM completely. The dwc_eth_qos cache fixes are applied.
This commit is contained in:
Tom Rini 2020-05-01 17:58:31 -04:00
commit 1d5d0275d7
13 changed files with 1443 additions and 1175 deletions

2
README
View File

@ -896,8 +896,6 @@ The following options need to be configured:
CONFIG_TULIP
Support for Digital 2114x chips.
Optional CONFIG_TULIP_SELECT_MEDIA for board specific
modem chip initialisation (KS8761/QS6611).
CONFIG_NATSEMI
Support for National dp83815 chips.

View File

@ -388,11 +388,13 @@ config SMC911X
if SMC911X
if !DM_ETH
config SMC911X_BASE
hex "SMC911X Base Address"
help
Define this to hold the physical address
of the device (I/O space)
endif #DM_ETH
choice
prompt "SMC911X bus width"

File diff suppressed because it is too large Load Diff

View File

@ -1288,9 +1288,9 @@ static int eqos_start(struct udevice *dev)
struct eqos_desc *rx_desc = &(eqos->rx_descs[i]);
rx_desc->des0 = (u32)(ulong)(eqos->rx_dma_buf +
(i * EQOS_MAX_PACKET_SIZE));
rx_desc->des3 |= EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
rx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
eqos->config->ops->eqos_flush_desc(rx_desc);
}
eqos->config->ops->eqos_flush_desc(eqos->descs);
writel(0, &eqos->dma_regs->ch0_txdesc_list_haddress);
writel((ulong)eqos->tx_descs, &eqos->dma_regs->ch0_txdesc_list_address);
@ -1419,7 +1419,8 @@ static int eqos_send(struct udevice *dev, void *packet, int length)
tx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_FD | EQOS_DESC3_LD | length;
eqos->config->ops->eqos_flush_desc(tx_desc);
writel((ulong)(tx_desc + 1), &eqos->dma_regs->ch0_txdesc_tail_pointer);
writel((ulong)(&(eqos->tx_descs[eqos->tx_desc_idx])),
&eqos->dma_regs->ch0_txdesc_tail_pointer);
for (i = 0; i < 1000000; i++) {
eqos->config->ops->eqos_inval_desc(tx_desc);
@ -1442,6 +1443,7 @@ static int eqos_recv(struct udevice *dev, int flags, uchar **packetp)
debug("%s(dev=%p, flags=%x):\n", __func__, dev, flags);
rx_desc = &(eqos->rx_descs[eqos->rx_desc_idx]);
eqos->config->ops->eqos_inval_desc(rx_desc);
if (rx_desc->des3 & EQOS_DESC3_OWN) {
debug("%s: RX packet not available\n", __func__);
return -EAGAIN;
@ -1474,6 +1476,11 @@ static int eqos_free_pkt(struct udevice *dev, uchar *packet, int length)
}
rx_desc = &(eqos->rx_descs[eqos->rx_desc_idx]);
rx_desc->des0 = 0;
mb();
eqos->config->ops->eqos_flush_desc(rx_desc);
eqos->config->ops->eqos_inval_buffer(packet, length);
rx_desc->des0 = (u32)(ulong)packet;
rx_desc->des1 = 0;
rx_desc->des2 = 0;
@ -1482,7 +1489,7 @@ static int eqos_free_pkt(struct udevice *dev, uchar *packet, int length)
* writes to the rest of the descriptor too.
*/
mb();
rx_desc->des3 |= EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
rx_desc->des3 = EQOS_DESC3_OWN | EQOS_DESC3_BUF1V;
eqos->config->ops->eqos_flush_desc(rx_desc);
writel((ulong)rx_desc, &eqos->dma_regs->ch0_rxdesc_tail_pointer);
@ -1536,6 +1543,9 @@ static int eqos_probe_resources_core(struct udevice *dev)
}
debug("%s: rx_pkt=%p\n", __func__, eqos->rx_pkt);
eqos->config->ops->eqos_inval_buffer(eqos->rx_dma_buf,
EQOS_MAX_PACKET_SIZE * EQOS_DESCRIPTORS_RX);
debug("%s: OK\n", __func__);
return 0;

View File

@ -21,10 +21,6 @@
#define PCNET_DEBUG2(fmt,args...) \
debug_cond(PCNET_DEBUG_LEVEL > 1, fmt ,##args)
#if !defined(CONF_PCNET_79C973) && defined(CONF_PCNET_79C975)
#error "Macro for PCnet chip version is not defined!"
#endif
/*
* Set the number of Tx and Rx buffers, using Log_2(# buffers).
* Reasonable default values are 4 Tx buffers, and 16 Rx buffers.
@ -183,14 +179,14 @@ int pcnet_initialize(bd_t *bis)
/*
* Setup the PCI device.
*/
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &bar);
dev->iobase = pci_io_to_phys(devbusfn, bar);
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &bar);
dev->iobase = pci_mem_to_phys(devbusfn, bar);
dev->iobase &= ~0xf;
PCNET_DEBUG1("%s: devbusfn=0x%x iobase=0x%lx: ",
dev->name, devbusfn, (unsigned long)dev->iobase);
command = PCI_COMMAND_IO | PCI_COMMAND_MASTER;
command = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn, PCI_COMMAND, command);
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
if ((status & command) != command) {
@ -254,16 +250,12 @@ static int pcnet_probe(struct eth_device *dev, bd_t *bis, int dev_nr)
case 0x2621:
chipname = "PCnet/PCI II 79C970A"; /* PCI */
break;
#ifdef CONFIG_PCNET_79C973
case 0x2625:
chipname = "PCnet/FAST III 79C973"; /* PCI */
break;
#endif
#ifdef CONFIG_PCNET_79C975
case 0x2627:
chipname = "PCnet/FAST III 79C975"; /* PCI */
break;
#endif
default:
printf("%s: PCnet version %#x not supported\n",
dev->name, chip_version);
@ -340,7 +332,9 @@ static int pcnet_init(struct eth_device *dev, bd_t *bis)
addr = (unsigned long)memalign(ARCH_DMA_MINALIGN,
sizeof(*lp->uc));
flush_dcache_range(addr, addr + sizeof(*lp->uc));
addr = UNCACHED_SDRAM(addr);
addr = (unsigned long)map_physmem(addr,
roundup(sizeof(*lp->uc), ARCH_DMA_MINALIGN),
MAP_NOCACHE);
lp->uc = (struct pcnet_uncached_priv *)addr;
addr = (unsigned long)memalign(ARCH_DMA_MINALIGN,

