u-boot-brain/drivers/ram/octeon/octeon3_lmc.c

11031 lines
326 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Marvell International Ltd.
*/
#include <command.h>
#include <dm.h>
#include <hang.h>
#include <i2c.h>
#include <ram.h>
#include <time.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <mach/octeon_ddr.h>
/* Random number generator stuff */
#define CVMX_RNM_CTL_STATUS 0x0001180040000000
#define CVMX_OCT_DID_RNG 8ULL
static u64 cvmx_build_io_address(u64 major_did, u64 sub_did)
{
return ((0x1ull << 48) | (major_did << 43) | (sub_did << 40));
}
static u64 cvmx_rng_get_random64(void)
{
return csr_rd(cvmx_build_io_address(CVMX_OCT_DID_RNG, 0));
}
static void cvmx_rng_enable(void)
{
u64 val;
val = csr_rd(CVMX_RNM_CTL_STATUS);
val |= BIT(0) | BIT(1);
csr_wr(CVMX_RNM_CTL_STATUS, val);
}
#define RLEVEL_PRINTALL_DEFAULT 1
#define WLEVEL_PRINTALL_DEFAULT 1
/*
* Define how many HW WL samples to take for majority voting.
* MUST BE odd!!
* Assume there should only be 2 possible values that will show up,
* so treat ties as a problem!!!
* NOTE: Do not change this without checking the code!!!
*/
#define WLEVEL_LOOPS_DEFAULT 5
#define ENABLE_COMPUTED_VREF_ADJUSTMENT 1
#define SW_WLEVEL_HW_DEFAULT 1
#define DEFAULT_BEST_RANK_SCORE 9999999
#define MAX_RANK_SCORE_LIMIT 99
/*
* Define how many HW RL samples per rank to take multiple samples will
* allow looking for the best sample score
*/
#define RLEVEL_SAMPLES_DEFAULT 3
#define ddr_seq_print(format, ...) do {} while (0)
struct wlevel_bitcnt {
int bitcnt[4];
};
static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
int ecc_ena, int *settings, char *title);
static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
int dac_value, int byte);
/* "mode" arg */
#define DBTRAIN_TEST 0
#define DBTRAIN_DBI 1
#define DBTRAIN_LFSR 2
static int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
int mode, u64 *xor_data);
#define LMC_DDR3_RESET_ASSERT 0
#define LMC_DDR3_RESET_DEASSERT 1
static void cn7xxx_lmc_ddr3_reset(struct ddr_priv *priv, int if_num, int reset)
{
union cvmx_lmcx_reset_ctl reset_ctl;
/*
* 4. Deassert DDRn_RESET_L pin by writing
* LMC(0..3)_RESET_CTL[DDR3RST] = 1
* without modifying any other LMC(0..3)_RESET_CTL fields.
* 5. Read LMC(0..3)_RESET_CTL and wait for the result.
* 6. Wait a minimum of 500us. This guarantees the necessary T = 500us
* delay between DDRn_RESET_L deassertion and DDRn_DIMM*_CKE*
* assertion.
*/
debug("LMC%d %s DDR_RESET_L\n", if_num,
(reset ==
LMC_DDR3_RESET_DEASSERT) ? "De-asserting" : "Asserting");
reset_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
reset_ctl.cn78xx.ddr3rst = reset;
lmc_wr(priv, CVMX_LMCX_RESET_CTL(if_num), reset_ctl.u64);
lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
udelay(500);
}
static void perform_lmc_reset(struct ddr_priv *priv, int node, int if_num)
{
/*
* 5.9.6 LMC RESET Initialization
*
* The purpose of this step is to assert/deassert the RESET# pin at the
* DDR3/DDR4 parts.
*
* This LMC RESET step is done for all enabled LMCs.
*
* It may be appropriate to skip this step if the DDR3/DDR4 DRAM parts
* are in self refresh and are currently preserving their
* contents. (Software can determine this via
* LMC(0..3)_RESET_CTL[DDR3PSV] in some circumstances.) The remainder of
* this section assumes that the DRAM contents need not be preserved.
*
* The remainder of this section assumes that the CN78XX DDRn_RESET_L
* pin is attached to the RESET# pin of the attached DDR3/DDR4 parts,
* as will be appropriate in many systems.
*
* (In other systems, such as ones that can preserve DDR3/DDR4 part
* contents while CN78XX is powered down, it will not be appropriate to
* directly attach the CN78XX DDRn_RESET_L pin to DRESET# of the
* DDR3/DDR4 parts, and this section may not apply.)
*
* The remainder of this section describes the sequence for LMCn.
*
* Perform the following six substeps for LMC reset initialization:
*
* 1. If not done already, assert DDRn_RESET_L pin by writing
* LMC(0..3)_RESET_ CTL[DDR3RST] = 0 without modifying any other
* LMC(0..3)_RESET_CTL fields.
*/
if (!ddr_memory_preserved(priv)) {
/*
* 2. Read LMC(0..3)_RESET_CTL and wait for the result.
*/
lmc_rd(priv, CVMX_LMCX_RESET_CTL(if_num));
/*
* 3. Wait until RESET# assertion-time requirement from JEDEC
* DDR3/DDR4 specification is satisfied (200 us during a
* power-on ramp, 100ns when power is already stable).
*/
udelay(200);
/*
* 4. Deassert DDRn_RESET_L pin by writing
* LMC(0..3)_RESET_CTL[DDR3RST] = 1
* without modifying any other LMC(0..3)_RESET_CTL fields.
* 5. Read LMC(0..3)_RESET_CTL and wait for the result.
* 6. Wait a minimum of 500us. This guarantees the necessary
* T = 500us delay between DDRn_RESET_L deassertion and
* DDRn_DIMM*_CKE* assertion.
*/
cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
/* Toggle Reset Again */
/* That is, assert, then de-assert, one more time */
cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_ASSERT);
cn7xxx_lmc_ddr3_reset(priv, if_num, LMC_DDR3_RESET_DEASSERT);
}
}
void oct3_ddr3_seq(struct ddr_priv *priv, int rank_mask, int if_num,
int sequence)
{
/*
* 3. Without changing any other fields in LMC(0)_CONFIG, write
* LMC(0)_CONFIG[RANKMASK] then write both
* LMC(0)_SEQ_CTL[SEQ_SEL,INIT_START] = 1 with a single CSR write
* operation. LMC(0)_CONFIG[RANKMASK] bits should be set to indicate
* the ranks that will participate in the sequence.
*
* The LMC(0)_SEQ_CTL[SEQ_SEL] value should select power-up/init or
* selfrefresh exit, depending on whether the DRAM parts are in
* self-refresh and whether their contents should be preserved. While
* LMC performs these sequences, it will not perform any other DDR3
* transactions. When the sequence is complete, hardware sets the
* LMC(0)_CONFIG[INIT_STATUS] bits for the ranks that have been
* initialized.
*
* If power-up/init is selected immediately following a DRESET
* assertion, LMC executes the sequence described in the "Reset and
* Initialization Procedure" section of the JEDEC DDR3
* specification. This includes activating CKE, writing all four DDR3
* mode registers on all selected ranks, and issuing the required
* ZQCL
* command. The LMC(0)_CONFIG[RANKMASK] value should select all ranks
* with attached DRAM in this case. If LMC(0)_CONTROL[RDIMM_ENA] = 1,
* LMC writes the JEDEC standard SSTE32882 control words selected by
* LMC(0)_DIMM_CTL[DIMM*_WMASK] between DDR_CKE* signal assertion and
* the first DDR3 mode register write operation.
* LMC(0)_DIMM_CTL[DIMM*_WMASK] should be cleared to 0 if the
* corresponding DIMM is not present.
*
* If self-refresh exit is selected, LMC executes the required SRX
* command followed by a refresh and ZQ calibration. Section 4.5
* describes behavior of a REF + ZQCS. LMC does not write the DDR3
* mode registers as part of this sequence, and the mode register
* parameters must match at self-refresh entry and exit times.
*
* 4. Read LMC(0)_SEQ_CTL and wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE]
* to be set.
*
* 5. Read LMC(0)_CONFIG[INIT_STATUS] and confirm that all ranks have
* been initialized.
*/
union cvmx_lmcx_seq_ctl seq_ctl;
union cvmx_lmcx_config lmc_config;
int timeout;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
lmc_config.s.rankmask = rank_mask;
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
seq_ctl.u64 = 0;
seq_ctl.s.init_start = 1;
seq_ctl.s.seq_sel = sequence;
ddr_seq_print
("Performing LMC sequence: rank_mask=0x%02x, sequence=0x%x, %s\n",
rank_mask, sequence, sequence_str[sequence]);
if (seq_ctl.s.seq_sel == 3)
debug("LMC%d: Exiting Self-refresh Rank_mask:%x\n", if_num,
rank_mask);
lmc_wr(priv, CVMX_LMCX_SEQ_CTL(if_num), seq_ctl.u64);
lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
timeout = 100;
do {
udelay(100); /* Wait a while */
seq_ctl.u64 = lmc_rd(priv, CVMX_LMCX_SEQ_CTL(if_num));
if (--timeout == 0) {
printf("Sequence %d timed out\n", sequence);
break;
}
} while (seq_ctl.s.seq_complete != 1);
ddr_seq_print(" LMC sequence=%x: Completed.\n", sequence);
}
#define bdk_numa_get_address(n, p) ((p) | ((u64)n) << CVMX_NODE_MEM_SHIFT)
#define AREA_BASE_OFFSET BIT_ULL(26)
static int test_dram_byte64(struct ddr_priv *priv, int lmc, u64 p,
u64 bitmask, u64 *xor_data)
{
u64 p1, p2, d1, d2;
u64 v, v1;
u64 p2offset = (1ULL << 26); // offset to area 2
u64 datamask;
u64 xor;
u64 i, j, k;
u64 ii;
int errors = 0;
//u64 index;
u64 pattern1 = cvmx_rng_get_random64();
u64 pattern2 = 0;
u64 bad_bits[2] = { 0, 0 };
int kbitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
union cvmx_l2c_ctl l2c_ctl;
int burst;
int saved_dissblkdty;
int node = 0;
// Force full cacheline write-backs to boost traffic
l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
saved_dissblkdty = l2c_ctl.cn78xx.dissblkdty;
l2c_ctl.cn78xx.dissblkdty = 1;
l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
kbitno = 18;
// Byte lanes may be clear in the mask to indicate no testing on that
//lane.
datamask = bitmask;
/*
* Add offset to both test regions to not clobber boot stuff
* when running from L2 for NAND boot.
*/
p += AREA_BASE_OFFSET; // make sure base is out of the way of boot
// final address must include LMC and node
p |= (lmc << 7); /* Map address into proper interface */
p = bdk_numa_get_address(node, p); /* Map to node */
p |= 1ull << 63;
#define II_INC BIT_ULL(22)
#define II_MAX BIT_ULL(22)
#define K_INC BIT_ULL(14)
#define K_MAX BIT_ULL(kbitno)
#define J_INC BIT_ULL(9)
#define J_MAX BIT_ULL(12)
#define I_INC BIT_ULL(3)
#define I_MAX BIT_ULL(7)
debug("N%d.LMC%d: %s: phys_addr=0x%llx/0x%llx (0x%llx)\n",
node, lmc, __func__, p, p + p2offset, 1ULL << kbitno);
// loops are ordered so that only a single 64-bit slot is written to
// each cacheline at one time, then the cachelines are forced out;
// this should maximize read/write traffic
// FIXME? extend the range of memory tested!!
for (ii = 0; ii < II_MAX; ii += II_INC) {
for (i = 0; i < I_MAX; i += I_INC) {
for (k = 0; k < K_MAX; k += K_INC) {
for (j = 0; j < J_MAX; j += J_INC) {
p1 = p + ii + k + j;
p2 = p1 + p2offset;
v = pattern1 * (p1 + i);
// write the same thing to both areas
v1 = v;
cvmx_write64_uint64(p1 + i, v);
cvmx_write64_uint64(p2 + i, v1);
CVMX_CACHE_WBIL2(p1, 0);
CVMX_CACHE_WBIL2(p2, 0);
}
}
}
}
CVMX_DCACHE_INVALIDATE;
debug("N%d.LMC%d: dram_tuning_mem_xor: done INIT loop\n", node, lmc);
/* Make a series of passes over the memory areas. */
for (burst = 0; burst < 1 /* was: dram_tune_use_bursts */ ; burst++) {
u64 this_pattern = cvmx_rng_get_random64();
pattern2 ^= this_pattern;
/*
* XOR the data with a random value, applying the change to both
* memory areas.
*/
// FIXME? extend the range of memory tested!!
for (ii = 0; ii < II_MAX; ii += II_INC) {
// FIXME: rearranged, did not make much difference?
for (i = 0; i < I_MAX; i += I_INC) {
for (k = 0; k < K_MAX; k += K_INC) {
for (j = 0; j < J_MAX; j += J_INC) {
p1 = p + ii + k + j;
p2 = p1 + p2offset;
v = cvmx_read64_uint64(p1 +
i) ^
this_pattern;
v1 = cvmx_read64_uint64(p2 +
i) ^
this_pattern;
cvmx_write64_uint64(p1 + i, v);
cvmx_write64_uint64(p2 + i, v1);
CVMX_CACHE_WBIL2(p1, 0);
CVMX_CACHE_WBIL2(p2, 0);
}
}
}
}
CVMX_DCACHE_INVALIDATE;
debug("N%d.LMC%d: dram_tuning_mem_xor: done MODIFY loop\n",
node, lmc);
/*
* Look for differences in the areas. If there is a mismatch,
* reset both memory locations with the same pattern. Failing
* to do so means that on all subsequent passes the pair of
* locations remain out of sync giving spurious errors.