View File

@ -1,3 +1,4 @@
// SPDX-License-Identifier: GPL-2.0
/*
* rtl8139.c : U-Boot driver for the RealTek RTL8139
*
@ -8,71 +9,68 @@
*/
/* rtl8139.c - etherboot driver for the Realtek 8139 chipset
ported from the linux driver written by Donald Becker
by Rainer Bawidamann (Rainer.Bawidamann@informatik.uni-ulm.de) 1999
This software may be used and distributed according to the terms
of the GNU Public License, incorporated herein by reference.
changes to the original driver:
- removed support for interrupts, switching to polling mode (yuck!)
- removed support for the 8129 chip (external MII)
*/
*
* ported from the linux driver written by Donald Becker
* by Rainer Bawidamann (Rainer.Bawidamann@informatik.uni-ulm.de) 1999
*
* changes to the original driver:
* - removed support for interrupts, switching to polling mode (yuck!)
* - removed support for the 8129 chip (external MII)
*/
/*********************************************************************/
/* Revision History */
/*********************************************************************/
/*
28 Dec 2002 ken_yap@users.sourceforge.net (Ken Yap)
Put in virt_to_bus calls to allow Etherboot relocation.
06 Apr 2001 ken_yap@users.sourceforge.net (Ken Yap)
Following email from Hyun-Joon Cha, added a disable routine, otherwise
NIC remains live and can crash the kernel later.
4 Feb 2000 espenlaub@informatik.uni-ulm.de (Klaus Espenlaub)
Shuffled things around, removed the leftovers from the 8129 support
that was in the Linux driver and added a bit more 8139 definitions.
Moved the 8K receive buffer to a fixed, available address outside the
0x98000-0x9ffff range. This is a bit of a hack, but currently the only
way to make room for the Etherboot features that need substantial amounts
of code like the ANSI console support. Currently the buffer is just below
0x10000, so this even conforms to the tagged boot image specification,
which reserves the ranges 0x00000-0x10000 and 0x98000-0xA0000. My
interpretation of this "reserved" is that Etherboot may do whatever it
likes, as long as its environment is kept intact (like the BIOS
variables). Hopefully fixed rtl_poll() once and for all. The symptoms
were that if Etherboot was left at the boot menu for several minutes, the
first eth_poll failed. Seems like I am the only person who does this.
First of all I fixed the debugging code and then set out for a long bug
hunting session. It took me about a week full time work - poking around
various places in the driver, reading Don Becker's and Jeff Garzik's Linux
driver and even the FreeBSD driver (what a piece of crap!) - and
eventually spotted the nasty thing: the transmit routine was acknowledging
each and every interrupt pending, including the RxOverrun and RxFIFIOver
interrupts. This confused the RTL8139 thoroughly. It destroyed the
Rx ring contents by dumping the 2K FIFO contents right where we wanted to
get the next packet. Oh well, what fun.
18 Jan 2000 mdc@thinguin.org (Marty Connor)
Drastically simplified error handling. Basically, if any error
in transmission or reception occurs, the card is reset.
Also, pointed all transmit descriptors to the same buffer to
save buffer space. This should decrease driver size and avoid
corruption because of exceeding 32K during runtime.
28 Jul 1999 (Matthias Meixner - meixner@rbg.informatik.tu-darmstadt.de)
rtl_poll was quite broken: it used the RxOK interrupt flag instead
of the RxBufferEmpty flag which often resulted in very bad
transmission performace - below 1kBytes/s.
*/
* 28 Dec 2002 ken_yap@users.sourceforge.net (Ken Yap)
* Put in virt_to_bus calls to allow Etherboot relocation.
*
* 06 Apr 2001 ken_yap@users.sourceforge.net (Ken Yap)
* Following email from Hyun-Joon Cha, added a disable routine, otherwise
* NIC remains live and can crash the kernel later.
*
* 4 Feb 2000 espenlaub@informatik.uni-ulm.de (Klaus Espenlaub)
* Shuffled things around, removed the leftovers from the 8129 support
* that was in the Linux driver and added a bit more 8139 definitions.
* Moved the 8K receive buffer to a fixed, available address outside the
* 0x98000-0x9ffff range. This is a bit of a hack, but currently the only
* way to make room for the Etherboot features that need substantial amounts
* of code like the ANSI console support. Currently the buffer is just below
* 0x10000, so this even conforms to the tagged boot image specification,
* which reserves the ranges 0x00000-0x10000 and 0x98000-0xA0000. My
* interpretation of this "reserved" is that Etherboot may do whatever it
* likes, as long as its environment is kept intact (like the BIOS
* variables). Hopefully fixed rtl8139_recv() once and for all. The symptoms
* were that if Etherboot was left at the boot menu for several minutes, the
* first eth_poll failed. Seems like I am the only person who does this.
* First of all I fixed the debugging code and then set out for a long bug
* hunting session. It took me about a week full time work - poking around
* various places in the driver, reading Don Becker's and Jeff Garzik's Linux
* driver and even the FreeBSD driver (what a piece of crap!) - and
* eventually spotted the nasty thing: the transmit routine was acknowledging
* each and every interrupt pending, including the RxOverrun and RxFIFIOver
* interrupts. This confused the RTL8139 thoroughly. It destroyed the
* Rx ring contents by dumping the 2K FIFO contents right where we wanted to
* get the next packet. Oh well, what fun.
*
* 18 Jan 2000 mdc@thinguin.org (Marty Connor)
* Drastically simplified error handling. Basically, if any error
* in transmission or reception occurs, the card is reset.
* Also, pointed all transmit descriptors to the same buffer to
* save buffer space. This should decrease driver size and avoid
* corruption because of exceeding 32K during runtime.
*
* 28 Jul 1999 (Matthias Meixner - meixner@rbg.informatik.tu-darmstadt.de)
* rtl8139_recv was quite broken: it used the RxOK interrupt flag instead
* of the RxBufferEmpty flag which often resulted in very bad
* transmission performace - below 1kBytes/s.
*
*/
#include <common.h>
#include <cpu_func.h>
#include <linux/types.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
@ -81,8 +79,8 @@
#define RTL_TIMEOUT 100000
/* PCI Tuning Parameters
Threshold is bytes transferred to chip before transmission starts. */
/* PCI Tuning Parameters */
/* Threshold is bytes transferred to chip before transmission starts. */
#define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */
#define RX_FIFO_THRESH 4 /* Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 bytes */
@ -99,173 +97,103 @@
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
/* Symbolic offsets to registers. */
enum RTL8139_registers {
MAC0=0, /* Ethernet hardware address. */
MAR0=8, /* Multicast filter. */
TxStatus0=0x10, /* Transmit status (four 32bit registers). */
TxAddr0=0x20, /* Tx descriptors (also four 32bit). */
RxBuf=0x30, RxEarlyCnt=0x34, RxEarlyStatus=0x36,
ChipCmd=0x37, RxBufPtr=0x38, RxBufAddr=0x3A,
IntrMask=0x3C, IntrStatus=0x3E,
TxConfig=0x40, RxConfig=0x44,
Timer=0x48, /* general-purpose counter. */
RxMissed=0x4C, /* 24 bits valid, write clears. */
Cfg9346=0x50, Config0=0x51, Config1=0x52,
TimerIntrReg=0x54, /* intr if gp counter reaches this value */
MediaStatus=0x58,
Config3=0x59,
MultiIntr=0x5C,
RevisionID=0x5E, /* revision of the RTL8139 chip */
TxSummary=0x60,
MII_BMCR=0x62, MII_BMSR=0x64, NWayAdvert=0x66, NWayLPAR=0x68,
NWayExpansion=0x6A,
DisconnectCnt=0x6C, FalseCarrierCnt=0x6E,
NWayTestReg=0x70,
RxCnt=0x72, /* packet received counter */
CSCR=0x74, /* chip status and configuration register */
PhyParm1=0x78,TwisterParm=0x7c,PhyParm2=0x80, /* undocumented */
/* from 0x84 onwards are a number of power management/wakeup frame
* definitions we will probably never need to know about. */
};
/* Ethernet hardware address. */
#define RTL_REG_MAC0 0x00
/* Multicast filter. */
#define RTL_REG_MAR0 0x08
/* Transmit status (four 32bit registers). */
#define RTL_REG_TXSTATUS0 0x10
/* Tx descriptors (also four 32bit). */
#define RTL_REG_TXADDR0 0x20
#define RTL_REG_RXBUF 0x30
#define RTL_REG_RXEARLYCNT 0x34
#define RTL_REG_RXEARLYSTATUS 0x36
#define RTL_REG_CHIPCMD 0x37
#define RTL_REG_CHIPCMD_CMDRESET BIT(4)
#define RTL_REG_CHIPCMD_CMDRXENB BIT(3)
#define RTL_REG_CHIPCMD_CMDTXENB BIT(2)
#define RTL_REG_CHIPCMD_RXBUFEMPTY BIT(0)
#define RTL_REG_RXBUFPTR 0x38
#define RTL_REG_RXBUFADDR 0x3A
#define RTL_REG_INTRMASK 0x3C
#define RTL_REG_INTRSTATUS 0x3E
#define RTL_REG_INTRSTATUS_PCIERR BIT(15)
#define RTL_REG_INTRSTATUS_PCSTIMEOUT BIT(14)
#define RTL_REG_INTRSTATUS_CABLELENCHANGE BIT(13)
#define RTL_REG_INTRSTATUS_RXFIFOOVER BIT(6)
#define RTL_REG_INTRSTATUS_RXUNDERRUN BIT(5)
#define RTL_REG_INTRSTATUS_RXOVERFLOW BIT(4)
#define RTL_REG_INTRSTATUS_TXERR BIT(3)
#define RTL_REG_INTRSTATUS_TXOK BIT(2)
#define RTL_REG_INTRSTATUS_RXERR BIT(1)
#define RTL_REG_INTRSTATUS_RXOK BIT(0)
#define RTL_REG_TXCONFIG 0x40
#define RTL_REG_RXCONFIG 0x44
#define RTL_REG_RXCONFIG_RXCFGWRAP BIT(7)
#define RTL_REG_RXCONFIG_ACCEPTERR BIT(5)
#define RTL_REG_RXCONFIG_ACCEPTRUNT BIT(4)
#define RTL_REG_RXCONFIG_ACCEPTBROADCAST BIT(3)
#define RTL_REG_RXCONFIG_ACCEPTMULTICAST BIT(2)
#define RTL_REG_RXCONFIG_ACCEPTMYPHYS BIT(1)
#define RTL_REG_RXCONFIG_ACCEPTALLPHYS BIT(0)
/* general-purpose counter. */
#define RTL_REG_TIMER 0x48
/* 24 bits valid, write clears. */
#define RTL_REG_RXMISSED 0x4C
#define RTL_REG_CFG9346 0x50
#define RTL_REG_CONFIG0 0x51
#define RTL_REG_CONFIG1 0x52
/* intr if gp counter reaches this value */
#define RTL_REG_TIMERINTRREG 0x54
#define RTL_REG_MEDIASTATUS 0x58
#define RTL_REG_MEDIASTATUS_MSRTXFLOWENABLE BIT(7)
#define RTL_REG_MEDIASTATUS_MSRRXFLOWENABLE BIT(6)
#define RTL_REG_MEDIASTATUS_MSRSPEED10 BIT(3)
#define RTL_REG_MEDIASTATUS_MSRLINKFAIL BIT(2)
#define RTL_REG_MEDIASTATUS_MSRRXPAUSEFLAG BIT(1)
#define RTL_REG_MEDIASTATUS_MSRTXPAUSEFLAG BIT(0)
#define RTL_REG_CONFIG3 0x59
#define RTL_REG_MULTIINTR 0x5C
/* revision of the RTL8139 chip */
#define RTL_REG_REVISIONID 0x5E
#define RTL_REG_TXSUMMARY 0x60
#define RTL_REG_MII_BMCR 0x62
#define RTL_REG_MII_BMSR 0x64
#define RTL_REG_NWAYADVERT 0x66
#define RTL_REG_NWAYLPAR 0x68
#define RTL_REG_NWAYEXPANSION 0x6A
#define RTL_REG_DISCONNECTCNT 0x6C
#define RTL_REG_FALSECARRIERCNT 0x6E
#define RTL_REG_NWAYTESTREG 0x70
/* packet received counter */
#define RTL_REG_RXCNT 0x72
/* chip status and configuration register */
#define RTL_REG_CSCR 0x74
#define RTL_REG_PHYPARM1 0x78
#define RTL_REG_TWISTERPARM 0x7c
/* undocumented */
#define RTL_REG_PHYPARM2 0x80
/*
* from 0x84 onwards are a number of power management/wakeup frame
* definitions we will probably never need to know about.
*/
enum ChipCmdBits {
CmdReset=0x10, CmdRxEnb=0x08, CmdTxEnb=0x04, RxBufEmpty=0x01, };
/* Interrupt register bits, using my own meaningful names. */
enum IntrStatusBits {
PCIErr=0x8000, PCSTimeout=0x4000, CableLenChange= 0x2000,
RxFIFOOver=0x40, RxUnderrun=0x20, RxOverflow=0x10,
TxErr=0x08, TxOK=0x04, RxErr=0x02, RxOK=0x01,
};
enum TxStatusBits {
TxHostOwns=0x2000, TxUnderrun=0x4000, TxStatOK=0x8000,
TxOutOfWindow=0x20000000, TxAborted=0x40000000,
TxCarrierLost=0x80000000,
};
enum RxStatusBits {
RxMulticast=0x8000, RxPhysical=0x4000, RxBroadcast=0x2000,
RxBadSymbol=0x0020, RxRunt=0x0010, RxTooLong=0x0008, RxCRCErr=0x0004,
RxBadAlign=0x0002, RxStatusOK=0x0001,
};
enum MediaStatusBits {
MSRTxFlowEnable=0x80, MSRRxFlowEnable=0x40, MSRSpeed10=0x08,
MSRLinkFail=0x04, MSRRxPauseFlag=0x02, MSRTxPauseFlag=0x01,
};
enum MIIBMCRBits {
BMCRReset=0x8000, BMCRSpeed100=0x2000, BMCRNWayEnable=0x1000,
BMCRRestartNWay=0x0200, BMCRDuplex=0x0100,
};
enum CSCRBits {
CSCR_LinkOKBit=0x0400, CSCR_LinkChangeBit=0x0800,
CSCR_LinkStatusBits=0x0f000, CSCR_LinkDownOffCmd=0x003c0,
CSCR_LinkDownCmd=0x0f3c0,
};
/* Bits in RxConfig. */
enum rx_mode_bits {
RxCfgWrap=0x80,
AcceptErr=0x20, AcceptRunt=0x10, AcceptBroadcast=0x08,
AcceptMulticast=0x04, AcceptMyPhys=0x02, AcceptAllPhys=0x01,
};
#define RTL_STS_RXMULTICAST BIT(15)
#define RTL_STS_RXPHYSICAL BIT(14)
#define RTL_STS_RXBROADCAST BIT(13)
#define RTL_STS_RXBADSYMBOL BIT(5)
#define RTL_STS_RXRUNT BIT(4)
#define RTL_STS_RXTOOLONG BIT(3)
#define RTL_STS_RXCRCERR BIT(2)
#define RTL_STS_RXBADALIGN BIT(1)
#define RTL_STS_RXSTATUSOK BIT(0)
static unsigned int cur_rx, cur_tx;
static int ioaddr;
static unsigned int cur_rx,cur_tx;
/* The RTL8139 can only transmit from a contiguous, aligned memory block. */
static unsigned char tx_buffer[TX_BUF_SIZE] __attribute__((aligned(4)));
static unsigned char rx_ring[RX_BUF_LEN+16] __attribute__((aligned(4)));
static int rtl8139_probe(struct eth_device *dev, bd_t *bis);
static int read_eeprom(int location, int addr_len);
static void rtl_reset(struct eth_device *dev);
static int rtl_transmit(struct eth_device *dev, void *packet, int length);
static int rtl_poll(struct eth_device *dev);
static void rtl_disable(struct eth_device *dev);
static int rtl_bcast_addr(struct eth_device *dev, const u8 *bcast_mac, int join)
{
return (0);
}
static struct pci_device_id supported[] = {
{PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139},
{PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_8139},
{}
};
int rtl8139_initialize(bd_t *bis)
{
pci_dev_t devno;
int card_number = 0;
struct eth_device *dev;
u32 iobase;
int idx=0;
while(1){
/* Find RTL8139 */
if ((devno = pci_find_devices(supported, idx++)) < 0)
break;
pci_read_config_dword(devno, PCI_BASE_ADDRESS_1, &iobase);
iobase &= ~0xf;
debug ("rtl8139: REALTEK RTL8139 @0x%x\n", iobase);
dev = (struct eth_device *)malloc(sizeof *dev);
if (!dev) {
printf("Can not allocate memory of rtl8139\n");
break;
}
memset(dev, 0, sizeof(*dev));
sprintf (dev->name, "RTL8139#%d", card_number);
dev->priv = (void *) devno;
dev->iobase = (int)bus_to_phys(iobase);
dev->init = rtl8139_probe;
dev->halt = rtl_disable;
dev->send = rtl_transmit;
dev->recv = rtl_poll;
dev->mcast = rtl_bcast_addr;
eth_register (dev);
card_number++;
pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
udelay (10 * 1000);
}
return card_number;
}
static int rtl8139_probe(struct eth_device *dev, bd_t *bis)
{
int i;
int addr_len;
unsigned short *ap = (unsigned short *)dev->enetaddr;
ioaddr = dev->iobase;
/* Bring the chip out of low-power mode. */
outb(0x00, ioaddr + Config1);
addr_len = read_eeprom(0,8) == 0x8129 ? 8 : 6;