*/
// FIXME: Change the loop order so that an entire cache line
// is compared at one time. This is so that a read
// error that occurs *anywhere* on the cacheline will
// be caught, rather than comparing only 1 cacheline
// slot at a time, where an error on a different
// slot will be missed that time around
// Does the above make sense?
// FIXME? extend the range of memory tested!!
for (ii = 0; ii < II_MAX; ii += II_INC) {
for (k = 0; k < K_MAX; k += K_INC) {
for (j = 0; j < J_MAX; j += J_INC) {
p1 = p + ii + k + j;
p2 = p1 + p2offset;
// process entire cachelines in the
//innermost loop
for (i = 0; i < I_MAX; i += I_INC) {
int bybit = 1;
// start in byte lane 0
u64 bymsk = 0xffULL;
// FIXME: this should predict
// what we find...???
v = ((p1 + i) * pattern1) ^
pattern2;
d1 = cvmx_read64_uint64(p1 + i);
d2 = cvmx_read64_uint64(p2 + i);
// union of error bits only in
// active byte lanes
xor = ((d1 ^ v) | (d2 ^ v)) &
datamask;
if (!xor)
continue;
// accumulate bad bits
bad_bits[0] |= xor;
while (xor != 0) {
debug("ERROR(%03d): [0x%016llX] [0x%016llX] expected 0x%016llX d1 %016llX d2 %016llX\n",
burst, p1, p2, v,
d1, d2);
// error(s) in this lane
if (xor & bymsk) {
// set the byte
// error bit
errors |= bybit;
// clear byte
// lane in
// error bits
xor &= ~bymsk;
// clear the
// byte lane in
// the mask
datamask &= ~bymsk;
#if EXIT_WHEN_ALL_LANES_HAVE_ERRORS
// nothing
// left to do
if (datamask == 0) {
return errors;
}
#endif /* EXIT_WHEN_ALL_LANES_HAVE_ERRORS */
}
// move mask into
// next byte lane
bymsk <<= 8;
// move bit into next
// byte position
bybit <<= 1;
}
}
CVMX_CACHE_WBIL2(p1, 0);
CVMX_CACHE_WBIL2(p2, 0);
}
}
}
debug("N%d.LMC%d: dram_tuning_mem_xor: done TEST loop\n",
node, lmc);
}
if (xor_data) { // send the bad bits back...
xor_data[0] = bad_bits[0];
xor_data[1] = bad_bits[1]; // let it be zeroed
}
// Restore original setting that could enable partial cacheline writes
l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
l2c_ctl.cn78xx.dissblkdty = saved_dissblkdty;
l2c_wr(priv, CVMX_L2C_CTL, l2c_ctl.u64);
return errors;
}
static void ddr4_mrw(struct ddr_priv *priv, int if_num, int rank,
int mr_wr_addr, int mr_wr_sel, int mr_wr_bg1)
{
union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
lmc_mr_mpr_ctl.u64 = 0;
lmc_mr_mpr_ctl.cn78xx.mr_wr_addr = (mr_wr_addr == -1) ? 0 : mr_wr_addr;
lmc_mr_mpr_ctl.cn78xx.mr_wr_sel = mr_wr_sel;
lmc_mr_mpr_ctl.cn78xx.mr_wr_rank = rank;
lmc_mr_mpr_ctl.cn78xx.mr_wr_use_default_value =
(mr_wr_addr == -1) ? 1 : 0;
lmc_mr_mpr_ctl.cn78xx.mr_wr_bg1 = mr_wr_bg1;
lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
/* Mode Register Write */
oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
}
#define INV_A0_17(x) ((x) ^ 0x22bf8)
static void set_mpr_mode(struct ddr_priv *priv, int rank_mask,
int if_num, int dimm_count, int mpr, int bg1)
{
int rankx;
debug("All Ranks: Set mpr mode = %x %c-side\n",
mpr, (bg1 == 0) ? 'A' : 'B');
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
if (bg1 == 0) {
/* MR3 A-side */
ddr4_mrw(priv, if_num, rankx, mpr << 2, 3, bg1);
} else {
/* MR3 B-side */
ddr4_mrw(priv, if_num, rankx, INV_A0_17(mpr << 2), ~3,
bg1);
}
}
}
static void do_ddr4_mpr_read(struct ddr_priv *priv, int if_num,
int rank, int page, int location)
{
union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
lmc_mr_mpr_ctl.u64 = lmc_rd(priv, CVMX_LMCX_MR_MPR_CTL(if_num));
lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = 0;
lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */
lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
lmc_mr_mpr_ctl.cn70xx.mpr_wr = 0; /* Read=0, Write=1 */
lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
/* MPR register access sequence */
oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
debug("LMC_MR_MPR_CTL : 0x%016llx\n",
lmc_mr_mpr_ctl.u64);
debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc : 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mpr_loc);
debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr : 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mpr_wr);
}
static int set_rdimm_mode(struct ddr_priv *priv, int if_num, int enable)
{
union cvmx_lmcx_control lmc_control;
int save_rdimm_mode;
lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
save_rdimm_mode = lmc_control.s.rdimm_ena;
lmc_control.s.rdimm_ena = enable;
debug("Setting RDIMM_ENA = %x\n", enable);
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), lmc_control.u64);
return save_rdimm_mode;
}
static void ddr4_mpr_read(struct ddr_priv *priv, int if_num, int rank,
int page, int location, u64 *mpr_data)
{
do_ddr4_mpr_read(priv, if_num, rank, page, location);
mpr_data[0] = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
}
/* Display MPR values for Page */
static void display_mpr_page(struct ddr_priv *priv, int rank_mask,
int if_num, int page)
{
int rankx, location;
u64 mpr_data[3];
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
debug("N0.LMC%d.R%d: MPR Page %d loc [0:3]: ",
if_num, rankx, page);
for (location = 0; location < 4; location++) {
ddr4_mpr_read(priv, if_num, rankx, page, location,
mpr_data);
debug("0x%02llx ", mpr_data[0] & 0xFF);
}
debug("\n");
} /* for (rankx = 0; rankx < 4; rankx++) */
}
static void ddr4_mpr_write(struct ddr_priv *priv, int if_num, int rank,
int page, int location, u8 mpr_data)
{
union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
lmc_mr_mpr_ctl.u64 = 0;
lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mpr_data;
lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = page; /* Page */
lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
lmc_mr_mpr_ctl.cn70xx.mpr_loc = location;
lmc_mr_mpr_ctl.cn70xx.mpr_wr = 1; /* Read=0, Write=1 */
lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
/* MPR register access sequence */
oct3_ddr3_seq(priv, 1 << rank, if_num, 0x9);
debug("LMC_MR_MPR_CTL : 0x%016llx\n",
lmc_mr_mpr_ctl.u64);
debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_addr: 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mr_wr_addr);
debug("lmc_mr_mpr_ctl.cn70xx.mr_wr_sel : 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mr_wr_sel);
debug("lmc_mr_mpr_ctl.cn70xx.mpr_loc : 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mpr_loc);
debug("lmc_mr_mpr_ctl.cn70xx.mpr_wr : 0x%02x\n",
lmc_mr_mpr_ctl.cn70xx.mpr_wr);
}
static void set_vref(struct ddr_priv *priv, int if_num, int rank,
int range, int value)
{
union cvmx_lmcx_mr_mpr_ctl lmc_mr_mpr_ctl;
union cvmx_lmcx_modereg_params3 lmc_modereg_params3;
int mr_wr_addr = 0;
lmc_mr_mpr_ctl.u64 = 0;
lmc_modereg_params3.u64 = lmc_rd(priv,
CVMX_LMCX_MODEREG_PARAMS3(if_num));
/* A12:A10 tCCD_L */
mr_wr_addr |= lmc_modereg_params3.s.tccd_l << 10;
mr_wr_addr |= 1 << 7; /* A7 1 = Enable(Training Mode) */
mr_wr_addr |= range << 6; /* A6 vrefDQ Training Range */
mr_wr_addr |= value << 0; /* A5:A0 vrefDQ Training Value */
lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
lmc_mr_mpr_ctl.cn70xx.mr_wr_sel = 6; /* Write MR6 */
lmc_mr_mpr_ctl.cn70xx.mr_wr_rank = rank;
lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
/* 0x8 = Mode Register Write */
oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
/*
* It is vendor specific whether vref_value is captured with A7=1.
* A subsequent MRS might be necessary.
*/
oct3_ddr3_seq(priv, 1 << rank, if_num, 0x8);
mr_wr_addr &= ~(1 << 7); /* A7 0 = Disable(Training Mode) */
lmc_mr_mpr_ctl.cn70xx.mr_wr_addr = mr_wr_addr;
lmc_wr(priv, CVMX_LMCX_MR_MPR_CTL(if_num), lmc_mr_mpr_ctl.u64);
}
static void set_dram_output_inversion(struct ddr_priv *priv, int if_num,
int dimm_count, int rank_mask,
int inversion)
{
union cvmx_lmcx_ddr4_dimm_ctl lmc_ddr4_dimm_ctl;
union cvmx_lmcx_dimmx_params lmc_dimmx_params;
union cvmx_lmcx_dimm_ctl lmc_dimm_ctl;
int dimm_no;
/* Don't touch extenced register control words */
lmc_ddr4_dimm_ctl.u64 = 0;
lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), lmc_ddr4_dimm_ctl.u64);
debug("All DIMMs: Register Control Word RC0 : %x\n",
(inversion & 1));
for (dimm_no = 0; dimm_no < dimm_count; ++dimm_no) {
lmc_dimmx_params.u64 =
lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num));
lmc_dimmx_params.s.rc0 =
(lmc_dimmx_params.s.rc0 & ~1) | (inversion & 1);
lmc_wr(priv,
CVMX_LMCX_DIMMX_PARAMS(dimm_no, if_num),
lmc_dimmx_params.u64);
}
/* LMC0_DIMM_CTL */
lmc_dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
lmc_dimm_ctl.s.dimm0_wmask = 0x1;
lmc_dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ? 0x0001 : 0x0000;
debug("LMC DIMM_CTL : 0x%016llx\n",
lmc_dimm_ctl.u64);
lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), lmc_dimm_ctl.u64);
oct3_ddr3_seq(priv, rank_mask, if_num, 0x7); /* Init RCW */
}
static void write_mpr_page0_pattern(struct ddr_priv *priv, int rank_mask,
int if_num, int dimm_count, int pattern,
int location_mask)
{
int rankx;
int location;
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
for (location = 0; location < 4; ++location) {
if (!(location_mask & (1 << location)))
continue;
ddr4_mpr_write(priv, if_num, rankx,
/* page */ 0, /* location */ location,
pattern);
}
}
}
static void change_rdimm_mpr_pattern(struct ddr_priv *priv, int rank_mask,
int if_num, int dimm_count)
{
int save_ref_zqcs_int;
union cvmx_lmcx_config lmc_config;
/*
* Okay, here is the latest sequence. This should work for all
* chips and passes (78,88,73,etc). This sequence should be run
* immediately after DRAM INIT. The basic idea is to write the
* same pattern into each of the 4 MPR locations in the DRAM, so
* that the same value is returned when doing MPR reads regardless
* of the inversion state. My advice is to put this into a
* function, change_rdimm_mpr_pattern or something like that, so
* that it can be called multiple times, as I think David wants a
* clock-like pattern for OFFSET training, but does not want a
* clock pattern for Bit-Deskew. You should then be able to call
* this at any point in the init sequence (after DRAM init) to
* change the pattern to a new value.
* Mike
*
* A correction: PHY doesn't need any pattern during offset
* training, but needs clock like pattern for internal vref and
* bit-dskew training. So for that reason, these steps below have
* to be conducted before those trainings to pre-condition
* the pattern. David
*
* Note: Step 3, 4, 8 and 9 have to be done through RDIMM
* sequence. If you issue MRW sequence to do RCW write (in o78 pass
* 1 at least), LMC will still do two commands because
* CONTROL[RDIMM_ENA] is still set high. We don't want it to have
* any unintentional mode register write so it's best to do what
* Mike is doing here.
* Andrew
*/
/* 1) Disable refresh (REF_ZQCS_INT = 0) */
debug("1) Disable refresh (REF_ZQCS_INT = 0)\n");
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
lmc_config.cn78xx.ref_zqcs_int = 0;
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
/*
* 2) Put all devices in MPR mode (Run MRW sequence (sequence=8)
* with MODEREG_PARAMS0[MPRLOC]=0,
* MODEREG_PARAMS0[MPR]=1, MR_MPR_CTL[MR_WR_SEL]=3, and
* MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
*/
debug("2) Put all devices in MPR mode (Run MRW sequence (sequence=8)\n");
/* A-side */
set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 0);
/* B-side */
set_mpr_mode(priv, rank_mask, if_num, dimm_count, 1, 1);
/*
* a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and set
* the value you would like directly into
* MR_MPR_CTL[MR_WR_ADDR]
*/
/*
* 3) Disable RCD Parity (if previously enabled) - parity does not
* work if inversion disabled
*/
debug("3) Disable RCD Parity\n");
/*
* 4) Disable Inversion in the RCD.
* a. I did (3&4) via the RDIMM sequence (seq_sel=7), but it
* may be easier to use the MRW sequence (seq_sel=8). Just set
* MR_MPR_CTL[MR_WR_SEL]=7, MR_MPR_CTL[MR_WR_ADDR][3:0]=data,
* MR_MPR_CTL[MR_WR_ADDR][7:4]=RCD reg
*/
debug("4) Disable Inversion in the RCD.\n");
set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 1);
/*
* 5) Disable CONTROL[RDIMM_ENA] so that MR sequence goes out
* non-inverted.