for (i = 0; i < 3; i++)
*ap++ = le16_to_cpu (read_eeprom(i + 7, addr_len));
rtl_reset(dev);
if (inb(ioaddr + MediaStatus) & MSRLinkFail) {
printf("Cable not connected or other link failure\n");
return -1 ;
}
return 0;
}
static unsigned char tx_buffer[TX_BUF_SIZE] __aligned(4);
static unsigned char rx_ring[RX_BUF_LEN + 16] __aligned(4);
/* Serial EEPROM section. */
@ -278,51 +206,57 @@ static int rtl8139_probe(struct eth_device *dev, bd_t *bis)
#define EE_DATA_READ 0x01 /* EEPROM chip data out. */
#define EE_ENB (0x80 | EE_CS)
/*
Delay between EEPROM clock transitions.
No extra delay is needed with 33MHz PCI, but 66MHz may change this.
*/
#define eeprom_delay() inl(ee_addr)
/* The EEPROM commands include the alway-set leading bit. */
#define EE_WRITE_CMD (5)
#define EE_READ_CMD (6)
#define EE_ERASE_CMD (7)
#define EE_WRITE_CMD 5
#define EE_READ_CMD 6
#define EE_ERASE_CMD 7
static int read_eeprom(int location, int addr_len)
static void rtl8139_eeprom_delay(uintptr_t regbase)
{
int i;
/*
* Delay between EEPROM clock transitions.
* No extra delay is needed with 33MHz PCI, but 66MHz may change this.
*/
inl(regbase + RTL_REG_CFG9346);
}
static int rtl8139_read_eeprom(unsigned int location, unsigned int addr_len)
{
unsigned int read_cmd = location | (EE_READ_CMD << addr_len);
uintptr_t ee_addr = ioaddr + RTL_REG_CFG9346;
unsigned int retval = 0;
long ee_addr = ioaddr + Cfg9346;
int read_cmd = location | (EE_READ_CMD << addr_len);
u8 dataval;
int i;
outb(EE_ENB & ~EE_CS, ee_addr);
outb(EE_ENB, ee_addr);
eeprom_delay();
rtl8139_eeprom_delay(ioaddr);
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
dataval = (read_cmd & BIT(i)) ? EE_DATA_WRITE : 0;
outb(EE_ENB | dataval, ee_addr);
eeprom_delay();
rtl8139_eeprom_delay(ioaddr);
outb(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
rtl8139_eeprom_delay(ioaddr);
}
outb(EE_ENB, ee_addr);
eeprom_delay();
rtl8139_eeprom_delay(ioaddr);
for (i = 16; i > 0; i--) {
outb(EE_ENB | EE_SHIFT_CLK, ee_addr);
eeprom_delay();
retval = (retval << 1) | ((inb(ee_addr) & EE_DATA_READ) ? 1 : 0);
rtl8139_eeprom_delay(ioaddr);
retval <<= 1;
retval |= inb(ee_addr) & EE_DATA_READ;
outb(EE_ENB, ee_addr);
eeprom_delay();
rtl8139_eeprom_delay(ioaddr);
}
/* Terminate the EEPROM access. */
outb(~EE_CS, ee_addr);
eeprom_delay();
rtl8139_eeprom_delay(ioaddr);
return retval;
}
@ -331,149 +265,174 @@ static const unsigned int rtl8139_rx_config =
(RX_FIFO_THRESH << 13) |
(RX_DMA_BURST << 8);
static void set_rx_mode(struct eth_device *dev) {
unsigned int mc_filter[2];
int rx_mode;
static void rtl8139_set_rx_mode(struct eth_device *dev)
{
/* !IFF_PROMISC */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
unsigned int rx_mode = RTL_REG_RXCONFIG_ACCEPTBROADCAST |
RTL_REG_RXCONFIG_ACCEPTMULTICAST |
RTL_REG_RXCONFIG_ACCEPTMYPHYS;
outl(rtl8139_rx_config | rx_mode, ioaddr + RxConfig);
outl(rtl8139_rx_config | rx_mode, ioaddr + RTL_REG_RXCONFIG);
outl(mc_filter[0], ioaddr + MAR0 + 0);
outl(mc_filter[1], ioaddr + MAR0 + 4);
outl(0xffffffff, ioaddr + RTL_REG_MAR0 + 0);
outl(0xffffffff, ioaddr + RTL_REG_MAR0 + 4);
}
static void rtl_reset(struct eth_device *dev)
static void rtl8139_hw_reset(struct eth_device *dev)
{
u8 reg;
int i;
outb(CmdReset, ioaddr + ChipCmd);
outb(RTL_REG_CHIPCMD_CMDRESET, ioaddr + RTL_REG_CHIPCMD);
/* Give the chip 10ms to finish the reset. */
for (i = 0; i < 100; i++) {
reg = inb(ioaddr + RTL_REG_CHIPCMD);
if (!(reg & RTL_REG_CHIPCMD_CMDRESET))
break;
udelay(100);
}
}
static void rtl8139_reset(struct eth_device *dev)
{
int i;
cur_rx = 0;
cur_tx = 0;
/* Give the chip 10ms to finish the reset. */
for (i=0; i<100; ++i){
if ((inb(ioaddr + ChipCmd) & CmdReset) == 0) break;
udelay (100); /* wait 100us */
}
rtl8139_hw_reset(dev);
for (i = 0; i < ETH_ALEN; i++)
outb(dev->enetaddr[i], ioaddr + MAC0 + i);
outb(dev->enetaddr[i], ioaddr + RTL_REG_MAC0 + i);
/* Must enable Tx/Rx before setting transfer thresholds! */
outb(CmdRxEnb | CmdTxEnb, ioaddr + ChipCmd);
outl((RX_FIFO_THRESH<<13) | (RX_BUF_LEN_IDX<<11) | (RX_DMA_BURST<<8),
ioaddr + RxConfig); /* accept no frames yet! */
outl((TX_DMA_BURST<<8)|0x03000000, ioaddr + TxConfig);
outb(RTL_REG_CHIPCMD_CMDRXENB | RTL_REG_CHIPCMD_CMDTXENB,
ioaddr + RTL_REG_CHIPCMD);
/* The Linux driver changes Config1 here to use a different LED pattern
* for half duplex or full/autodetect duplex (for full/autodetect, the
* outputs are TX/RX, Link10/100, FULL, while for half duplex it uses
* TX/RX, Link100, Link10). This is messy, because it doesn't match
* the inscription on the mounting bracket. It should not be changed
* from the configuration EEPROM default, because the card manufacturer
* should have set that to match the card. */
/* accept no frames yet! */
outl(rtl8139_rx_config, ioaddr + RTL_REG_RXCONFIG);
outl((TX_DMA_BURST << 8) | 0x03000000, ioaddr + RTL_REG_TXCONFIG);
/*
* The Linux driver changes RTL_REG_CONFIG1 here to use a different
* LED pattern for half duplex or full/autodetect duplex (for
* full/autodetect, the outputs are TX/RX, Link10/100, FULL, while
* for half duplex it uses TX/RX, Link100, Link10). This is messy,
* because it doesn't match the inscription on the mounting bracket.
* It should not be changed from the configuration EEPROM default,
* because the card manufacturer should have set that to match the
* card.
*/
debug_cond(DEBUG_RX, "rx ring address is %p\n", rx_ring);
debug_cond(DEBUG_RX,
"rx ring address is %lX\n",(unsigned long)rx_ring);
flush_cache((unsigned long)rx_ring, RX_BUF_LEN);
outl(phys_to_bus((int)rx_ring), ioaddr + RxBuf);
outl(phys_to_bus((int)rx_ring), ioaddr + RTL_REG_RXBUF);
/* If we add multicast support, the MAR0 register would have to be
* initialized to 0xffffffffffffffff (two 32 bit accesses). Etherboot
* only needs broadcast (for ARP/RARP/BOOTP/DHCP) and unicast. */
/*
* If we add multicast support, the RTL_REG_MAR0 register would have
* to be initialized to 0xffffffffffffffff (two 32 bit accesses).
* Etherboot only needs broadcast (for ARP/RARP/BOOTP/DHCP) and
* unicast.
*/
outb(RTL_REG_CHIPCMD_CMDRXENB | RTL_REG_CHIPCMD_CMDTXENB,
ioaddr + RTL_REG_CHIPCMD);
outb(CmdRxEnb | CmdTxEnb, ioaddr + ChipCmd);
outl(rtl8139_rx_config, ioaddr + RxConfig);
outl(rtl8139_rx_config, ioaddr + RTL_REG_RXCONFIG);
/* Start the chip's Tx and Rx process. */
outl(0, ioaddr + RxMissed);
outl(0, ioaddr + RTL_REG_RXMISSED);
/* set_rx_mode */
set_rx_mode(dev);
rtl8139_set_rx_mode(dev);
/* Disable all known interrupts by setting the interrupt mask. */
outw(0, ioaddr + IntrMask);
outw(0, ioaddr + RTL_REG_INTRMASK);
}
static int rtl_transmit(struct eth_device *dev, void *packet, int length)
static int rtl8139_send(struct eth_device *dev, void *packet, int length)
{
unsigned int status;
unsigned long txstatus;
unsigned int len = length;
unsigned long txstatus;
unsigned int status;
int i = 0;
ioaddr = dev->iobase;
memcpy((char *)tx_buffer, (char *)packet, (int)length);
memcpy(tx_buffer, packet, length);
debug_cond(DEBUG_TX, "sending %d bytes\n", len);
/* Note: RTL8139 doesn't auto-pad, send minimum payload (another 4
* bytes are sent automatically for the FCS, totalling to 64 bytes). */
while (len < ETH_ZLEN) {
/*
* Note: RTL8139 doesn't auto-pad, send minimum payload (another 4
* bytes are sent automatically for the FCS, totalling to 64 bytes).
*/
while (len < ETH_ZLEN)
tx_buffer[len++] = '\0';
}
flush_cache((unsigned long)tx_buffer, length);
outl(phys_to_bus((int)tx_buffer), ioaddr + TxAddr0 + cur_tx*4);
outl(((TX_FIFO_THRESH<<11) & 0x003f0000) | len,
ioaddr + TxStatus0 + cur_tx*4);
outl(phys_to_bus((unsigned long)tx_buffer),
ioaddr + RTL_REG_TXADDR0 + cur_tx * 4);
outl(((TX_FIFO_THRESH << 11) & 0x003f0000) | len,
ioaddr + RTL_REG_TXSTATUS0 + cur_tx * 4);
do {
status = inw(ioaddr + IntrStatus);
/* Only acknlowledge interrupt sources we can properly handle
* here - the RxOverflow/RxFIFOOver MUST be handled in the
* rtl_poll() function. */
outw(status & (TxOK | TxErr | PCIErr), ioaddr + IntrStatus);
if ((status & (TxOK | TxErr | PCIErr)) != 0) break;
status = inw(ioaddr + RTL_REG_INTRSTATUS);
/*
* Only acknlowledge interrupt sources we can properly
* handle here - the RTL_REG_INTRSTATUS_RXOVERFLOW/
* RTL_REG_INTRSTATUS_RXFIFOOVER MUST be handled in the
* rtl8139_recv() function.
*/
status &= RTL_REG_INTRSTATUS_TXOK | RTL_REG_INTRSTATUS_TXERR |
RTL_REG_INTRSTATUS_PCIERR;
outw(status, ioaddr + RTL_REG_INTRSTATUS);
if (status)
break;
udelay(10);
} while (i++ < RTL_TIMEOUT);
txstatus = inl(ioaddr + TxStatus0 + cur_tx*4);
if (status & TxOK) {
cur_tx = (cur_tx + 1) % NUM_TX_DESC;
txstatus = inl(ioaddr + RTL_REG_TXSTATUS0 + cur_tx * 4);
if (!(status & RTL_REG_INTRSTATUS_TXOK)) {
debug_cond(DEBUG_TX,
"tx done, status %hX txstatus %lX\n",
status, txstatus);
"tx timeout/error (%d usecs), status %hX txstatus %lX\n",
10 * i, status, txstatus);
return length;
} else {
debug_cond(DEBUG_TX,
"tx timeout/error (%d usecs), status %hX txstatus %lX\n",
10*i, status, txstatus);
rtl_reset(dev);
rtl8139_reset(dev);
return 0;
}
cur_tx = (cur_tx + 1) % NUM_TX_DESC;
debug_cond(DEBUG_TX, "tx done, status %hX txstatus %lX\n",
status, txstatus);
return length;
}
static int rtl_poll(struct eth_device *dev)
static int rtl8139_recv(struct eth_device *dev)
{
unsigned int status;
unsigned int ring_offs;
const unsigned int rxstat = RTL_REG_INTRSTATUS_RXFIFOOVER |
RTL_REG_INTRSTATUS_RXOVERFLOW |
RTL_REG_INTRSTATUS_RXOK;
unsigned int rx_size, rx_status;
int length=0;
unsigned int ring_offs;
unsigned int status;
int length = 0;
ioaddr = dev->iobase;
if (inb(ioaddr + ChipCmd) & RxBufEmpty) {
if (inb(ioaddr + RTL_REG_CHIPCMD) & RTL_REG_CHIPCMD_RXBUFEMPTY)
return 0;
}
status = inw(ioaddr + IntrStatus);
status = inw(ioaddr + RTL_REG_INTRSTATUS);
/* See below for the rest of the interrupt acknowledges. */
outw(status & ~(RxFIFOOver | RxOverflow | RxOK), ioaddr + IntrStatus);
outw(status & ~rxstat, ioaddr + RTL_REG_INTRSTATUS);
debug_cond(DEBUG_RX, "rtl_poll: int %hX ", status);
debug_cond(DEBUG_RX, "%s: int %hX ", __func__, status);
ring_offs = cur_rx % RX_BUF_LEN;
/* ring_offs is guaranteed being 4-byte aligned */
@ -481,52 +440,137 @@ static int rtl_poll(struct eth_device *dev)
rx_size = rx_status >> 16;
rx_status &= 0xffff;
if ((rx_status & (RxBadSymbol|RxRunt|RxTooLong|RxCRCErr|RxBadAlign)) ||
(rx_size < ETH_ZLEN) || (rx_size > ETH_FRAME_LEN + 4)) {
if ((rx_status & (RTL_STS_RXBADSYMBOL | RTL_STS_RXRUNT |
RTL_STS_RXTOOLONG | RTL_STS_RXCRCERR |
RTL_STS_RXBADALIGN)) ||
(rx_size < ETH_ZLEN) ||
(rx_size > ETH_FRAME_LEN + 4)) {
printf("rx error %hX\n", rx_status);
rtl_reset(dev); /* this clears all interrupts still pending */
/* this clears all interrupts still pending */
rtl8139_reset(dev);
return 0;
}
/* Received a good packet */
length = rx_size - 4; /* no one cares about the FCS */
if (ring_offs+4+rx_size-4 > RX_BUF_LEN) {
int semi_count = RX_BUF_LEN - ring_offs - 4;
if (ring_offs + 4 + rx_size - 4 > RX_BUF_LEN) {
unsigned char rxdata[RX_BUF_LEN];
int semi_count = RX_BUF_LEN - ring_offs - 4;
memcpy(rxdata, rx_ring + ring_offs + 4, semi_count);
memcpy(&(rxdata[semi_count]), rx_ring, rx_size-4-semi_count);
memcpy(&rxdata[semi_count], rx_ring,
rx_size - 4 - semi_count);
net_process_received_packet(rxdata, length);
debug_cond(DEBUG_RX, "rx packet %d+%d bytes",
semi_count, rx_size-4-semi_count);
semi_count, rx_size - 4 - semi_count);
} else {
net_process_received_packet(rx_ring + ring_offs + 4, length);
debug_cond(DEBUG_RX, "rx packet %d bytes", rx_size-4);
debug_cond(DEBUG_RX, "rx packet %d bytes", rx_size - 4);
}
flush_cache((unsigned long)rx_ring, RX_BUF_LEN);
cur_rx = (cur_rx + rx_size + 4 + 3) & ~3;
outw(cur_rx - 16, ioaddr + RxBufPtr);
/* See RTL8139 Programming Guide V0.1 for the official handling of
* Rx overflow situations. The document itself contains basically no
* usable information, except for a few exception handling rules. */
outw(status & (RxFIFOOver | RxOverflow | RxOK), ioaddr + IntrStatus);
cur_rx = ROUND(cur_rx + rx_size + 4, 4);
outw(cur_rx - 16, ioaddr + RTL_REG_RXBUFPTR);
/*
* See RTL8139 Programming Guide V0.1 for the official handling of
* Rx overflow situations. The document itself contains basically
* no usable information, except for a few exception handling rules.
*/
outw(status & rxstat, ioaddr + RTL_REG_INTRSTATUS);
return length;
}
static void rtl_disable(struct eth_device *dev)
static int rtl8139_init(struct eth_device *dev, bd_t *bis)
{
int i;
unsigned short *ap = (unsigned short *)dev->enetaddr;
int addr_len, i;
u8 reg;
ioaddr = dev->iobase;
/* reset the chip */
outb(CmdReset, ioaddr + ChipCmd);
/* Bring the chip out of low-power mode. */
outb(0x00, ioaddr + RTL_REG_CONFIG1);
/* Give the chip 10ms to finish the reset. */
for (i=0; i<100; ++i){
if ((inb(ioaddr + ChipCmd) & CmdReset) == 0) break;
udelay (100); /* wait 100us */
addr_len = rtl8139_read_eeprom(0, 8) == 0x8129 ? 8 : 6;
for (i = 0; i < 3; i++)
*ap++ = le16_to_cpu(rtl8139_read_eeprom(i + 7, addr_len));
rtl8139_reset(dev);
reg = inb(ioaddr + RTL_REG_MEDIASTATUS);
if (reg & RTL_REG_MEDIASTATUS_MSRLINKFAIL) {
printf("Cable not connected or other link failure\n");
return -1;
}
return 0;
}
static void rtl8139_stop(struct eth_device *dev)
{
ioaddr = dev->iobase;
rtl8139_hw_reset(dev);
}
static int rtl8139_bcast_addr(struct eth_device *dev, const u8 *bcast_mac,
int join)
{
return 0;
}
static struct pci_device_id supported[] = {
{ PCI_VENDOR_ID_REALTEK, PCI_DEVICE_ID_REALTEK_8139 },
{ PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_8139 },
{ }
};
int rtl8139_initialize(bd_t *bis)
{
struct eth_device *dev;
int card_number = 0;
pci_dev_t devno;
int idx = 0;
u32 iobase;
while (1) {
/* Find RTL8139 */
devno = pci_find_devices(supported, idx++);
if (devno < 0)
break;
pci_read_config_dword(devno, PCI_BASE_ADDRESS_1, &iobase);
iobase &= ~0xf;
debug("rtl8139: REALTEK RTL8139 @0x%x\n", iobase);
dev = (struct eth_device *)malloc(sizeof(*dev));
if (!dev) {
printf("Can not allocate memory of rtl8139\n");
break;
}
memset(dev, 0, sizeof(*dev));
sprintf(dev->name, "RTL8139#%d", card_number);
dev->priv = (void *)devno;
dev->iobase = (int)bus_to_phys(iobase);
dev->init = rtl8139_init;
dev->halt = rtl8139_stop;
dev->send = rtl8139_send;
dev->recv = rtl8139_recv;
dev->mcast = rtl8139_bcast_addr;
eth_register(dev);
card_number++;
pci_write_config_byte(devno, PCI_LATENCY_TIMER, 0x20);
udelay(10 * 1000);
}
return card_number;
}