*/
debug("5) Disable CONTROL[RDIMM_ENA]\n");
set_rdimm_mode(priv, if_num, 0);
/*
* 6) Write all 4 MPR registers with the desired pattern (have to
* do this for all enabled ranks)
* a. MR_MPR_CTL.MPR_WR=1, MR_MPR_CTL.MPR_LOC=0..3,
* MR_MPR_CTL.MR_WR_SEL=0, MR_MPR_CTL.MR_WR_ADDR[7:0]=pattern
*/
debug("6) Write all 4 MPR page 0 Training Patterns\n");
write_mpr_page0_pattern(priv, rank_mask, if_num, dimm_count, 0x55, 0x8);
/* 7) Re-enable RDIMM_ENA */
debug("7) Re-enable RDIMM_ENA\n");
set_rdimm_mode(priv, if_num, 1);
/* 8) Re-enable RDIMM inversion */
debug("8) Re-enable RDIMM inversion\n");
set_dram_output_inversion(priv, if_num, dimm_count, rank_mask, 0);
/* 9) Re-enable RDIMM parity (if desired) */
debug("9) Re-enable RDIMM parity (if desired)\n");
/*
* 10)Take B-side devices out of MPR mode (Run MRW sequence
* (sequence=8) with MODEREG_PARAMS0[MPRLOC]=0,
* MODEREG_PARAMS0[MPR]=0, MR_MPR_CTL[MR_WR_SEL]=3, and
* MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=1)
*/
debug("10)Take B-side devices out of MPR mode\n");
set_mpr_mode(priv, rank_mask, if_num, dimm_count,
/* mpr */ 0, /* bg1 */ 1);
/*
* a. Or you can set MR_MPR_CTL[MR_WR_USE_DEFAULT_VALUE]=0 and
* set the value you would like directly into MR_MPR_CTL[MR_WR_ADDR]
*/
/* 11)Re-enable refresh (REF_ZQCS_INT=previous value) */
debug("11)Re-enable refresh (REF_ZQCS_INT=previous value)\n");
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
}
static int validate_hwl_seq(int *wl, int *seq)
{
// sequence index, step through the sequence array
int seqx;
int bitnum;
seqx = 0;
while (seq[seqx + 1] >= 0) { // stop on next seq entry == -1
// but now, check current versus next
bitnum = (wl[seq[seqx]] << 2) | wl[seq[seqx + 1]];
// magic validity number (see matrix above)
if (!((1 << bitnum) & 0xBDE7))
return 1;
seqx++;
}
return 0;
}
static int validate_hw_wl_settings(int if_num,
union cvmx_lmcx_wlevel_rankx
*lmc_wlevel_rank, int is_rdimm, int ecc_ena)
{
int wl[9], byte, errors;
// arrange the sequences so
// index 0 has byte 0, etc, ECC in middle
int useq[] = { 0, 1, 2, 3, 8, 4, 5, 6, 7, -1 };
// index 0 is ECC, then go down
int rseq1[] = { 8, 3, 2, 1, 0, -1 };
// index 0 has byte 4, then go up
int rseq2[] = { 4, 5, 6, 7, -1 };
// index 0 has byte 0, etc, no ECC
int useqno[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1 };
// index 0 is byte 3, then go down, no ECC
int rseq1no[] = { 3, 2, 1, 0, -1 };
// in the CSR, bytes 0-7 are always data, byte 8 is ECC
for (byte = 0; byte < (8 + ecc_ena); byte++) {
// preprocess :-)
wl[byte] = (get_wl_rank(lmc_wlevel_rank, byte) >>
1) & 3;
}
errors = 0;
if (is_rdimm) { // RDIMM order
errors = validate_hwl_seq(wl, (ecc_ena) ? rseq1 : rseq1no);
errors += validate_hwl_seq(wl, rseq2);
} else { // UDIMM order
errors = validate_hwl_seq(wl, (ecc_ena) ? useq : useqno);
}
return errors;
}
static unsigned int extr_wr(u64 u, int x)
{
return (unsigned int)(((u >> (x * 12 + 5)) & 0x3ULL) |
((u >> (51 + x - 2)) & 0x4ULL));
}
static void insrt_wr(u64 *up, int x, int v)
{
u64 u = *up;
u &= ~(((0x3ULL) << (x * 12 + 5)) | ((0x1ULL) << (51 + x)));
*up = (u | ((v & 0x3ULL) << (x * 12 + 5)) |
((v & 0x4ULL) << (51 + x - 2)));
}
/* Read out Deskew Settings for DDR */
struct deskew_bytes {
u16 bits[8];
};
struct deskew_data {
struct deskew_bytes bytes[9];
};
struct dac_data {
int bytes[9];
};
// T88 pass 1, skip 4=DAC
static const u8 dsk_bit_seq_p1[8] = { 0, 1, 2, 3, 5, 6, 7, 8 };
// T88 Pass 2, skip 4=DAC and 5=DBI
static const u8 dsk_bit_seq_p2[8] = { 0, 1, 2, 3, 6, 7, 8, 9 };
static void get_deskew_settings(struct ddr_priv *priv, int if_num,
struct deskew_data *dskdat)
{
union cvmx_lmcx_phy_ctl phy_ctl;
union cvmx_lmcx_config lmc_config;
int bit_index;
int byte_lane, byte_limit;
// NOTE: these are for pass 2.x
int is_o78p2 = !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X);
const u8 *bit_seq = (is_o78p2) ? dsk_bit_seq_p2 : dsk_bit_seq_p1;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
memset(dskdat, 0, sizeof(*dskdat));
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.dsk_dbg_clk_scaler = 3;
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
phy_ctl.s.dsk_dbg_byte_sel = byte_lane; // set byte lane
for (bit_index = 0; bit_index < 8; ++bit_index) {
// set bit number and start read sequence
phy_ctl.s.dsk_dbg_bit_sel = bit_seq[bit_index];
phy_ctl.s.dsk_dbg_rd_start = 1;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
// poll for read sequence to complete
do {
phy_ctl.u64 =
lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
// record the data
dskdat->bytes[byte_lane].bits[bit_index] =
phy_ctl.s.dsk_dbg_rd_data & 0x3ff;
}
}
}
static void display_deskew_settings(struct ddr_priv *priv, int if_num,
struct deskew_data *dskdat,
int print_enable)
{
int byte_lane;
int bit_num;
u16 flags, deskew;
union cvmx_lmcx_config lmc_config;
int byte_limit;
const char *fc = " ?-=+*#&";
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
if (print_enable) {
debug("N0.LMC%d: Deskew Data: Bit => :",
if_num);
for (bit_num = 7; bit_num >= 0; --bit_num)
debug(" %3d ", bit_num);
debug("\n");
}
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
if (print_enable)
debug("N0.LMC%d: Bit Deskew Byte %d %s :",
if_num, byte_lane,
(print_enable >= 3) ? "FINAL" : " ");
for (bit_num = 7; bit_num >= 0; --bit_num) {
flags = dskdat->bytes[byte_lane].bits[bit_num] & 7;
deskew = dskdat->bytes[byte_lane].bits[bit_num] >> 3;
if (print_enable)
debug(" %3d %c", deskew, fc[flags ^ 1]);
} /* for (bit_num = 7; bit_num >= 0; --bit_num) */
if (print_enable)
debug("\n");
}
}
static void override_deskew_settings(struct ddr_priv *priv, int if_num,
struct deskew_data *dskdat)
{
union cvmx_lmcx_phy_ctl phy_ctl;
union cvmx_lmcx_config lmc_config;
int bit, byte_lane, byte_limit;
u64 csr_data;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.phy_reset = 0;
phy_ctl.s.dsk_dbg_num_bits_sel = 1;
phy_ctl.s.dsk_dbg_offset = 0;
phy_ctl.s.dsk_dbg_clk_scaler = 3;
phy_ctl.s.dsk_dbg_wr_mode = 1;
phy_ctl.s.dsk_dbg_load_dis = 0;
phy_ctl.s.dsk_dbg_overwrt_ena = 0;
phy_ctl.s.phy_dsk_reset = 0;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
csr_data = 0;
// FIXME: can we ignore DBI?
for (bit = 0; bit < 8; ++bit) {
// fetch input and adjust
u64 bits = (dskdat->bytes[byte_lane].bits[bit] >> 3) &
0x7F;
/*
* lmc_general_purpose0.data[6:0] // DQ0
* lmc_general_purpose0.data[13:7] // DQ1
* lmc_general_purpose0.data[20:14] // DQ2
* lmc_general_purpose0.data[27:21] // DQ3
* lmc_general_purpose0.data[34:28] // DQ4
* lmc_general_purpose0.data[41:35] // DQ5
* lmc_general_purpose0.data[48:42] // DQ6
* lmc_general_purpose0.data[55:49] // DQ7
* lmc_general_purpose0.data[62:56] // DBI
*/
csr_data |= (bits << (7 * bit));
} /* for (bit = 0; bit < 8; ++bit) */
// update GP0 with the bit data for this byte lane
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num), csr_data);
lmc_rd(priv, CVMX_LMCX_GENERAL_PURPOSE0(if_num));
// start the deskew load sequence
phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
phy_ctl.s.dsk_dbg_rd_start = 1;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
// poll for read sequence to complete
do {
udelay(100);
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
}
// tell phy to use the new settings
phy_ctl.s.dsk_dbg_overwrt_ena = 1;
phy_ctl.s.dsk_dbg_rd_start = 0;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
phy_ctl.s.dsk_dbg_wr_mode = 0;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
}
static void process_by_rank_dac(struct ddr_priv *priv, int if_num,
int rank_mask, struct dac_data *dacdat)
{
union cvmx_lmcx_config lmc_config;
int rankx, byte_lane;
int byte_limit;
int rank_count;
struct dac_data dacsum;
int lane_probs;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
memset((void *)&dacsum, 0, sizeof(dacsum));
rank_count = 0;
lane_probs = 0;
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
rank_count++;
display_dac_dbi_settings(if_num, /*dac */ 1,
lmc_config.s.ecc_ena,
&dacdat[rankx].bytes[0],
"By-Ranks VREF");
// sum
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
if (rank_count == 2) {
int ranks_diff =
abs((dacsum.bytes[byte_lane] -
dacdat[rankx].bytes[byte_lane]));
// FIXME: is 19 a good number?
if (ranks_diff > 19)
lane_probs |= (1 << byte_lane);
}
dacsum.bytes[byte_lane] +=
dacdat[rankx].bytes[byte_lane];
}
}
// average
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++)
dacsum.bytes[byte_lane] /= rank_count; // FIXME: nint?
display_dac_dbi_settings(if_num, /*dac */ 1, lmc_config.s.ecc_ena,
&dacsum.bytes[0], "All-Rank VREF");
if (lane_probs) {
debug("N0.LMC%d: All-Rank VREF DAC Problem Bytelane(s): 0x%03x\n",
if_num, lane_probs);
}
// finally, write the averaged DAC values
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
load_dac_override(priv, if_num, dacsum.bytes[byte_lane],
byte_lane);
}
}
static void process_by_rank_dsk(struct ddr_priv *priv, int if_num,
int rank_mask, struct deskew_data *dskdat)
{
union cvmx_lmcx_config lmc_config;
int rankx, lane, bit;
int byte_limit;
struct deskew_data dsksum, dskcnt;
u16 deskew;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
byte_limit = ((lmc_config.s.mode32b) ? 4 : 8) + lmc_config.s.ecc_ena;
memset((void *)&dsksum, 0, sizeof(dsksum));
memset((void *)&dskcnt, 0, sizeof(dskcnt));
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
// sum ranks
for (lane = 0; lane < byte_limit; lane++) {
for (bit = 0; bit < 8; ++bit) {
deskew = dskdat[rankx].bytes[lane].bits[bit];
// if flags indicate sat hi or lo, skip it
if (deskew & 6)
continue;
// clear flags
dsksum.bytes[lane].bits[bit] +=
deskew & ~7;
// count entries
dskcnt.bytes[lane].bits[bit] += 1;
}
}
}
// average ranks
for (lane = 0; lane < byte_limit; lane++) {
for (bit = 0; bit < 8; ++bit) {
int div = dskcnt.bytes[lane].bits[bit];
if (div > 0) {
dsksum.bytes[lane].bits[bit] /= div;
// clear flags
dsksum.bytes[lane].bits[bit] &= ~7;
// set LOCK
dsksum.bytes[lane].bits[bit] |= 1;
} else {
// FIXME? use reset value?
dsksum.bytes[lane].bits[bit] =
(64 << 3) | 1;
}
}
}
// TME for FINAL version
display_deskew_settings(priv, if_num, &dsksum, /*VBL_TME */ 3);
// finally, write the averaged DESKEW values
override_deskew_settings(priv, if_num, &dsksum);
}
struct deskew_counts {
int saturated; // number saturated
int unlocked; // number unlocked
int nibrng_errs; // nibble range errors
int nibunl_errs; // nibble unlocked errors
int bitval_errs; // bit value errors
};
#define MIN_BITVAL 17
#define MAX_BITVAL 110
static void validate_deskew_training(struct ddr_priv *priv, int rank_mask,
int if_num, struct deskew_counts *counts,
int print_flags)
{
int byte_lane, bit_index, nib_num;
int nibrng_errs, nibunl_errs, bitval_errs;
union cvmx_lmcx_config lmc_config;
s16 nib_min[2], nib_max[2], nib_unl[2];
int byte_limit;
int print_enable = print_flags & 1;
struct deskew_data dskdat;
s16 flags, deskew;
const char *fc = " ?-=+*#&";
int bit_last;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
byte_limit = ((!lmc_config.s.mode32b) ? 8 : 4) + lmc_config.s.ecc_ena;
memset(counts, 0, sizeof(struct deskew_counts));
get_deskew_settings(priv, if_num, &dskdat);
if (print_enable) {
debug("N0.LMC%d: Deskew Settings: Bit => :",
if_num);
for (bit_index = 7; bit_index >= 0; --bit_index)
debug(" %3d ", bit_index);
debug("\n");
}
for (byte_lane = 0; byte_lane < byte_limit; byte_lane++) {
if (print_enable)
debug("N0.LMC%d: Bit Deskew Byte %d %s :",
if_num, byte_lane,
(print_flags & 2) ? "FINAL" : " ");
nib_min[0] = 127;
nib_min[1] = 127;
nib_max[0] = 0;
nib_max[1] = 0;
nib_unl[0] = 0;
nib_unl[1] = 0;
if (lmc_config.s.mode32b == 1 && byte_lane == 4) {
bit_last = 3;
if (print_enable)
debug(" ");
} else {
bit_last = 7;
}
for (bit_index = bit_last; bit_index >= 0; --bit_index) {
nib_num = (bit_index > 3) ? 1 : 0;
flags = dskdat.bytes[byte_lane].bits[bit_index] & 7;
deskew = dskdat.bytes[byte_lane].bits[bit_index] >> 3;
counts->saturated += !!(flags & 6);
// Do range calc even when locked; it could happen
// that a bit is still unlocked after final retry,
// and we want to have an external retry if a RANGE
// error is present at exit...
nib_min[nib_num] = min(nib_min[nib_num], deskew);
nib_max[nib_num] = max(nib_max[nib_num], deskew);
if (!(flags & 1)) { // only when not locked
counts->unlocked += 1;
nib_unl[nib_num] += 1;
}
if (print_enable)
debug(" %3d %c", deskew, fc[flags ^ 1]);
}
/*
* Now look for nibble errors
*
* For bit 55, it looks like a bit deskew problem. When the
* upper nibble of byte 6 needs to go to saturation, bit 7
* of byte 6 locks prematurely at 64. For DIMMs with raw
* card A and B, can we reset the deskew training when we
* encounter this case? The reset criteria should be looking
* at one nibble at a time for raw card A and B; if the
* bit-deskew setting within a nibble is different by > 33,
* we'll issue a reset to the bit deskew training.
*
* LMC0 Bit Deskew Byte(6): 64 0 - 0 - 0 - 26 61 35 64
*/
// upper nibble range, then lower nibble range
nibrng_errs = ((nib_max[1] - nib_min[1]) > 33) ? 1 : 0;
nibrng_errs |= ((nib_max[0] - nib_min[0]) > 33) ? 1 : 0;
// check for nibble all unlocked
nibunl_errs = ((nib_unl[0] == 4) || (nib_unl[1] == 4)) ? 1 : 0;
// check for bit value errors, ie < 17 or > 110
// FIXME? assume max always > MIN_BITVAL and min < MAX_BITVAL
bitval_errs = ((nib_max[1] > MAX_BITVAL) ||
(nib_max[0] > MAX_BITVAL)) ? 1 : 0;
bitval_errs |= ((nib_min[1] < MIN_BITVAL) ||
(nib_min[0] < MIN_BITVAL)) ? 1 : 0;
if ((nibrng_errs != 0 || nibunl_errs != 0 ||
bitval_errs != 0) && print_enable) {
debug(" %c%c%c",
(nibrng_errs) ? 'R' : ' ',
(nibunl_errs) ? 'U' : ' ',
(bitval_errs) ? 'V' : ' ');
}
if (print_enable)
debug("\n");
counts->nibrng_errs |= (nibrng_errs << byte_lane);
counts->nibunl_errs |= (nibunl_errs << byte_lane);
counts->bitval_errs |= (bitval_errs << byte_lane);
}
}
static unsigned short load_dac_override(struct ddr_priv *priv, int if_num,
int dac_value, int byte)
{
union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
// single bytelanes incr by 1; A is for ALL
int bytex = (byte == 0x0A) ? byte : byte + 1;
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
SET_DDR_DLL_CTL3(byte_sel, bytex);
SET_DDR_DLL_CTL3(offset, dac_value >> 1);
ddr_dll_ctl3.cn73xx.bit_select = 0x9; /* No-op */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.cn73xx.bit_select = 0xC; /* vref bypass setting load */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.cn73xx.bit_select = 0xD; /* vref bypass on. */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.cn73xx.bit_select = 0x9; /* No-op */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num)); // flush writes
return (unsigned short)GET_DDR_DLL_CTL3(offset);
}
// arg dac_or_dbi is 1 for DAC, 0 for DBI
// returns 9 entries (bytelanes 0 through 8) in settings[]
// returns 0 if OK, -1 if a problem
static int read_dac_dbi_settings(struct ddr_priv *priv, int if_num,
int dac_or_dbi, int *settings)
{
union cvmx_lmcx_phy_ctl phy_ctl;
int byte_lane, bit_num;
int deskew;
int dac_value;
int new_deskew_layout = 0;
new_deskew_layout = octeon_is_cpuid(OCTEON_CN73XX) ||
octeon_is_cpuid(OCTEON_CNF75XX);
new_deskew_layout |= (octeon_is_cpuid(OCTEON_CN78XX) &&
!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X));
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.dsk_dbg_clk_scaler = 3;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
bit_num = (dac_or_dbi) ? 4 : 5;
// DBI not available
if (bit_num == 5 && !new_deskew_layout)
return -1;
// FIXME: always assume ECC is available
for (byte_lane = 8; byte_lane >= 0; --byte_lane) {
//set byte lane and bit to read
phy_ctl.s.dsk_dbg_bit_sel = bit_num;
phy_ctl.s.dsk_dbg_byte_sel = byte_lane;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
//start read sequence
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.dsk_dbg_rd_start = 1;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
//poll for read sequence to complete
do {
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
} while (phy_ctl.s.dsk_dbg_rd_complete != 1);
// keep the flag bits where they are for DBI
deskew = phy_ctl.s.dsk_dbg_rd_data; /* >> 3 */
dac_value = phy_ctl.s.dsk_dbg_rd_data & 0xff;
settings[byte_lane] = (dac_or_dbi) ? dac_value : deskew;
}
return 0;
}
// print out the DBI settings array
// arg dac_or_dbi is 1 for DAC, 0 for DBI
static void display_dac_dbi_settings(int lmc, int dac_or_dbi,
int ecc_ena, int *settings, char *title)
{
int byte;
int flags;
int deskew;
const char *fc = " ?-=+*#&";
debug("N0.LMC%d: %s %s Settings %d:0 :",
lmc, title, (dac_or_dbi) ? "DAC" : "DBI", 7 + ecc_ena);
// FIXME: what about 32-bit mode?
for (byte = (7 + ecc_ena); byte >= 0; --byte) {
if (dac_or_dbi) { // DAC
flags = 1; // say its locked to get blank
deskew = settings[byte] & 0xff;
} else { // DBI
flags = settings[byte] & 7;
deskew = (settings[byte] >> 3) & 0x7f;
}
debug(" %3d %c", deskew, fc[flags ^ 1]);
}
debug("\n");
}
// Find a HWL majority
static int find_wl_majority(struct wlevel_bitcnt *bc, int *mx, int *mc,
int *xc, int *cc)
{
int ix, ic;
*mx = -1;
*mc = 0;
*xc = 0;
*cc = 0;
for (ix = 0; ix < 4; ix++) {
ic = bc->bitcnt[ix];
// make a bitmask of the ones with a count
if (ic > 0) {
*mc |= (1 << ix);
*cc += 1; // count how many had non-zero counts
}
// find the majority
if (ic > *xc) { // new max?
*xc = ic; // yes
*mx = ix; // set its index
}
}
return (*mx << 1);
}
// Evaluate the DAC settings array
static int evaluate_dac_settings(int if_64b, int ecc_ena, int *settings)
{
int byte, lane, dac, comp;
int last = (if_64b) ? 7 : 3;
// FIXME: change the check...???
// this looks only for sets of DAC values whose max/min differ by a lot
// let any EVEN go so long as it is within range...
for (byte = (last + ecc_ena); byte >= 0; --byte) {
dac = settings[byte] & 0xff;
for (lane = (last + ecc_ena); lane >= 0; --lane) {
comp = settings[lane] & 0xff;
if (abs((dac - comp)) > 25)
return 1;
}
}
return 0;
}
static void perform_offset_training(struct ddr_priv *priv, int rank_mask,
int if_num)
{
union cvmx_lmcx_phy_ctl lmc_phy_ctl;
u64 orig_phy_ctl;
const char *s;
/*
* 4.8.6 LMC Offset Training
*
* LMC requires input-receiver offset training.
*
* 1. Write LMC(0)_PHY_CTL[DAC_ON] = 1
*/
lmc_phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
orig_phy_ctl = lmc_phy_ctl.u64;
lmc_phy_ctl.s.dac_on = 1;
// allow full CSR override
s = lookup_env_ull(priv, "ddr_phy_ctl");
if (s)
lmc_phy_ctl.u64 = strtoull(s, NULL, 0);
// do not print or write if CSR does not change...
if (lmc_phy_ctl.u64 != orig_phy_ctl) {
debug("PHY_CTL : 0x%016llx\n",
lmc_phy_ctl.u64);
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), lmc_phy_ctl.u64);
}
/*
* 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0B and
* LMC(0)_SEQ_CTL[INIT_START] = 1.
*
* 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
*/
/* Start Offset training sequence */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x0B);
}
static void perform_internal_vref_training(struct ddr_priv *priv,
int rank_mask, int if_num)
{
union cvmx_lmcx_ext_config ext_config;
union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
// First, make sure all byte-lanes are out of VREF bypass mode
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
ddr_dll_ctl3.cn78xx.byte_sel = 0x0A; /* all byte-lanes */
ddr_dll_ctl3.cn78xx.bit_select = 0x09; /* No-op */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.cn78xx.bit_select = 0x0E; /* vref bypass off. */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
ddr_dll_ctl3.cn78xx.bit_select = 0x09; /* No-op */
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
/*
* 4.8.7 LMC Internal vref Training
*
* LMC requires input-reference-voltage training.
*
* 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 0.
*/
ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
ext_config.s.vrefint_seq_deskew = 0;
ddr_seq_print("Performing LMC sequence: vrefint_seq_deskew = %d\n",
ext_config.s.vrefint_seq_deskew);
lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
/*
* 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0a and
* LMC(0)_SEQ_CTL[INIT_START] = 1.
*
* 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
*/
/* Start LMC Internal vref Training */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
}
#define dbg_avg(format, ...) // debug(format, ##__VA_ARGS__)
static int process_samples_average(s16 *bytes, int num_samples,
int lmc, int lane_no)
{
int i, sadj, sum = 0, ret, asum, trunc;
s16 smin = 32767, smax = -32768;
int nmin, nmax;
//int rng;
dbg_avg("DBG_AVG%d.%d: ", lmc, lane_no);
for (i = 0; i < num_samples; i++) {
sum += bytes[i];
if (bytes[i] < smin)
smin = bytes[i];
if (bytes[i] > smax)
smax = bytes[i];
dbg_avg(" %3d", bytes[i]);
}
nmin = 0;
nmax = 0;
for (i = 0; i < num_samples; i++) {
if (bytes[i] == smin)
nmin += 1;
if (bytes[i] == smax)
nmax += 1;
}
dbg_avg(" (min=%3d/%d, max=%3d/%d, range=%2d, samples=%2d)",
smin, nmin, smax, nmax, rng, num_samples);
asum = sum - smin - smax;
sadj = divide_nint(asum * 10, (num_samples - 2));
trunc = asum / (num_samples - 2);
dbg_avg(" [%3d.%d, %3d]", sadj / 10, sadj % 10, trunc);
sadj = divide_nint(sadj, 10);
if (trunc & 1)
ret = trunc;
else if (sadj & 1)
ret = sadj;
else
ret = trunc + 1;
dbg_avg(" -> %3d\n", ret);
return ret;
}
#define DEFAULT_SAT_RETRY_LIMIT 11 // 1 + 10 retries
#define default_lock_retry_limit 20 // 20 retries
#define deskew_validation_delay 10000 // 10 millisecs
static int perform_deskew_training(struct ddr_priv *priv, int rank_mask,
int if_num, int spd_rawcard_aorb)
{
int unsaturated, locked;
int sat_retries, sat_retries_limit;
int lock_retries, lock_retries_total, lock_retries_limit;
int print_first;
int print_them_all;
struct deskew_counts dsk_counts;
union cvmx_lmcx_phy_ctl phy_ctl;
char *s;
int has_no_sat = octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
octeon_is_cpuid(OCTEON_CNF75XX);
int disable_bitval_retries = 1; // default to disabled
debug("N0.LMC%d: Performing Deskew Training.\n", if_num);
sat_retries = 0;
sat_retries_limit = (has_no_sat) ? 5 : DEFAULT_SAT_RETRY_LIMIT;
lock_retries_total = 0;
unsaturated = 0;
print_first = 1; // print the first one
// set to true for printing all normal deskew attempts
print_them_all = 0;
// provide override for bitval_errs causing internal VREF retries
s = env_get("ddr_disable_bitval_retries");
if (s)
disable_bitval_retries = !!simple_strtoul(s, NULL, 0);
lock_retries_limit = default_lock_retry_limit;
if ((octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) ||
(octeon_is_cpuid(OCTEON_CN73XX)) ||
(octeon_is_cpuid(OCTEON_CNF75XX)))
lock_retries_limit *= 2; // give new chips twice as many
do { /* while (sat_retries < sat_retry_limit) */
/*
* 4.8.8 LMC Deskew Training
*
* LMC requires input-read-data deskew training.
*
* 1. Write LMC(0)_EXT_CONFIG[VREFINT_SEQ_DESKEW] = 1.