View File

@ -10,84 +10,239 @@
#include <malloc.h>
#include <net.h>
#include <miiphy.h>
#include <linux/io.h>
#include <linux/types.h>
#include "smc911x.h"
u32 pkt_data_pull(struct eth_device *dev, u32 addr) \
__attribute__ ((weak, alias ("smc911x_reg_read")));
void pkt_data_push(struct eth_device *dev, u32 addr, u32 val) \
__attribute__ ((weak, alias ("smc911x_reg_write")));
struct chip_id {
u16 id;
char *name;
};
static void smc911x_handle_mac_address(struct eth_device *dev)
struct smc911x_priv {
#ifndef CONFIG_DM_ETH
struct eth_device dev;
#endif
phys_addr_t iobase;
const struct chip_id *chipid;
unsigned char enetaddr[6];
};
static const struct chip_id chip_ids[] = {
{ CHIP_89218, "LAN89218" },
{ CHIP_9115, "LAN9115" },
{ CHIP_9116, "LAN9116" },
{ CHIP_9117, "LAN9117" },
{ CHIP_9118, "LAN9118" },
{ CHIP_9211, "LAN9211" },
{ CHIP_9215, "LAN9215" },
{ CHIP_9216, "LAN9216" },
{ CHIP_9217, "LAN9217" },
{ CHIP_9218, "LAN9218" },
{ CHIP_9220, "LAN9220" },
{ CHIP_9221, "LAN9221" },
{ 0, NULL },
};
#define DRIVERNAME "smc911x"
#if defined (CONFIG_SMC911X_32_BIT) && \
defined (CONFIG_SMC911X_16_BIT)
#error "SMC911X: Only one of CONFIG_SMC911X_32_BIT and \
CONFIG_SMC911X_16_BIT shall be set"
#endif
#if defined (CONFIG_SMC911X_32_BIT)
static u32 smc911x_reg_read(struct smc911x_priv *priv, u32 offset)
{
return readl(priv->iobase + offset);
}
static void smc911x_reg_write(struct smc911x_priv *priv, u32 offset, u32 val)
{
writel(val, priv->iobase + offset);
}
#elif defined (CONFIG_SMC911X_16_BIT)
static u32 smc911x_reg_read(struct smc911x_priv *priv, u32 offset)
{
return (readw(priv->iobase + offset) & 0xffff) |
(readw(priv->iobase + offset + 2) << 16);
}
static void smc911x_reg_write(struct smc911x_priv *priv, u32 offset, u32 val)
{
writew(val & 0xffff, priv->iobase + offset);
writew(val >> 16, priv->iobase + offset + 2);
}
#else
#error "SMC911X: undefined bus width"
#endif /* CONFIG_SMC911X_16_BIT */
static u32 smc911x_get_mac_csr(struct smc911x_priv *priv, u8 reg)
{
while (smc911x_reg_read(priv, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
smc911x_reg_write(priv, MAC_CSR_CMD,
MAC_CSR_CMD_CSR_BUSY | MAC_CSR_CMD_R_NOT_W | reg);
while (smc911x_reg_read(priv, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
return smc911x_reg_read(priv, MAC_CSR_DATA);
}
static void smc911x_set_mac_csr(struct smc911x_priv *priv, u8 reg, u32 data)
{
while (smc911x_reg_read(priv, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
smc911x_reg_write(priv, MAC_CSR_DATA, data);
smc911x_reg_write(priv, MAC_CSR_CMD, MAC_CSR_CMD_CSR_BUSY | reg);
while (smc911x_reg_read(priv, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
}
static int smc911x_detect_chip(struct smc911x_priv *priv)
{
unsigned long val, i;
val = smc911x_reg_read(priv, BYTE_TEST);
if (val == 0xffffffff) {
/* Special case -- no chip present */
return -1;
} else if (val != 0x87654321) {
printf(DRIVERNAME ": Invalid chip endian 0x%08lx\n", val);
return -1;
}
val = smc911x_reg_read(priv, ID_REV) >> 16;
for (i = 0; chip_ids[i].id != 0; i++) {
if (chip_ids[i].id == val) break;
}
if (!chip_ids[i].id) {
printf(DRIVERNAME ": Unknown chip ID %04lx\n", val);
return -1;
}
priv->chipid = &chip_ids[i];
return 0;
}
static void smc911x_reset(struct smc911x_priv *priv)
{
int timeout;
/*
* Take out of PM setting first
* Device is already wake up if PMT_CTRL_READY bit is set
*/
if ((smc911x_reg_read(priv, PMT_CTRL) & PMT_CTRL_READY) == 0) {
/* Write to the bytetest will take out of powerdown */
smc911x_reg_write(priv, BYTE_TEST, 0x0);
timeout = 10;
while (timeout-- &&
!(smc911x_reg_read(priv, PMT_CTRL) & PMT_CTRL_READY))
udelay(10);
if (timeout < 0) {
printf(DRIVERNAME
": timeout waiting for PM restore\n");
return;
}
}
/* Disable interrupts */
smc911x_reg_write(priv, INT_EN, 0);
smc911x_reg_write(priv, HW_CFG, HW_CFG_SRST);
timeout = 1000;
while (timeout-- && smc911x_reg_read(priv, E2P_CMD) & E2P_CMD_EPC_BUSY)
udelay(10);
if (timeout < 0) {
printf(DRIVERNAME ": reset timeout\n");
return;
}
/* Reset the FIFO level and flow control settings */
smc911x_set_mac_csr(priv, FLOW, FLOW_FCPT | FLOW_FCEN);
smc911x_reg_write(priv, AFC_CFG, 0x0050287F);
/* Set to LED outputs */
smc911x_reg_write(priv, GPIO_CFG, 0x70070000);
}
static void smc911x_handle_mac_address(struct smc911x_priv *priv)
{
unsigned long addrh, addrl;
uchar *m = dev->enetaddr;
unsigned char *m = priv->enetaddr;
addrl = m[0] | (m[1] << 8) | (m[2] << 16) | (m[3] << 24);
addrh = m[4] | (m[5] << 8);
smc911x_set_mac_csr(dev, ADDRL, addrl);
smc911x_set_mac_csr(dev, ADDRH, addrh);
smc911x_set_mac_csr(priv, ADDRL, addrl);
smc911x_set_mac_csr(priv, ADDRH, addrh);
printf(DRIVERNAME ": MAC %pM\n", m);
}
static int smc911x_eth_phy_read(struct eth_device *dev,
static int smc911x_eth_phy_read(struct smc911x_priv *priv,
u8 phy, u8 reg, u16 *val)
{
while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY)
while (smc911x_get_mac_csr(priv, MII_ACC) & MII_ACC_MII_BUSY)
;
smc911x_set_mac_csr(dev, MII_ACC, phy << 11 | reg << 6 |
smc911x_set_mac_csr(priv, MII_ACC, phy << 11 | reg << 6 |
MII_ACC_MII_BUSY);
while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY)
while (smc911x_get_mac_csr(priv, MII_ACC) & MII_ACC_MII_BUSY)
;
*val = smc911x_get_mac_csr(dev, MII_DATA);
*val = smc911x_get_mac_csr(priv, MII_DATA);
return 0;
}
static int smc911x_eth_phy_write(struct eth_device *dev,
static int smc911x_eth_phy_write(struct smc911x_priv *priv,
u8 phy, u8 reg, u16 val)
{
while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY)
while (smc911x_get_mac_csr(priv, MII_ACC) & MII_ACC_MII_BUSY)
;
smc911x_set_mac_csr(dev, MII_DATA, val);
smc911x_set_mac_csr(dev, MII_ACC,
smc911x_set_mac_csr(priv, MII_DATA, val);
smc911x_set_mac_csr(priv, MII_ACC,
phy << 11 | reg << 6 | MII_ACC_MII_BUSY | MII_ACC_MII_WRITE);
while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY)
while (smc911x_get_mac_csr(priv, MII_ACC) & MII_ACC_MII_BUSY)
;
return 0;
}
static int smc911x_phy_reset(struct eth_device *dev)
static int smc911x_phy_reset(struct smc911x_priv *priv)
{
u32 reg;
reg = smc911x_reg_read(dev, PMT_CTRL);
reg = smc911x_reg_read(priv, PMT_CTRL);
reg &= ~0xfffff030;
reg |= PMT_CTRL_PHY_RST;
smc911x_reg_write(dev, PMT_CTRL, reg);
smc911x_reg_write(priv, PMT_CTRL, reg);
mdelay(100);
return 0;
}
static void smc911x_phy_configure(struct eth_device *dev)
static void smc911x_phy_configure(struct smc911x_priv *priv)
{
int timeout;
u16 status;
smc911x_phy_reset(dev);
smc911x_phy_reset(priv);
smc911x_eth_phy_write(dev, 1, MII_BMCR, BMCR_RESET);
smc911x_eth_phy_write(priv, 1, MII_BMCR, BMCR_RESET);
mdelay(1);
smc911x_eth_phy_write(dev, 1, MII_ADVERTISE, 0x01e1);
smc911x_eth_phy_write(dev, 1, MII_BMCR, BMCR_ANENABLE |
smc911x_eth_phy_write(priv, 1, MII_ADVERTISE, 0x01e1);
smc911x_eth_phy_write(priv, 1, MII_BMCR, BMCR_ANENABLE |
BMCR_ANRESTART);
timeout = 5000;
@ -96,7 +251,7 @@ static void smc911x_phy_configure(struct eth_device *dev)
if ((timeout--) == 0)
goto err_out;
if (smc911x_eth_phy_read(dev, 1, MII_BMSR, &status) != 0)
if (smc911x_eth_phy_read(priv, 1, MII_BMSR, &status) != 0)
goto err_out;
} while (!(status & BMSR_LSTATUS));
@ -108,65 +263,65 @@ err_out:
printf(DRIVERNAME ": autonegotiation timed out\n");
}
static void smc911x_enable(struct eth_device *dev)
static void smc911x_enable(struct smc911x_priv *priv)
{
/* Enable TX */
smc911x_reg_write(dev, HW_CFG, 8 << 16 | HW_CFG_SF);
smc911x_reg_write(priv, HW_CFG, 8 << 16 | HW_CFG_SF);
smc911x_reg_write(dev, GPT_CFG, GPT_CFG_TIMER_EN | 10000);
smc911x_reg_write(priv, GPT_CFG, GPT_CFG_TIMER_EN | 10000);
smc911x_reg_write(dev, TX_CFG, TX_CFG_TX_ON);
smc911x_reg_write(priv, TX_CFG, TX_CFG_TX_ON);
/* no padding to start of packets */
smc911x_reg_write(dev, RX_CFG, 0);
smc911x_reg_write(priv, RX_CFG, 0);
smc911x_set_mac_csr(dev, MAC_CR, MAC_CR_TXEN | MAC_CR_RXEN |
smc911x_set_mac_csr(priv, MAC_CR, MAC_CR_TXEN | MAC_CR_RXEN |
MAC_CR_HBDIS);
}
static int smc911x_init(struct eth_device *dev, bd_t * bd)
static int smc911x_init_common(struct smc911x_priv *priv)
{
struct chip_id *id = dev->priv;
const struct chip_id *id = priv->chipid;
printf(DRIVERNAME ": detected %s controller\n", id->name);
smc911x_reset(dev);
smc911x_reset(priv);
/* Configure the PHY, initialize the link state */
smc911x_phy_configure(dev);
smc911x_phy_configure(priv);
smc911x_handle_mac_address(dev);
smc911x_handle_mac_address(priv);
/* Turn on Tx + Rx */
smc911x_enable(dev);
smc911x_enable(priv);
return 0;
}
static int smc911x_send(struct eth_device *dev, void *packet, int length)
static int smc911x_send_common(struct smc911x_priv *priv,
void *packet, int length)
{
u32 *data = (u32*)packet;
u32 tmplen;
u32 status;
smc911x_reg_write(dev, TX_DATA_FIFO, TX_CMD_A_INT_FIRST_SEG |
smc911x_reg_write(priv, TX_DATA_FIFO, TX_CMD_A_INT_FIRST_SEG |
TX_CMD_A_INT_LAST_SEG | length);