*/
union cvmx_lmcx_ext_config ext_config;
ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
ext_config.s.vrefint_seq_deskew = 1;
ddr_seq_print
("Performing LMC sequence: vrefint_seq_deskew = %d\n",
ext_config.s.vrefint_seq_deskew);
lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_config.u64);
/*
* 2. Write LMC(0)_SEQ_CTL[SEQ_SEL] = 0x0A and
* LMC(0)_SEQ_CTL[INIT_START] = 1.
*
* 3. Wait for LMC(0)_SEQ_CTL[SEQ_COMPLETE] to be set to 1.
*/
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.phy_dsk_reset = 1; /* RESET Deskew sequence */
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
/* LMC Deskew Training */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
lock_retries = 0;
perform_deskew_training:
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.phy_dsk_reset = 0; /* Normal Deskew sequence */
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
/* LMC Deskew Training */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x0A);
// Moved this from validate_deskew_training
/* Allow deskew results to stabilize before evaluating them. */
udelay(deskew_validation_delay);
// Now go look at lock and saturation status...
validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
print_first);
// after printing the first and not doing them all, no more
if (print_first && !print_them_all)
print_first = 0;
unsaturated = (dsk_counts.saturated == 0);
locked = (dsk_counts.unlocked == 0);
// only do locking retries if unsaturated or rawcard A or B,
// otherwise full SAT retry
if (unsaturated || (spd_rawcard_aorb && !has_no_sat)) {
if (!locked) { // and not locked
lock_retries++;
lock_retries_total++;
if (lock_retries <= lock_retries_limit) {
goto perform_deskew_training;
} else {
debug("N0.LMC%d: LOCK RETRIES failed after %d retries\n",
if_num, lock_retries_limit);
}
} else {
// only print if we did try
if (lock_retries_total > 0)
debug("N0.LMC%d: LOCK RETRIES successful after %d retries\n",
if_num, lock_retries);
}
} /* if (unsaturated || spd_rawcard_aorb) */
++sat_retries;
/*
* At this point, check for a DDR4 RDIMM that will not
* benefit from SAT retries; if so, exit
*/
if (spd_rawcard_aorb && !has_no_sat) {
debug("N0.LMC%d: Deskew Training Loop: Exiting for RAWCARD == A or B.\n",
if_num);
break; // no sat or lock retries
}
} while (!unsaturated && (sat_retries < sat_retries_limit));
debug("N0.LMC%d: Deskew Training %s. %d sat-retries, %d lock-retries\n",
if_num, (sat_retries >= DEFAULT_SAT_RETRY_LIMIT) ?
"Timed Out" : "Completed", sat_retries - 1, lock_retries_total);
// FIXME? add saturation to reasons for fault return - give it a
// chance via Internal VREF
// FIXME? add OPTIONAL bit value to reasons for fault return -
// give it a chance via Internal VREF
if (dsk_counts.nibrng_errs != 0 || dsk_counts.nibunl_errs != 0 ||
(dsk_counts.bitval_errs != 0 && !disable_bitval_retries) ||
!unsaturated) {
debug("N0.LMC%d: Nibble or Saturation Error(s) found, returning FAULT\n",
if_num);
// FIXME: do we want this output always for errors?
validate_deskew_training(priv, rank_mask, if_num,
&dsk_counts, 1);
return -1; // we did retry locally, they did not help
}
// NOTE: we (currently) always print one last training validation
// before starting Read Leveling...
return 0;
}
#define SCALING_FACTOR (1000)
// NOTE: this gets called for 1-rank and 2-rank DIMMs in single-slot config
static int compute_vref_1slot_2rank(int rtt_wr, int rtt_park, int dqx_ctl,
int rank_count, int dram_connection)
{
u64 reff_s;
u64 rser_s = (dram_connection) ? 0 : 15;
u64 vdd = 1200;
u64 vref;
// 99 == HiZ
u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
1 * 1024 * 1024 : rtt_wr);
u64 rtt_park_s = (((rtt_park == 0) || ((rank_count == 1) &&
(rtt_wr != 0))) ?
1 * 1024 * 1024 : rtt_park);
u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
int vref_value;
u64 rangepc = 6000; // range1 base
u64 vrefpc;
int vref_range = 0;
reff_s = divide_nint((rtt_wr_s * rtt_park_s), (rtt_wr_s + rtt_park_s));
vref = (((rser_s + dqx_ctl_s) * SCALING_FACTOR) /
(rser_s + dqx_ctl_s + reff_s)) + SCALING_FACTOR;
vref = (vref * vdd) / 2 / SCALING_FACTOR;
vrefpc = (vref * 100 * 100) / vdd;
if (vrefpc < rangepc) { // < range1 base, use range2
vref_range = 1 << 6; // set bit A6 for range2
rangepc = 4500; // range2 base is 45%
}
vref_value = divide_nint(vrefpc - rangepc, 65);
if (vref_value < 0)
vref_value = vref_range; // set to base of range
else
vref_value |= vref_range;
debug("rtt_wr: %d, rtt_park: %d, dqx_ctl: %d, rank_count: %d\n",
rtt_wr, rtt_park, dqx_ctl, rank_count);
debug("rtt_wr_s: %lld, rtt_park_s: %lld, dqx_ctl_s: %lld, vref_value: 0x%x, range: %d\n",
rtt_wr_s, rtt_park_s, dqx_ctl_s, vref_value ^ vref_range,
vref_range ? 2 : 1);
return vref_value;
}
// NOTE: this gets called for 1-rank and 2-rank DIMMs in two-slot configs
static int compute_vref_2slot_2rank(int rtt_wr, int rtt_park_00,
int rtt_park_01,
int dqx_ctl, int rtt_nom,
int dram_connection)
{
u64 rser = (dram_connection) ? 0 : 15;
u64 vdd = 1200;
u64 vl, vlp, vcm;
u64 rd0, rd1, rpullup;
// 99 == HiZ
u64 rtt_wr_s = (((rtt_wr == 0) || rtt_wr == 99) ?
1 * 1024 * 1024 : rtt_wr);
u64 rtt_park_00_s = (rtt_park_00 == 0 ? 1 * 1024 * 1024 : rtt_park_00);
u64 rtt_park_01_s = (rtt_park_01 == 0 ? 1 * 1024 * 1024 : rtt_park_01);
u64 dqx_ctl_s = (dqx_ctl == 0 ? 1 * 1024 * 1024 : dqx_ctl);
u64 rtt_nom_s = (rtt_nom == 0 ? 1 * 1024 * 1024 : rtt_nom);
int vref_value;
u64 rangepc = 6000; // range1 base
u64 vrefpc;
int vref_range = 0;
// rd0 = (RTT_NOM (parallel) RTT_WR) + =
// ((RTT_NOM * RTT_WR) / (RTT_NOM + RTT_WR)) + RSER
rd0 = divide_nint((rtt_nom_s * rtt_wr_s),
(rtt_nom_s + rtt_wr_s)) + rser;
// rd1 = (RTT_PARK_00 (parallel) RTT_PARK_01) + RSER =
// ((RTT_PARK_00 * RTT_PARK_01) / (RTT_PARK_00 + RTT_PARK_01)) + RSER
rd1 = divide_nint((rtt_park_00_s * rtt_park_01_s),
(rtt_park_00_s + rtt_park_01_s)) + rser;
// rpullup = rd0 (parallel) rd1 = (rd0 * rd1) / (rd0 + rd1)
rpullup = divide_nint((rd0 * rd1), (rd0 + rd1));
// vl = (DQX_CTL / (DQX_CTL + rpullup)) * 1.2
vl = divide_nint((dqx_ctl_s * vdd), (dqx_ctl_s + rpullup));
// vlp = ((RSER / rd0) * (1.2 - vl)) + vl
vlp = divide_nint((rser * (vdd - vl)), rd0) + vl;
// vcm = (vlp + 1.2) / 2
vcm = divide_nint((vlp + vdd), 2);
// vrefpc = (vcm / 1.2) * 100
vrefpc = divide_nint((vcm * 100 * 100), vdd);
if (vrefpc < rangepc) { // < range1 base, use range2
vref_range = 1 << 6; // set bit A6 for range2
rangepc = 4500; // range2 base is 45%
}
vref_value = divide_nint(vrefpc - rangepc, 65);
if (vref_value < 0)
vref_value = vref_range; // set to base of range
else
vref_value |= vref_range;
debug("rtt_wr:%d, rtt_park_00:%d, rtt_park_01:%d, dqx_ctl:%d, rtt_nom:%d, vref_value:%d (0x%x)\n",
rtt_wr, rtt_park_00, rtt_park_01, dqx_ctl, rtt_nom, vref_value,
vref_value);
return vref_value;
}
// NOTE: only call this for DIMMs with 1 or 2 ranks, not 4.
static int compute_vref_val(struct ddr_priv *priv, int if_num, int rankx,
int dimm_count, int rank_count,
struct impedence_values *imp_values,
int is_stacked_die, int dram_connection)
{
int computed_final_vref_value = 0;
int enable_adjust = ENABLE_COMPUTED_VREF_ADJUSTMENT;
const char *s;
int rtt_wr, dqx_ctl, rtt_nom, index;
union cvmx_lmcx_modereg_params1 lmc_modereg_params1;
union cvmx_lmcx_modereg_params2 lmc_modereg_params2;
union cvmx_lmcx_comp_ctl2 comp_ctl2;
int rtt_park;
int rtt_park_00;
int rtt_park_01;
debug("N0.LMC%d.R%d: %s(...dram_connection = %d)\n",
if_num, rankx, __func__, dram_connection);
// allow some overrides...
s = env_get("ddr_adjust_computed_vref");
if (s) {
enable_adjust = !!simple_strtoul(s, NULL, 0);
if (!enable_adjust) {
debug("N0.LMC%d.R%d: DISABLE adjustment of computed VREF\n",
if_num, rankx);
}
}
s = env_get("ddr_set_computed_vref");
if (s) {
int new_vref = simple_strtoul(s, NULL, 0);
debug("N0.LMC%d.R%d: OVERRIDE computed VREF to 0x%x (%d)\n",
if_num, rankx, new_vref, new_vref);
return new_vref;
}
/*
* Calculate an alternative to the measured vref value
* but only for configurations we know how to...
*/
// We have code for 2-rank DIMMs in both 1-slot or 2-slot configs,
// and can use the 2-rank 1-slot code for 1-rank DIMMs in 1-slot
// configs, and can use the 2-rank 2-slot code for 1-rank DIMMs
// in 2-slot configs.
lmc_modereg_params1.u64 =
lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
lmc_modereg_params2.u64 =
lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num));
comp_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
dqx_ctl = imp_values->dqx_strength[comp_ctl2.s.dqx_ctl];
// WR always comes from the current rank
index = (lmc_modereg_params1.u64 >> (rankx * 12 + 5)) & 0x03;
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
index |= lmc_modereg_params1.u64 >> (51 + rankx - 2) & 0x04;
rtt_wr = imp_values->rtt_wr_ohms[index];
// separate calculations for 1 vs 2 DIMMs per LMC
if (dimm_count == 1) {
// PARK comes from this rank if 1-rank, otherwise other rank
index =
(lmc_modereg_params2.u64 >>
((rankx ^ (rank_count - 1)) * 10 + 0)) & 0x07;
rtt_park = imp_values->rtt_nom_ohms[index];
computed_final_vref_value =
compute_vref_1slot_2rank(rtt_wr, rtt_park, dqx_ctl,
rank_count, dram_connection);
} else {
// get both PARK values from the other DIMM
index =
(lmc_modereg_params2.u64 >> ((rankx ^ 0x02) * 10 + 0)) &
0x07;
rtt_park_00 = imp_values->rtt_nom_ohms[index];
index =
(lmc_modereg_params2.u64 >> ((rankx ^ 0x03) * 10 + 0)) &
0x07;
rtt_park_01 = imp_values->rtt_nom_ohms[index];
// NOM comes from this rank if 1-rank, otherwise other rank
index =
(lmc_modereg_params1.u64 >>
((rankx ^ (rank_count - 1)) * 12 + 9)) & 0x07;
rtt_nom = imp_values->rtt_nom_ohms[index];
computed_final_vref_value =
compute_vref_2slot_2rank(rtt_wr, rtt_park_00, rtt_park_01,
dqx_ctl, rtt_nom, dram_connection);
}
if (enable_adjust) {
union cvmx_lmcx_config lmc_config;
union cvmx_lmcx_control lmc_control;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
/*
* New computed vref = existing computed vref X
*
* The value of X is depending on different conditions.