smc911x_reg_write(dev, TX_DATA_FIFO, length);
smc911x_reg_write(priv, TX_DATA_FIFO, length);
tmplen = (length + 3) / 4;
while (tmplen--)
pkt_data_push(dev, TX_DATA_FIFO, *data++);
smc911x_reg_write(priv, TX_DATA_FIFO, *data++);
/* wait for transmission */
while (!((smc911x_reg_read(dev, TX_FIFO_INF) &
while (!((smc911x_reg_read(priv, TX_FIFO_INF) &
TX_FIFO_INF_TSUSED) >> 16));
/* get status. Ignore 'no carrier' error, it has no meaning for
* full duplex operation
*/
status = smc911x_reg_read(dev, TX_STATUS_FIFO) &
status = smc911x_reg_read(priv, TX_STATUS_FIFO) &
(TX_STS_LOC | TX_STS_LATE_COLL | TX_STS_MANY_COLL |
TX_STS_MANY_DEFER | TX_STS_UNDERRUN);
@ -183,117 +338,296 @@ static int smc911x_send(struct eth_device *dev, void *packet, int length)
return -1;
}
static void smc911x_halt(struct eth_device *dev)
static void smc911x_halt_common(struct smc911x_priv *priv)
{
smc911x_reset(dev);
smc911x_handle_mac_address(dev);
smc911x_reset(priv);
smc911x_handle_mac_address(priv);
}
static int smc911x_rx(struct eth_device *dev)
static int smc911x_recv_common(struct smc911x_priv *priv, u32 *data)
{
u32 *data = (u32 *)net_rx_packets[0];
u32 pktlen, tmplen;
u32 status;
if ((smc911x_reg_read(dev, RX_FIFO_INF) & RX_FIFO_INF_RXSUSED) >> 16) {
status = smc911x_reg_read(dev, RX_STATUS_FIFO);
pktlen = (status & RX_STS_PKT_LEN) >> 16;
status = smc911x_reg_read(priv, RX_FIFO_INF);
if (!(status & RX_FIFO_INF_RXSUSED))
return 0;
smc911x_reg_write(dev, RX_CFG, 0);
status = smc911x_reg_read(priv, RX_STATUS_FIFO);
pktlen = (status & RX_STS_PKT_LEN) >> 16;
tmplen = (pktlen + 3) / 4;
while (tmplen--)
*data++ = pkt_data_pull(dev, RX_DATA_FIFO);
smc911x_reg_write(priv, RX_CFG, 0);
if (status & RX_STS_ES)
printf(DRIVERNAME
": dropped bad packet. Status: 0x%08x\n",
status);
else
net_process_received_packet(net_rx_packets[0], pktlen);
tmplen = (pktlen + 3) / 4;
while (tmplen--)
*data++ = smc911x_reg_read(priv, RX_DATA_FIFO);
if (status & RX_STS_ES) {
printf(DRIVERNAME
": dropped bad packet. Status: 0x%08x\n",
status);
return 0;
}
return 0;
return pktlen;
}
#ifndef CONFIG_DM_ETH
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
/* wrapper for smc911x_eth_phy_read */
static int smc911x_miiphy_read(struct mii_dev *bus, int phy, int devad,
int reg)
{
u16 val = 0;
struct eth_device *dev = eth_get_dev_by_name(bus->name);
if (dev) {
int retval = smc911x_eth_phy_read(dev, phy, reg, &val);
if (retval < 0)
return retval;
return val;
}
return -ENODEV;
struct smc911x_priv *priv = container_of(dev, struct smc911x_priv, dev);
u16 val = 0;
int ret;
if (!dev || !priv)
return -ENODEV;
ret = smc911x_eth_phy_read(priv, phy, reg, &val);
if (ret < 0)
return ret;
return val;
}
/* wrapper for smc911x_eth_phy_write */
static int smc911x_miiphy_write(struct mii_dev *bus, int phy, int devad,
int reg, u16 val)
{
struct eth_device *dev = eth_get_dev_by_name(bus->name);
if (dev)
return smc911x_eth_phy_write(dev, phy, reg, val);
return -ENODEV;
struct smc911x_priv *priv = container_of(dev, struct smc911x_priv, dev);
if (!dev || !priv)
return -ENODEV;
return smc911x_eth_phy_write(priv, phy, reg, val);
}
static int smc911x_initialize_mii(struct smc911x_priv *priv)
{
struct mii_dev *mdiodev = mdio_alloc();
int ret;
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, priv->dev.name, MDIO_NAME_LEN);
mdiodev->read = smc911x_miiphy_read;
mdiodev->write = smc911x_miiphy_write;
ret = mdio_register(mdiodev);
if (ret < 0) {
mdio_free(mdiodev);
return ret;
}
return 0;
}
#else
static int smc911x_initialize_mii(struct smc911x_priv *priv)
{
return 0;
}
#endif
static int smc911x_init(struct eth_device *dev, bd_t *bd)
{
struct smc911x_priv *priv = container_of(dev, struct smc911x_priv, dev);
return smc911x_init_common(priv);
}
static void smc911x_halt(struct eth_device *dev)
{
struct smc911x_priv *priv = container_of(dev, struct smc911x_priv, dev);
smc911x_halt_common(priv);
}
static int smc911x_send(struct eth_device *dev, void *packet, int length)
{
struct smc911x_priv *priv = container_of(dev, struct smc911x_priv, dev);
return smc911x_send_common(priv, packet, length);
}
static int smc911x_recv(struct eth_device *dev)
{
struct smc911x_priv *priv = container_of(dev, struct smc911x_priv, dev);
u32 *data = (u32 *)net_rx_packets[0];
int ret;
ret = smc911x_recv_common(priv, data);
if (ret)
net_process_received_packet(net_rx_packets[0], ret);
return ret;
}
int smc911x_initialize(u8 dev_num, int base_addr)
{
unsigned long addrl, addrh;
struct eth_device *dev;
struct smc911x_priv *priv;
int ret;
dev = malloc(sizeof(*dev));
if (!dev) {
return -1;
}
memset(dev, 0, sizeof(*dev));
priv = calloc(1, sizeof(*priv));
if (!priv)
return -ENOMEM;
dev->iobase = base_addr;
priv->iobase = base_addr;
priv->dev.iobase = base_addr;
/* Try to detect chip. Will fail if not present. */
if (smc911x_detect_chip(dev)) {
free(dev);
return 0;
ret = smc911x_detect_chip(priv);
if (ret) {
ret = 0; /* Card not detected is not an error */
goto err_detect;
}
addrh = smc911x_get_mac_csr(dev, ADDRH);
addrl = smc911x_get_mac_csr(dev, ADDRL);
addrh = smc911x_get_mac_csr(priv, ADDRH);
addrl = smc911x_get_mac_csr(priv, ADDRL);
if (!(addrl == 0xffffffff && addrh == 0x0000ffff)) {
/* address is obtained from optional eeprom */
dev->enetaddr[0] = addrl;
dev->enetaddr[1] = addrl >> 8;
dev->enetaddr[2] = addrl >> 16;
dev->enetaddr[3] = addrl >> 24;
dev->enetaddr[4] = addrh;
dev->enetaddr[5] = addrh >> 8;
priv->enetaddr[0] = addrl;
priv->enetaddr[1] = addrl >> 8;
priv->enetaddr[2] = addrl >> 16;
priv->enetaddr[3] = addrl >> 24;
priv->enetaddr[4] = addrh;
priv->enetaddr[5] = addrh >> 8;
memcpy(priv->dev.enetaddr, priv->enetaddr, 6);
}
dev->init = smc911x_init;
dev->halt = smc911x_halt;
dev->send = smc911x_send;
dev->recv = smc911x_rx;
sprintf(dev->name, "%s-%hu", DRIVERNAME, dev_num);
priv->dev.init = smc911x_init;
priv->dev.halt = smc911x_halt;
priv->dev.send = smc911x_send;
priv->dev.recv = smc911x_recv;
sprintf(priv->dev.name, "%s-%hu", DRIVERNAME, dev_num);
eth_register(dev);
eth_register(&priv->dev);
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
int retval;
struct mii_dev *mdiodev = mdio_alloc();
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
mdiodev->read = smc911x_miiphy_read;
mdiodev->write = smc911x_miiphy_write;
retval = mdio_register(mdiodev);
if (retval < 0)
return retval;
#endif
ret = smc911x_initialize_mii(priv);
if (ret)
goto err_mii;
return 1;
err_mii:
eth_unregister(&priv->dev);
err_detect:
free(priv);
return ret;
}
#else /* ifdef CONFIG_DM_ETH */
static int smc911x_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
struct smc911x_priv *priv = dev_get_priv(dev);
memcpy(priv->enetaddr, plat->enetaddr, sizeof(plat->enetaddr));
return smc911x_init_common(priv);
}
static void smc911x_stop(struct udevice *dev)
{
struct smc911x_priv *priv = dev_get_priv(dev);
smc911x_halt_common(priv);
}
static int smc911x_send(struct udevice *dev, void *packet, int length)
{
struct smc911x_priv *priv = dev_get_priv(dev);
int ret;
ret = smc911x_send_common(priv, packet, length);
return ret ? 0 : -ETIMEDOUT;
}
static int smc911x_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct smc911x_priv *priv = dev_get_priv(dev);
u32 *data = (u32 *)net_rx_packets[0];
int ret;
ret = smc911x_recv_common(priv, data);
if (ret)
*packetp = (void *)data;
return ret ? ret : -EAGAIN;
}
static int smc911x_bind(struct udevice *dev)
{
return device_set_name(dev, dev->name);
}
static int smc911x_probe(struct udevice *dev)
{
struct smc911x_priv *priv = dev_get_priv(dev);
unsigned long addrh, addrl;
int ret;
/* Try to detect chip. Will fail if not present. */
ret = smc911x_detect_chip(priv);
if (ret)
return ret;
addrh = smc911x_get_mac_csr(priv, ADDRH);
addrl = smc911x_get_mac_csr(priv, ADDRL);
if (!(addrl == 0xffffffff && addrh == 0x0000ffff)) {
/* address is obtained from optional eeprom */
priv->enetaddr[0] = addrl;
priv->enetaddr[1] = addrl >> 8;
priv->enetaddr[2] = addrl >> 16;
priv->enetaddr[3] = addrl >> 24;
priv->enetaddr[4] = addrh;
priv->enetaddr[5] = addrh >> 8;
}
return 0;
}
static int smc911x_ofdata_to_platdata(struct udevice *dev)
{
struct smc911x_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
pdata->iobase = devfdt_get_addr(dev);
priv->iobase = pdata->iobase;
return 0;
}
static const struct eth_ops smc911x_ops = {
.start = smc911x_start,
.send = smc911x_send,
.recv = smc911x_recv,
.stop = smc911x_stop,
};
static const struct udevice_id smc911x_ids[] = {
{ .compatible = "smsc,lan9115" },
{ }
};
U_BOOT_DRIVER(smc911x) = {
.name = "eth_smc911x",
.id = UCLASS_ETH,
.of_match = smc911x_ids,
.bind = smc911x_bind,
.ofdata_to_platdata = smc911x_ofdata_to_platdata,
.probe = smc911x_probe,
.ops = &smc911x_ops,
.priv_auto_alloc_size = sizeof(struct smc911x_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
#endif