* Both #122 and #139 are 2Rx4 RDIMM, while #124 is stacked
* die 2Rx4, so I conclude the results into two conditions:
*
* 1. Stacked Die: 2Rx4
* 1-slot: offset = 7. i, e New computed vref = existing
* computed vref 7
* 2-slot: offset = 6
*
* 2. Regular: 2Rx4
* 1-slot: offset = 3
* 2-slot: offset = 2
*/
// we know we never get called unless DDR4, so test just
// the other conditions
if (lmc_control.s.rdimm_ena == 1 &&
rank_count == 2 && lmc_config.s.mode_x4dev) {
// it must first be RDIMM and 2-rank and x4
int adj;
// now do according to stacked die or not...
if (is_stacked_die)
adj = (dimm_count == 1) ? -7 : -6;
else
adj = (dimm_count == 1) ? -3 : -2;
// we must have adjusted it, so print it out if
// verbosity is right
debug("N0.LMC%d.R%d: adjusting computed vref from %2d (0x%02x) to %2d (0x%02x)\n",
if_num, rankx, computed_final_vref_value,
computed_final_vref_value,
computed_final_vref_value + adj,
computed_final_vref_value + adj);
computed_final_vref_value += adj;
}
}
return computed_final_vref_value;
}
static void unpack_rlevel_settings(int if_bytemask, int ecc_ena,
struct rlevel_byte_data *rlevel_byte,
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank)
{
if ((if_bytemask & 0xff) == 0xff) {
if (ecc_ena) {
rlevel_byte[8].delay = lmc_rlevel_rank.s.byte7;
rlevel_byte[7].delay = lmc_rlevel_rank.s.byte6;
rlevel_byte[6].delay = lmc_rlevel_rank.s.byte5;
rlevel_byte[5].delay = lmc_rlevel_rank.s.byte4;
/* ECC */
rlevel_byte[4].delay = lmc_rlevel_rank.s.byte8;
} else {
rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7;
rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6;
rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5;
rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4;
}
} else {
rlevel_byte[8].delay = lmc_rlevel_rank.s.byte8; /* unused */
rlevel_byte[7].delay = lmc_rlevel_rank.s.byte7; /* unused */
rlevel_byte[6].delay = lmc_rlevel_rank.s.byte6; /* unused */
rlevel_byte[5].delay = lmc_rlevel_rank.s.byte5; /* unused */
rlevel_byte[4].delay = lmc_rlevel_rank.s.byte4; /* ECC */
}
rlevel_byte[3].delay = lmc_rlevel_rank.s.byte3;
rlevel_byte[2].delay = lmc_rlevel_rank.s.byte2;
rlevel_byte[1].delay = lmc_rlevel_rank.s.byte1;
rlevel_byte[0].delay = lmc_rlevel_rank.s.byte0;
}
static void pack_rlevel_settings(int if_bytemask, int ecc_ena,
struct rlevel_byte_data *rlevel_byte,
union cvmx_lmcx_rlevel_rankx
*final_rlevel_rank)
{
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank = *final_rlevel_rank;
if ((if_bytemask & 0xff) == 0xff) {
if (ecc_ena) {
lmc_rlevel_rank.s.byte7 = rlevel_byte[8].delay;
lmc_rlevel_rank.s.byte6 = rlevel_byte[7].delay;
lmc_rlevel_rank.s.byte5 = rlevel_byte[6].delay;
lmc_rlevel_rank.s.byte4 = rlevel_byte[5].delay;
/* ECC */
lmc_rlevel_rank.s.byte8 = rlevel_byte[4].delay;
} else {
lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
}
} else {
lmc_rlevel_rank.s.byte8 = rlevel_byte[8].delay;
lmc_rlevel_rank.s.byte7 = rlevel_byte[7].delay;
lmc_rlevel_rank.s.byte6 = rlevel_byte[6].delay;
lmc_rlevel_rank.s.byte5 = rlevel_byte[5].delay;
lmc_rlevel_rank.s.byte4 = rlevel_byte[4].delay;
}
lmc_rlevel_rank.s.byte3 = rlevel_byte[3].delay;
lmc_rlevel_rank.s.byte2 = rlevel_byte[2].delay;
lmc_rlevel_rank.s.byte1 = rlevel_byte[1].delay;
lmc_rlevel_rank.s.byte0 = rlevel_byte[0].delay;
*final_rlevel_rank = lmc_rlevel_rank;
}
/////////////////// These are the RLEVEL settings display routines
// flags
#define WITH_NOTHING 0
#define WITH_SCORE 1
#define WITH_AVERAGE 2
#define WITH_FINAL 4
#define WITH_COMPUTE 8
static void do_display_rl(int if_num,
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
int rank, int flags, int score)
{
char score_buf[16];
char *msg_buf;
char hex_buf[20];
if (flags & WITH_SCORE) {
snprintf(score_buf, sizeof(score_buf), "(%d)", score);
} else {
score_buf[0] = ' ';
score_buf[1] = 0;
}
if (flags & WITH_AVERAGE) {
msg_buf = " DELAY AVERAGES ";
} else if (flags & WITH_FINAL) {
msg_buf = " FINAL SETTINGS ";
} else if (flags & WITH_COMPUTE) {
msg_buf = " COMPUTED DELAYS ";
} else {
snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
(unsigned long long)lmc_rlevel_rank.u64);
msg_buf = hex_buf;
}
debug("N0.LMC%d.R%d: Rlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d %s\n",
if_num, rank, lmc_rlevel_rank.s.status, msg_buf,
lmc_rlevel_rank.s.byte8, lmc_rlevel_rank.s.byte7,
lmc_rlevel_rank.s.byte6, lmc_rlevel_rank.s.byte5,
lmc_rlevel_rank.s.byte4, lmc_rlevel_rank.s.byte3,
lmc_rlevel_rank.s.byte2, lmc_rlevel_rank.s.byte1,
lmc_rlevel_rank.s.byte0, score_buf);
}
static void display_rl(int if_num,
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank, int rank)
{
do_display_rl(if_num, lmc_rlevel_rank, rank, 0, 0);
}
static void display_rl_with_score(int if_num,
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
int rank, int score)
{
do_display_rl(if_num, lmc_rlevel_rank, rank, 1, score);
}
static void display_rl_with_final(int if_num,
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
int rank)
{
do_display_rl(if_num, lmc_rlevel_rank, rank, 4, 0);
}
static void display_rl_with_computed(int if_num,
union cvmx_lmcx_rlevel_rankx
lmc_rlevel_rank, int rank, int score)
{
do_display_rl(if_num, lmc_rlevel_rank, rank, 9, score);
}
// flag values
#define WITH_RODT_BLANK 0
#define WITH_RODT_SKIPPING 1
#define WITH_RODT_BESTROW 2
#define WITH_RODT_BESTSCORE 3
// control
#define SKIP_SKIPPING 1
static const char *with_rodt_canned_msgs[4] = {
" ", "SKIPPING ", "BEST ROW ", "BEST SCORE"
};
static void display_rl_with_rodt(int if_num,
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank,
int rank, int score,
int nom_ohms, int rodt_ohms, int flag)
{
const char *msg_buf;
char set_buf[20];
#if SKIP_SKIPPING
if (flag == WITH_RODT_SKIPPING)
return;
#endif
msg_buf = with_rodt_canned_msgs[flag];
if (nom_ohms < 0) {
snprintf(set_buf, sizeof(set_buf), " RODT %3d ",
rodt_ohms);
} else {
snprintf(set_buf, sizeof(set_buf), "NOM %3d RODT %3d", nom_ohms,
rodt_ohms);
}
debug("N0.LMC%d.R%d: Rlevel %s %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d (%d)\n",
if_num, rank, set_buf, msg_buf, lmc_rlevel_rank.s.byte8,
lmc_rlevel_rank.s.byte7, lmc_rlevel_rank.s.byte6,
lmc_rlevel_rank.s.byte5, lmc_rlevel_rank.s.byte4,
lmc_rlevel_rank.s.byte3, lmc_rlevel_rank.s.byte2,
lmc_rlevel_rank.s.byte1, lmc_rlevel_rank.s.byte0, score);
}
static void do_display_wl(int if_num,
union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
int rank, int flags)
{
char *msg_buf;
char hex_buf[20];
if (flags & WITH_FINAL) {
msg_buf = " FINAL SETTINGS ";
} else {
snprintf(hex_buf, sizeof(hex_buf), "0x%016llX",
(unsigned long long)lmc_wlevel_rank.u64);
msg_buf = hex_buf;
}
debug("N0.LMC%d.R%d: Wlevel Rank %#4x, %s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
if_num, rank, lmc_wlevel_rank.s.status, msg_buf,
lmc_wlevel_rank.s.byte8, lmc_wlevel_rank.s.byte7,
lmc_wlevel_rank.s.byte6, lmc_wlevel_rank.s.byte5,
lmc_wlevel_rank.s.byte4, lmc_wlevel_rank.s.byte3,
lmc_wlevel_rank.s.byte2, lmc_wlevel_rank.s.byte1,
lmc_wlevel_rank.s.byte0);
}
static void display_wl(int if_num,
union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank, int rank)
{
do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_NOTHING);
}
static void display_wl_with_final(int if_num,
union cvmx_lmcx_wlevel_rankx lmc_wlevel_rank,
int rank)
{
do_display_wl(if_num, lmc_wlevel_rank, rank, WITH_FINAL);
}
// pretty-print bitmask adjuster
static u64 ppbm(u64 bm)
{
if (bm != 0ul) {
while ((bm & 0x0fful) == 0ul)
bm >>= 4;
}
return bm;
}
// xlate PACKED index to UNPACKED index to use with rlevel_byte
#define XPU(i, e) (((i) < 4) ? (i) : (((i) < 8) ? (i) + (e) : 4))
// xlate UNPACKED index to PACKED index to use with rlevel_bitmask
#define XUP(i, e) (((i) < 4) ? (i) : (e) ? (((i) > 4) ? (i) - 1 : 8) : (i))
// flag values
#define WITH_WL_BITMASKS 0
#define WITH_RL_BITMASKS 1
#define WITH_RL_MASK_SCORES 2
#define WITH_RL_SEQ_SCORES 3
static void do_display_bm(int if_num, int rank, void *bm,
int flags, int ecc)
{
if (flags == WITH_WL_BITMASKS) {
// wlevel_bitmask array in PACKED index order, so just
// print them
int *bitmasks = (int *)bm;
debug("N0.LMC%d.R%d: Wlevel Debug Bitmasks : %05x %05x %05x %05x %05x %05x %05x %05x %05x\n",
if_num, rank, bitmasks[8], bitmasks[7], bitmasks[6],
bitmasks[5], bitmasks[4], bitmasks[3], bitmasks[2],
bitmasks[1], bitmasks[0]
);
} else if (flags == WITH_RL_BITMASKS) {
// rlevel_bitmask array in PACKED index order, so just
// print them
struct rlevel_bitmask *rlevel_bitmask =
(struct rlevel_bitmask *)bm;
debug("N0.LMC%d.R%d: Rlevel Debug Bitmasks 8:0 : %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx %05llx\n",
if_num, rank, ppbm(rlevel_bitmask[8].bm),
ppbm(rlevel_bitmask[7].bm), ppbm(rlevel_bitmask[6].bm),
ppbm(rlevel_bitmask[5].bm), ppbm(rlevel_bitmask[4].bm),
ppbm(rlevel_bitmask[3].bm), ppbm(rlevel_bitmask[2].bm),
ppbm(rlevel_bitmask[1].bm), ppbm(rlevel_bitmask[0].bm)
);
} else if (flags == WITH_RL_MASK_SCORES) {
// rlevel_bitmask array in PACKED index order, so just
// print them
struct rlevel_bitmask *rlevel_bitmask =
(struct rlevel_bitmask *)bm;
debug("N0.LMC%d.R%d: Rlevel Debug Bitmask Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
if_num, rank, rlevel_bitmask[8].errs,
rlevel_bitmask[7].errs, rlevel_bitmask[6].errs,
rlevel_bitmask[5].errs, rlevel_bitmask[4].errs,
rlevel_bitmask[3].errs, rlevel_bitmask[2].errs,
rlevel_bitmask[1].errs, rlevel_bitmask[0].errs);
} else if (flags == WITH_RL_SEQ_SCORES) {
// rlevel_byte array in UNPACKED index order, so xlate
// and print them
struct rlevel_byte_data *rlevel_byte =
(struct rlevel_byte_data *)bm;
debug("N0.LMC%d.R%d: Rlevel Debug Non-seq Scores 8:0 : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
if_num, rank, rlevel_byte[XPU(8, ecc)].sqerrs,
rlevel_byte[XPU(7, ecc)].sqerrs,
rlevel_byte[XPU(6, ecc)].sqerrs,
rlevel_byte[XPU(5, ecc)].sqerrs,
rlevel_byte[XPU(4, ecc)].sqerrs,
rlevel_byte[XPU(3, ecc)].sqerrs,
rlevel_byte[XPU(2, ecc)].sqerrs,
rlevel_byte[XPU(1, ecc)].sqerrs,
rlevel_byte[XPU(0, ecc)].sqerrs);
}
}
static void display_wl_bm(int if_num, int rank, int *bitmasks)
{
do_display_bm(if_num, rank, (void *)bitmasks, WITH_WL_BITMASKS, 0);
}
static void display_rl_bm(int if_num, int rank,
struct rlevel_bitmask *bitmasks, int ecc_ena)
{
do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_BITMASKS,
ecc_ena);
}
static void display_rl_bm_scores(int if_num, int rank,
struct rlevel_bitmask *bitmasks, int ecc_ena)
{
do_display_bm(if_num, rank, (void *)bitmasks, WITH_RL_MASK_SCORES,
ecc_ena);
}
static void display_rl_seq_scores(int if_num, int rank,
struct rlevel_byte_data *bytes, int ecc_ena)
{
do_display_bm(if_num, rank, (void *)bytes, WITH_RL_SEQ_SCORES, ecc_ena);
}
#define RODT_OHMS_COUNT 8
#define RTT_NOM_OHMS_COUNT 8
#define RTT_NOM_TABLE_COUNT 8
#define RTT_WR_OHMS_COUNT 8
#define DIC_OHMS_COUNT 3
#define DRIVE_STRENGTH_COUNT 15
static unsigned char ddr4_rodt_ohms[RODT_OHMS_COUNT] = {
0, 40, 60, 80, 120, 240, 34, 48 };
static unsigned char ddr4_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
0, 60, 120, 40, 240, 48, 80, 34 };
static unsigned char ddr4_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
0, 4, 2, 6, 1, 5, 3, 7 };
// setting HiZ ohms to 99 for computed vref
static unsigned char ddr4_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = {
0, 120, 240, 99, 80 };
static unsigned char ddr4_dic_ohms[DIC_OHMS_COUNT] = { 34, 48 };
static short ddr4_drive_strength[DRIVE_STRENGTH_COUNT] = {
0, 0, 26, 30, 34, 40, 48, 68, 0, 0, 0, 0, 0, 0, 0 };
static short ddr4_dqx_strength[DRIVE_STRENGTH_COUNT] = {
0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
struct impedence_values ddr4_impedence_val = {
.rodt_ohms = ddr4_rodt_ohms,
.rtt_nom_ohms = ddr4_rtt_nom_ohms,
.rtt_nom_table = ddr4_rtt_nom_table,
.rtt_wr_ohms = ddr4_rtt_wr_ohms,
.dic_ohms = ddr4_dic_ohms,
.drive_strength = ddr4_drive_strength,
.dqx_strength = ddr4_dqx_strength,
};
static unsigned char ddr3_rodt_ohms[RODT_OHMS_COUNT] = {
0, 20, 30, 40, 60, 120, 0, 0 };
static unsigned char ddr3_rtt_nom_ohms[RTT_NOM_OHMS_COUNT] = {
0, 60, 120, 40, 20, 30, 0, 0 };
static unsigned char ddr3_rtt_nom_table[RTT_NOM_TABLE_COUNT] = {
0, 2, 1, 3, 5, 4, 0, 0 };
static unsigned char ddr3_rtt_wr_ohms[RTT_WR_OHMS_COUNT] = { 0, 60, 120 };
static unsigned char ddr3_dic_ohms[DIC_OHMS_COUNT] = { 40, 34 };
static short ddr3_drive_strength[DRIVE_STRENGTH_COUNT] = {
0, 24, 27, 30, 34, 40, 48, 60, 0, 0, 0, 0, 0, 0, 0 };
static struct impedence_values ddr3_impedence_val = {
.rodt_ohms = ddr3_rodt_ohms,
.rtt_nom_ohms = ddr3_rtt_nom_ohms,
.rtt_nom_table = ddr3_rtt_nom_table,
.rtt_wr_ohms = ddr3_rtt_wr_ohms,
.dic_ohms = ddr3_dic_ohms,
.drive_strength = ddr3_drive_strength,
.dqx_strength = ddr3_drive_strength,
};
static u64 hertz_to_psecs(u64 hertz)
{
/* Clock in psecs */
return divide_nint((u64)1000 * 1000 * 1000 * 1000, hertz);
}
#define DIVIDEND_SCALE 1000 /* Scale to avoid rounding error. */
static u64 psecs_to_mts(u64 psecs)
{
return divide_nint(divide_nint((u64)(2 * 1000000 * DIVIDEND_SCALE),
psecs), DIVIDEND_SCALE);
}
#define WITHIN(v, b, m) (((v) >= ((b) - (m))) && ((v) <= ((b) + (m))))
static unsigned long pretty_psecs_to_mts(u64 psecs)
{
u64 ret = 0; // default to error
if (WITHIN(psecs, 2500, 1))
ret = 800;
else if (WITHIN(psecs, 1875, 1))
ret = 1066;
else if (WITHIN(psecs, 1500, 1))
ret = 1333;
else if (WITHIN(psecs, 1250, 1))
ret = 1600;
else if (WITHIN(psecs, 1071, 1))
ret = 1866;
else if (WITHIN(psecs, 937, 1))
ret = 2133;
else if (WITHIN(psecs, 833, 1))
ret = 2400;
else if (WITHIN(psecs, 750, 1))
ret = 2666;
return ret;
}
static u64 mts_to_hertz(u64 mts)
{
return ((mts * 1000 * 1000) / 2);
}
static int compute_rc3x(int64_t tclk_psecs)
{
long speed;
long tclk_psecs_min, tclk_psecs_max;
long data_rate_mhz, data_rate_mhz_min, data_rate_mhz_max;
int rc3x;
#define ENCODING_BASE 1240
data_rate_mhz = psecs_to_mts(tclk_psecs);
/*
* 2400 MT/s is a special case. Using integer arithmetic it rounds
* from 833 psecs to 2401 MT/s. Force it to 2400 to pick the
* proper setting from the table.
*/
if (tclk_psecs == 833)
data_rate_mhz = 2400;
for (speed = ENCODING_BASE; speed < 3200; speed += 20) {
int error = 0;
/* Clock in psecs */
tclk_psecs_min = hertz_to_psecs(mts_to_hertz(speed + 00));
/* Clock in psecs */
tclk_psecs_max = hertz_to_psecs(mts_to_hertz(speed + 18));
data_rate_mhz_min = psecs_to_mts(tclk_psecs_min);
data_rate_mhz_max = psecs_to_mts(tclk_psecs_max);
/* Force alingment to multiple to avound rounding errors. */
data_rate_mhz_min = ((data_rate_mhz_min + 18) / 20) * 20;
data_rate_mhz_max = ((data_rate_mhz_max + 18) / 20) * 20;
error += (speed + 00 != data_rate_mhz_min);
error += (speed + 20 != data_rate_mhz_max);
rc3x = (speed - ENCODING_BASE) / 20;
if (data_rate_mhz <= (speed + 20))
break;
}
return rc3x;
}
/*
* static global variables needed, so that functions (loops) can be
* restructured from the main huge function. Its not elegant, but the
* only way to break the original functions like init_octeon3_ddr3_interface()
* into separate logical smaller functions with less indentation levels.
*/
static int if_num __section(".data");
static u32 if_mask __section(".data");
static int ddr_hertz __section(".data");
static struct ddr_conf *ddr_conf __section(".data");
static const struct dimm_odt_config *odt_1rank_config __section(".data");
static const struct dimm_odt_config *odt_2rank_config __section(".data");
static const struct dimm_odt_config *odt_4rank_config __section(".data");
static struct dimm_config *dimm_config_table __section(".data");
static const struct dimm_odt_config *odt_config __section(".data");
static const struct ddr3_custom_config *c_cfg __section(".data");
static int odt_idx __section(".data");
static ulong tclk_psecs __section(".data");
static ulong eclk_psecs __section(".data");
static int row_bits __section(".data");
static int col_bits __section(".data");
static int num_banks __section(".data");
static int num_ranks __section(".data");
static int dram_width __section(".data");
static int dimm_count __section(".data");
/* Accumulate and report all the errors before giving up */
static int fatal_error __section(".data");
/* Flag that indicates safe DDR settings should be used */
static int safe_ddr_flag __section(".data");
/* Octeon II Default: 64bit interface width */
static int if_64b __section(".data");
static int if_bytemask __section(".data");
static u32 mem_size_mbytes __section(".data");
static unsigned int didx __section(".data");
static int bank_bits __section(".data");
static int bunk_enable __section(".data");
static int rank_mask __section(".data");
static int column_bits_start __section(".data");
static int row_lsb __section(".data");
static int pbank_lsb __section(".data");
static int use_ecc __section(".data");
static int mtb_psec __section(".data");
static short ftb_dividend __section(".data");
static short ftb_divisor __section(".data");
static int taamin __section(".data");
static int tckmin __section(".data");
static int cl __section(".data");
static int min_cas_latency __section(".data");
static int max_cas_latency __section(".data");
static int override_cas_latency __section(".data");
static int ddr_rtt_nom_auto __section(".data");
static int ddr_rodt_ctl_auto __section(".data");
static int spd_addr __section(".data");
static int spd_org __section(".data");
static int spd_banks __section(".data");
static int spd_rdimm __section(".data");
static int spd_dimm_type __section(".data");
static int spd_ecc __section(".data");
static u32 spd_cas_latency __section(".data");
static int spd_mtb_dividend __section(".data");
static int spd_mtb_divisor __section(".data");
static int spd_tck_min __section(".data");
static int spd_taa_min __section(".data");
static int spd_twr __section(".data");
static int spd_trcd __section(".data");
static int spd_trrd __section(".data");
static int spd_trp __section(".data");
static int spd_tras __section(".data");
static int spd_trc __section(".data");
static int spd_trfc __section(".data");
static int spd_twtr __section(".data");
static int spd_trtp __section(".data");
static int spd_tfaw __section(".data");
static int spd_addr_mirror __section(".data");
static int spd_package __section(".data");
static int spd_rawcard __section(".data");
static int spd_rawcard_aorb __section(".data");
static int spd_rdimm_registers __section(".data");
static int spd_thermal_sensor __section(".data");
static int is_stacked_die __section(".data");
static int is_3ds_dimm __section(".data");
// 3DS: logical ranks per package rank
static int lranks_per_prank __section(".data");
// 3DS: logical ranks bits
static int lranks_bits __section(".data");
// in Mbits; only used for 3DS
static int die_capacity __section(".data");
static enum ddr_type ddr_type __section(".data");
static int twr __section(".data");
static int trcd __section(".data");
static int trrd __section(".data");
static int trp __section(".data");
static int tras __section(".data");
static int trc __section(".data");
static int trfc __section(".data");
static int twtr __section(".data");
static int trtp __section(".data");
static int tfaw __section(".data");
static int ddr4_tckavgmin __section(".data");
static int ddr4_tckavgmax __section(".data");
static int ddr4_trdcmin __section(".data");
static int ddr4_trpmin __section(".data");
static int ddr4_trasmin __section(".data");
static int ddr4_trcmin __section(".data");
static int ddr4_trfc1min __section(".data");
static int ddr4_trfc2min __section(".data");
static int ddr4_trfc4min __section(".data");
static int ddr4_tfawmin __section(".data");
static int ddr4_trrd_smin __section(".data");
static int ddr4_trrd_lmin __section(".data");
static int ddr4_tccd_lmin __section(".data");
static int wl_mask_err __section(".data");
static int wl_loops __section(".data");
static int default_rtt_nom[4] __section(".data");
static int dyn_rtt_nom_mask __section(".data");
static struct impedence_values *imp_val __section(".data");
static char default_rodt_ctl __section(".data");
// default to disabled (ie, try LMC restart, not chip reset)
static int ddr_disable_chip_reset __section(".data");
static const char *dimm_type_name __section(".data");
static int match_wl_rtt_nom __section(".data");
struct hwl_alt_by_rank {
u16 hwl_alt_mask; // mask of bytelanes with alternate
u16 hwl_alt_delay[9]; // bytelane alternate avail if mask=1
};
static struct hwl_alt_by_rank hwl_alts[4] __section(".data");
#define DEFAULT_INTERNAL_VREF_TRAINING_LIMIT 3 // was: 5
static int internal_retries __section(".data");
static int deskew_training_errors __section(".data");
static struct deskew_counts deskew_training_results __section(".data");
static int disable_deskew_training __section(".data");
static int restart_if_dsk_incomplete __section(".data");
static int dac_eval_retries __section(".data");
static int dac_settings[9] __section(".data");
static int num_samples __section(".data");
static int sample __section(".data");
static int lane __section(".data");
static int last_lane __section(".data");
static int total_dac_eval_retries __section(".data");
static int dac_eval_exhausted __section(".data");
#define DEFAULT_DAC_SAMPLES 7 // originally was 5
#define DAC_RETRIES_LIMIT 2
struct bytelane_sample {
s16 bytes[DEFAULT_DAC_SAMPLES];
};
static struct bytelane_sample lanes[9] __section(".data");
static char disable_sequential_delay_check __section(".data");
static int wl_print __section(".data");
static int enable_by_rank_init __section(".data");
static int saved_rank_mask __section(".data");
static int by_rank __section(".data");
static struct deskew_data rank_dsk[4] __section(".data");
static struct dac_data rank_dac[4] __section(".data");
// todo: perhaps remove node at some time completely?
static int node __section(".data");
static int base_cl __section(".data");
/* Parameters from DDR3 Specifications */
#define DDR3_TREFI 7800000 /* 7.8 us */
#define DDR3_ZQCS 80000ull /* 80 ns */
#define DDR3_ZQCS_INTERNAL 1280000000ull /* 128ms/100 */
#define DDR3_TCKE 5000 /* 5 ns */
#define DDR3_TMRD 4 /* 4 nCK */
#define DDR3_TDLLK 512 /* 512 nCK */
#define DDR3_TMPRR 1 /* 1 nCK */
#define DDR3_TWLMRD 40 /* 40 nCK */
#define DDR3_TWLDQSEN 25 /* 25 nCK */
/* Parameters from DDR4 Specifications */
#define DDR4_TMRD 8 /* 8 nCK */
#define DDR4_TDLLK 768 /* 768 nCK */
static void lmc_config(struct ddr_priv *priv)
{
union cvmx_lmcx_config cfg;
char *s;
cfg.u64 = 0;
cfg.cn78xx.ecc_ena = use_ecc;
cfg.cn78xx.row_lsb = encode_row_lsb_ddr3(row_lsb);
cfg.cn78xx.pbank_lsb = encode_pbank_lsb_ddr3(pbank_lsb);
cfg.cn78xx.idlepower = 0; /* Disabled */
s = lookup_env(priv, "ddr_idlepower");
if (s)
cfg.cn78xx.idlepower = simple_strtoul(s, NULL, 0);
cfg.cn78xx.forcewrite = 0; /* Disabled */
/* Include memory reference address in the ECC */
cfg.cn78xx.ecc_adr = 1;
s = lookup_env(priv, "ddr_ecc_adr");
if (s)
cfg.cn78xx.ecc_adr = simple_strtoul(s, NULL, 0);
cfg.cn78xx.reset = 0;
/*
* Program LMC0_CONFIG[24:18], ref_zqcs_int(6:0) to
* RND-DN(tREFI/clkPeriod/512) Program LMC0_CONFIG[36:25],
* ref_zqcs_int(18:7) to
* RND-DN(ZQCS_Interval/clkPeriod/(512*128)). Note that this
* value should always be greater than 32, to account for
* resistor calibration delays.