View File

@ -8,47 +8,6 @@
#ifndef _SMC911X_H_
#define _SMC911X_H_
#include <linux/types.h>
#define DRIVERNAME "smc911x"
#if defined (CONFIG_SMC911X_32_BIT) && \
defined (CONFIG_SMC911X_16_BIT)
#error "SMC911X: Only one of CONFIG_SMC911X_32_BIT and \
CONFIG_SMC911X_16_BIT shall be set"
#endif
#if defined (CONFIG_SMC911X_32_BIT)
static inline u32 __smc911x_reg_read(struct eth_device *dev, u32 offset)
{
return *(volatile u32*)(dev->iobase + offset);
}
u32 smc911x_reg_read(struct eth_device *dev, u32 offset)
__attribute__((weak, alias("__smc911x_reg_read")));
static inline void __smc911x_reg_write(struct eth_device *dev,
u32 offset, u32 val)
{
*(volatile u32*)(dev->iobase + offset) = val;
}
void smc911x_reg_write(struct eth_device *dev, u32 offset, u32 val)
__attribute__((weak, alias("__smc911x_reg_write")));
#elif defined (CONFIG_SMC911X_16_BIT)
static inline u32 smc911x_reg_read(struct eth_device *dev, u32 offset)
{
volatile u16 *addr_16 = (u16 *)(dev->iobase + offset);
return ((*addr_16 & 0x0000ffff) | (*(addr_16 + 1) << 16));
}
static inline void smc911x_reg_write(struct eth_device *dev,
u32 offset, u32 val)
{
*(volatile u16 *)(dev->iobase + offset) = (u16)val;
*(volatile u16 *)(dev->iobase + offset + 2) = (u16)(val >> 16);
}
#else
#error "SMC911X: undefined bus width"
#endif /* CONFIG_SMC911X_16_BIT */
/* Below are the register offsets and bit definitions
* of the Lan911x memory space
*/
@ -380,120 +339,4 @@ static inline void smc911x_reg_write(struct eth_device *dev,
#define CHIP_9220 0x9220
#define CHIP_9221 0x9221
struct chip_id {
u16 id;
char *name;
};
static const struct chip_id chip_ids[] = {
{ CHIP_89218, "LAN89218" },
{ CHIP_9115, "LAN9115" },
{ CHIP_9116, "LAN9116" },
{ CHIP_9117, "LAN9117" },
{ CHIP_9118, "LAN9118" },
{ CHIP_9211, "LAN9211" },
{ CHIP_9215, "LAN9215" },
{ CHIP_9216, "LAN9216" },
{ CHIP_9217, "LAN9217" },
{ CHIP_9218, "LAN9218" },
{ CHIP_9220, "LAN9220" },
{ CHIP_9221, "LAN9221" },
{ 0, NULL },
};
static u32 smc911x_get_mac_csr(struct eth_device *dev, u8 reg)
{
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
smc911x_reg_write(dev, MAC_CSR_CMD,
MAC_CSR_CMD_CSR_BUSY | MAC_CSR_CMD_R_NOT_W | reg);
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
return smc911x_reg_read(dev, MAC_CSR_DATA);
}
static void smc911x_set_mac_csr(struct eth_device *dev, u8 reg, u32 data)
{
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
smc911x_reg_write(dev, MAC_CSR_DATA, data);
smc911x_reg_write(dev, MAC_CSR_CMD, MAC_CSR_CMD_CSR_BUSY | reg);
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
}
static int smc911x_detect_chip(struct eth_device *dev)
{
unsigned long val, i;
val = smc911x_reg_read(dev, BYTE_TEST);
if (val == 0xffffffff) {
/* Special case -- no chip present */
return -1;
} else if (val != 0x87654321) {
printf(DRIVERNAME ": Invalid chip endian 0x%08lx\n", val);
return -1;
}
val = smc911x_reg_read(dev, ID_REV) >> 16;
for (i = 0; chip_ids[i].id != 0; i++) {
if (chip_ids[i].id == val) break;
}
if (!chip_ids[i].id) {
printf(DRIVERNAME ": Unknown chip ID %04lx\n", val);
return -1;
}
dev->priv = (void *)&chip_ids[i];
return 0;
}
static void smc911x_reset(struct eth_device *dev)
{
int timeout;
/*
* Take out of PM setting first
* Device is already wake up if PMT_CTRL_READY bit is set
*/
if ((smc911x_reg_read(dev, PMT_CTRL) & PMT_CTRL_READY) == 0) {
/* Write to the bytetest will take out of powerdown */
smc911x_reg_write(dev, BYTE_TEST, 0x0);
timeout = 10;
while (timeout-- &&
!(smc911x_reg_read(dev, PMT_CTRL) & PMT_CTRL_READY))
udelay(10);
if (timeout < 0) {
printf(DRIVERNAME
": timeout waiting for PM restore\n");
return;
}
}
/* Disable interrupts */
smc911x_reg_write(dev, INT_EN, 0);
smc911x_reg_write(dev, HW_CFG, HW_CFG_SRST);
timeout = 1000;
while (timeout-- && smc911x_reg_read(dev, E2P_CMD) & E2P_CMD_EPC_BUSY)
udelay(10);
if (timeout < 0) {
printf(DRIVERNAME ": reset timeout\n");
return;
}
/* Reset the FIFO level and flow control settings */
smc911x_set_mac_csr(dev, FLOW, FLOW_FCPT | FLOW_FCEN);
smc911x_reg_write(dev, AFC_CFG, 0x0050287F);
/* Set to LED outputs */
smc911x_reg_write(dev, GPIO_CFG, 0x70070000);
}
#endif

View File

@ -5,10 +5,13 @@
extra-y := hello_world
extra-$(CONFIG_SMC91111) += smc91111_eeprom
extra-$(CONFIG_SMC911X) += smc911x_eeprom
extra-$(CONFIG_SPI_FLASH_ATMEL) += atmel_df_pow2
extra-$(CONFIG_PPC) += sched
ifndef CONFIG_DM_ETH
extra-$(CONFIG_SMC911X) += smc911x_eeprom
endif
#
# Some versions of make do not handle trailing white spaces properly;
# leading to build failures. The problem was found with GNU Make 3.80.

View File

@ -18,8 +18,158 @@
#include <console.h>
#include <exports.h>
#include <linux/ctype.h>
#include <linux/types.h>
#include "../drivers/net/smc911x.h"
#define DRIVERNAME "smc911x"
#if defined (CONFIG_SMC911X_32_BIT) && \
defined (CONFIG_SMC911X_16_BIT)
#error "SMC911X: Only one of CONFIG_SMC911X_32_BIT and \
CONFIG_SMC911X_16_BIT shall be set"
#endif
struct chip_id {
u16 id;
char *name;
};
static const struct chip_id chip_ids[] = {
{ CHIP_89218, "LAN89218" },
{ CHIP_9115, "LAN9115" },
{ CHIP_9116, "LAN9116" },
{ CHIP_9117, "LAN9117" },
{ CHIP_9118, "LAN9118" },
{ CHIP_9211, "LAN9211" },
{ CHIP_9215, "LAN9215" },
{ CHIP_9216, "LAN9216" },
{ CHIP_9217, "LAN9217" },
{ CHIP_9218, "LAN9218" },
{ CHIP_9220, "LAN9220" },
{ CHIP_9221, "LAN9221" },
{ 0, NULL },
};
#if defined (CONFIG_SMC911X_32_BIT)
static u32 smc911x_reg_read(struct eth_device *dev, u32 offset)
{
return *(volatile u32*)(dev->iobase + offset);
}
static void smc911x_reg_write(struct eth_device *dev, u32 offset, u32 val)
{
*(volatile u32*)(dev->iobase + offset) = val;
}
#elif defined (CONFIG_SMC911X_16_BIT)
static u32 smc911x_reg_read(struct eth_device *dev, u32 offset)
{
volatile u16 *addr_16 = (u16 *)(dev->iobase + offset);
return (*addr_16 & 0x0000ffff) | (*(addr_16 + 1) << 16);
}
static void smc911x_reg_write(struct eth_device *dev, u32 offset, u32 val)
{
*(volatile u16 *)(dev->iobase + offset) = (u16)val;
*(volatile u16 *)(dev->iobase + offset + 2) = (u16)(val >> 16);
}
#else
#error "SMC911X: undefined bus width"
#endif /* CONFIG_SMC911X_16_BIT */
static u32 smc911x_get_mac_csr(struct eth_device *dev, u8 reg)
{
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
smc911x_reg_write(dev, MAC_CSR_CMD,
MAC_CSR_CMD_CSR_BUSY | MAC_CSR_CMD_R_NOT_W | reg);
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
return smc911x_reg_read(dev, MAC_CSR_DATA);
}
static void smc911x_set_mac_csr(struct eth_device *dev, u8 reg, u32 data)
{
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
smc911x_reg_write(dev, MAC_CSR_DATA, data);
smc911x_reg_write(dev, MAC_CSR_CMD, MAC_CSR_CMD_CSR_BUSY | reg);
while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY)
;
}
static int smc911x_detect_chip(struct eth_device *dev)
{
unsigned long val, i;
val = smc911x_reg_read(dev, BYTE_TEST);
if (val == 0xffffffff) {
/* Special case -- no chip present */
return -1;
} else if (val != 0x87654321) {
printf(DRIVERNAME ": Invalid chip endian 0x%08lx\n", val);
return -1;
}
val = smc911x_reg_read(dev, ID_REV) >> 16;
for (i = 0; chip_ids[i].id != 0; i++) {
if (chip_ids[i].id == val) break;
}
if (!chip_ids[i].id) {
printf(DRIVERNAME ": Unknown chip ID %04lx\n", val);
return -1;
}
dev->priv = (void *)&chip_ids[i];
return 0;
}
static void smc911x_reset(struct eth_device *dev)
{
int timeout;
/*
* Take out of PM setting first
* Device is already wake up if PMT_CTRL_READY bit is set
*/
if ((smc911x_reg_read(dev, PMT_CTRL) & PMT_CTRL_READY) == 0) {
/* Write to the bytetest will take out of powerdown */
smc911x_reg_write(dev, BYTE_TEST, 0x0);
timeout = 10;
while (timeout-- &&
!(smc911x_reg_read(dev, PMT_CTRL) & PMT_CTRL_READY))
udelay(10);
if (timeout < 0) {
printf(DRIVERNAME
": timeout waiting for PM restore\n");
return;
}
}
/* Disable interrupts */
smc911x_reg_write(dev, INT_EN, 0);
smc911x_reg_write(dev, HW_CFG, HW_CFG_SRST);
timeout = 1000;
while (timeout-- && smc911x_reg_read(dev, E2P_CMD) & E2P_CMD_EPC_BUSY)
udelay(10);
if (timeout < 0) {
printf(DRIVERNAME ": reset timeout\n");
return;
}
/* Reset the FIFO level and flow control settings */
smc911x_set_mac_csr(dev, FLOW, FLOW_FCPT | FLOW_FCEN);
smc911x_reg_write(dev, AFC_CFG, 0x0050287F);
/* Set to LED outputs */
smc911x_reg_write(dev, GPIO_CFG, 0x70070000);
}
/**
* smsc_ctrlc - detect press of CTRL+C (common ctrlc() isnt exported!?)
*/

View File

@ -16,7 +16,6 @@
#define CONFIG_PCI_GT64120
#define CONFIG_PCI_MSC01
#define CONFIG_PCNET
#define CONFIG_PCNET_79C973
#define PCNET_HAS_PROM
#define CONFIG_SYS_ISA_IO_BASE_ADDRESS 0

View File

@ -125,6 +125,7 @@ int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
/*
* Allow FEC to fine-tune MII configuration on boards which require this.
*/
struct eth_device;
int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int));
#endif

View File

@ -1292,8 +1292,6 @@ CONFIG_PCI_SYS_BUS
CONFIG_PCI_SYS_PHYS
CONFIG_PCI_SYS_SIZE
CONFIG_PCNET
CONFIG_PCNET_79C973
CONFIG_PCNET_79C975
CONFIG_PEN_ADDR_BIG_ENDIAN
CONFIG_PERIF1_FREQ
CONFIG_PERIF2_FREQ
@ -4077,9 +4075,6 @@ CONFIG_TSECV2_1
CONFIG_TSEC_TBI
CONFIG_TSEC_TBICR_SETTINGS
CONFIG_TULIP
CONFIG_TULIP_FIX_DAVICOM
CONFIG_TULIP_SELECT_MEDIA
CONFIG_TULIP_USE_IO
CONFIG_TWL6030_INPUT
CONFIG_TWL6030_POWER
CONFIG_TWR