*/
cfg.cn78xx.ref_zqcs_int = ((DDR3_TREFI / tclk_psecs / 512) & 0x7f);
cfg.cn78xx.ref_zqcs_int |=
((max(33ull, (DDR3_ZQCS_INTERNAL / (tclk_psecs / 100) /
(512 * 128))) & 0xfff) << 7);
cfg.cn78xx.early_dqx = 1; /* Default to enabled */
s = lookup_env(priv, "ddr_early_dqx");
if (!s)
s = lookup_env(priv, "ddr%d_early_dqx", if_num);
if (s)
cfg.cn78xx.early_dqx = simple_strtoul(s, NULL, 0);
cfg.cn78xx.sref_with_dll = 0;
cfg.cn78xx.rank_ena = bunk_enable;
cfg.cn78xx.rankmask = rank_mask; /* Set later */
cfg.cn78xx.mirrmask = (spd_addr_mirror << 1 | spd_addr_mirror << 3) &
rank_mask;
/* Set once and don't change it. */
cfg.cn78xx.init_status = rank_mask;
cfg.cn78xx.early_unload_d0_r0 = 0;
cfg.cn78xx.early_unload_d0_r1 = 0;
cfg.cn78xx.early_unload_d1_r0 = 0;
cfg.cn78xx.early_unload_d1_r1 = 0;
cfg.cn78xx.scrz = 0;
if (octeon_is_cpuid(OCTEON_CN70XX))
cfg.cn78xx.mode32b = 1; /* Read-only. Always 1. */
cfg.cn78xx.mode_x4dev = (dram_width == 4) ? 1 : 0;
cfg.cn78xx.bg2_enable = ((ddr_type == DDR4_DRAM) &&
(dram_width == 16)) ? 0 : 1;
s = lookup_env_ull(priv, "ddr_config");
if (s)
cfg.u64 = simple_strtoull(s, NULL, 0);
debug("LMC_CONFIG : 0x%016llx\n",
cfg.u64);
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
}
static void lmc_control(struct ddr_priv *priv)
{
union cvmx_lmcx_control ctrl;
char *s;
ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
ctrl.s.rdimm_ena = spd_rdimm;
ctrl.s.bwcnt = 0; /* Clear counter later */
if (spd_rdimm)
ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_rdimm);
else
ctrl.s.ddr2t = (safe_ddr_flag ? 1 : c_cfg->ddr2t_udimm);
ctrl.s.pocas = 0;
ctrl.s.fprch2 = (safe_ddr_flag ? 2 : c_cfg->fprch2);
ctrl.s.throttle_rd = safe_ddr_flag ? 1 : 0;
ctrl.s.throttle_wr = safe_ddr_flag ? 1 : 0;
ctrl.s.inorder_rd = safe_ddr_flag ? 1 : 0;
ctrl.s.inorder_wr = safe_ddr_flag ? 1 : 0;
ctrl.s.elev_prio_dis = safe_ddr_flag ? 1 : 0;
/* discards writes to addresses that don't exist in the DRAM */
ctrl.s.nxm_write_en = 0;
ctrl.s.max_write_batch = 8;
ctrl.s.xor_bank = 1;
ctrl.s.auto_dclkdis = 1;
ctrl.s.int_zqcs_dis = 0;
ctrl.s.ext_zqcs_dis = 0;
ctrl.s.bprch = 1;
ctrl.s.wodt_bprch = 1;
ctrl.s.rodt_bprch = 1;
s = lookup_env(priv, "ddr_xor_bank");
if (s)
ctrl.s.xor_bank = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_2t");
if (s)
ctrl.s.ddr2t = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_fprch2");
if (s)
ctrl.s.fprch2 = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_bprch");
if (s)
ctrl.s.bprch = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_wodt_bprch");
if (s)
ctrl.s.wodt_bprch = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rodt_bprch");
if (s)
ctrl.s.rodt_bprch = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_int_zqcs_dis");
if (s)
ctrl.s.int_zqcs_dis = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_ext_zqcs_dis");
if (s)
ctrl.s.ext_zqcs_dis = simple_strtoul(s, NULL, 0);
s = lookup_env_ull(priv, "ddr_control");
if (s)
ctrl.u64 = simple_strtoull(s, NULL, 0);
debug("LMC_CONTROL : 0x%016llx\n",
ctrl.u64);
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
}
static void lmc_timing_params0(struct ddr_priv *priv)
{
union cvmx_lmcx_timing_params0 tp0;
unsigned int trp_value;
char *s;
tp0.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS0(if_num));
trp_value = divide_roundup(trp, tclk_psecs) - 1;
debug("TIMING_PARAMS0[TRP]: NEW 0x%x, OLD 0x%x\n", trp_value,
trp_value +
(unsigned int)(divide_roundup(max(4ull * tclk_psecs, 7500ull),
tclk_psecs)) - 4);
s = lookup_env_ull(priv, "ddr_use_old_trp");
if (s) {
if (!!simple_strtoull(s, NULL, 0)) {
trp_value +=
divide_roundup(max(4ull * tclk_psecs, 7500ull),
tclk_psecs) - 4;
debug("TIMING_PARAMS0[trp]: USING OLD 0x%x\n",
trp_value);
}
}
tp0.cn78xx.txpr =
divide_roundup(max(5ull * tclk_psecs, trfc + 10000ull),
16 * tclk_psecs);
tp0.cn78xx.trp = trp_value & 0x1f;
tp0.cn78xx.tcksre =
divide_roundup(max(5ull * tclk_psecs, 10000ull), tclk_psecs) - 1;
if (ddr_type == DDR4_DRAM) {
int tzqinit = 4; // Default to 4, for all DDR4 speed bins
s = lookup_env(priv, "ddr_tzqinit");
if (s)
tzqinit = simple_strtoul(s, NULL, 0);
tp0.cn78xx.tzqinit = tzqinit;
/* Always 8. */
tp0.cn78xx.tzqcs = divide_roundup(128 * tclk_psecs,
(16 * tclk_psecs));
tp0.cn78xx.tcke =
divide_roundup(max(3 * tclk_psecs, (ulong)DDR3_TCKE),
tclk_psecs) - 1;
tp0.cn78xx.tmrd =
divide_roundup((DDR4_TMRD * tclk_psecs), tclk_psecs) - 1;
tp0.cn78xx.tmod = 25; /* 25 is the max allowed */
tp0.cn78xx.tdllk = divide_roundup(DDR4_TDLLK, 256);
} else {
tp0.cn78xx.tzqinit =
divide_roundup(max(512ull * tclk_psecs, 640000ull),
(256 * tclk_psecs));
tp0.cn78xx.tzqcs =
divide_roundup(max(64ull * tclk_psecs, DDR3_ZQCS),
(16 * tclk_psecs));
tp0.cn78xx.tcke = divide_roundup(DDR3_TCKE, tclk_psecs) - 1;
tp0.cn78xx.tmrd =
divide_roundup((DDR3_TMRD * tclk_psecs), tclk_psecs) - 1;
tp0.cn78xx.tmod =
divide_roundup(max(12ull * tclk_psecs, 15000ull),
tclk_psecs) - 1;
tp0.cn78xx.tdllk = divide_roundup(DDR3_TDLLK, 256);
}
s = lookup_env_ull(priv, "ddr_timing_params0");
if (s)
tp0.u64 = simple_strtoull(s, NULL, 0);
debug("TIMING_PARAMS0 : 0x%016llx\n",
tp0.u64);
lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS0(if_num), tp0.u64);
}
static void lmc_timing_params1(struct ddr_priv *priv)
{
union cvmx_lmcx_timing_params1 tp1;
unsigned int txp, temp_trcd, trfc_dlr;
char *s;
tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
/* .cn70xx. */
tp1.s.tmprr = divide_roundup(DDR3_TMPRR * tclk_psecs, tclk_psecs) - 1;
tp1.cn78xx.tras = divide_roundup(tras, tclk_psecs) - 1;
temp_trcd = divide_roundup(trcd, tclk_psecs);
if (temp_trcd > 15) {
debug("TIMING_PARAMS1[trcd]: need extension bit for 0x%x\n",
temp_trcd);
}
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trcd > 15) {
/*
* Let .trcd=0 serve as a flag that the field has
* overflowed. Must use Additive Latency mode as a
* workaround.
*/
temp_trcd = 0;
}
tp1.cn78xx.trcd = (temp_trcd >> 0) & 0xf;
tp1.cn78xx.trcd_ext = (temp_trcd >> 4) & 0x1;
tp1.cn78xx.twtr = divide_roundup(twtr, tclk_psecs) - 1;
tp1.cn78xx.trfc = divide_roundup(trfc, 8 * tclk_psecs);
if (ddr_type == DDR4_DRAM) {
/* Workaround bug 24006. Use Trrd_l. */
tp1.cn78xx.trrd =
divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
} else {
tp1.cn78xx.trrd = divide_roundup(trrd, tclk_psecs) - 2;
}
/*
* tXP = max( 3nCK, 7.5 ns) DDR3-800 tCLK = 2500 psec
* tXP = max( 3nCK, 7.5 ns) DDR3-1066 tCLK = 1875 psec
* tXP = max( 3nCK, 6.0 ns) DDR3-1333 tCLK = 1500 psec
* tXP = max( 3nCK, 6.0 ns) DDR3-1600 tCLK = 1250 psec
* tXP = max( 3nCK, 6.0 ns) DDR3-1866 tCLK = 1071 psec
* tXP = max( 3nCK, 6.0 ns) DDR3-2133 tCLK = 937 psec
*/
txp = (tclk_psecs < 1875) ? 6000 : 7500;
txp = divide_roundup(max((unsigned int)(3 * tclk_psecs), txp),
tclk_psecs) - 1;
if (txp > 7) {
debug("TIMING_PARAMS1[txp]: need extension bit for 0x%x\n",
txp);
}
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && txp > 7)
txp = 7; // max it out
tp1.cn78xx.txp = (txp >> 0) & 7;
tp1.cn78xx.txp_ext = (txp >> 3) & 1;
tp1.cn78xx.twlmrd = divide_roundup(DDR3_TWLMRD * tclk_psecs,
4 * tclk_psecs);
tp1.cn78xx.twldqsen = divide_roundup(DDR3_TWLDQSEN * tclk_psecs,
4 * tclk_psecs);
tp1.cn78xx.tfaw = divide_roundup(tfaw, 4 * tclk_psecs);
tp1.cn78xx.txpdll = divide_roundup(max(10ull * tclk_psecs, 24000ull),
tclk_psecs) - 1;
if (ddr_type == DDR4_DRAM && is_3ds_dimm) {
/*
* 4 Gb: tRFC_DLR = 90 ns
* 8 Gb: tRFC_DLR = 120 ns
* 16 Gb: tRFC_DLR = 190 ns FIXME?
*/
if (die_capacity == 0x1000) // 4 Gbit
trfc_dlr = 90;
else if (die_capacity == 0x2000) // 8 Gbit
trfc_dlr = 120;
else if (die_capacity == 0x4000) // 16 Gbit
trfc_dlr = 190;
else
trfc_dlr = 0;
if (trfc_dlr == 0) {
debug("N%d.LMC%d: ERROR: tRFC_DLR: die_capacity %u Mbit is illegal\n",
node, if_num, die_capacity);
} else {
tp1.cn78xx.trfc_dlr =
divide_roundup(trfc_dlr * 1000UL, 8 * tclk_psecs);
debug("N%d.LMC%d: TIMING_PARAMS1[trfc_dlr] set to %u\n",
node, if_num, tp1.cn78xx.trfc_dlr);
}
}
s = lookup_env_ull(priv, "ddr_timing_params1");
if (s)
tp1.u64 = simple_strtoull(s, NULL, 0);
debug("TIMING_PARAMS1 : 0x%016llx\n",
tp1.u64);
lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
}
static void lmc_timing_params2(struct ddr_priv *priv)
{
if (ddr_type == DDR4_DRAM) {
union cvmx_lmcx_timing_params1 tp1;
union cvmx_lmcx_timing_params2 tp2;
int temp_trrd_l;
tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
tp2.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS2(if_num));
debug("TIMING_PARAMS2 : 0x%016llx\n",
tp2.u64);
temp_trrd_l = divide_roundup(ddr4_trrd_lmin, tclk_psecs) - 2;
if (temp_trrd_l > 7)
debug("TIMING_PARAMS2[trrd_l]: need extension bit for 0x%x\n",
temp_trrd_l);
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && temp_trrd_l > 7)
temp_trrd_l = 7; // max it out
tp2.cn78xx.trrd_l = (temp_trrd_l >> 0) & 7;
tp2.cn78xx.trrd_l_ext = (temp_trrd_l >> 3) & 1;
// correct for 1600-2400
tp2.s.twtr_l = divide_nint(max(4ull * tclk_psecs, 7500ull),
tclk_psecs) - 1;
tp2.s.t_rw_op_max = 7;
tp2.s.trtp = divide_roundup(max(4ull * tclk_psecs, 7500ull),
tclk_psecs) - 1;
debug("TIMING_PARAMS2 : 0x%016llx\n",
tp2.u64);
lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS2(if_num), tp2.u64);
/*
* Workaround Errata 25823 - LMC: Possible DDR4 tWTR_L not met
* for Write-to-Read operations to the same Bank Group
*/
if (tp1.cn78xx.twtr < (tp2.s.twtr_l - 4)) {
tp1.cn78xx.twtr = tp2.s.twtr_l - 4;
debug("ERRATA 25823: NEW: TWTR: %d, TWTR_L: %d\n",
tp1.cn78xx.twtr, tp2.s.twtr_l);
debug("TIMING_PARAMS1 : 0x%016llx\n",
tp1.u64);
lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
}
}
}
static void lmc_modereg_params0(struct ddr_priv *priv)
{
union cvmx_lmcx_modereg_params0 mp0;
int param;
char *s;
mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
if (ddr_type == DDR4_DRAM) {
mp0.s.cwl = 0; /* 1600 (1250ps) */
if (tclk_psecs < 1250)
mp0.s.cwl = 1; /* 1866 (1072ps) */
if (tclk_psecs < 1072)
mp0.s.cwl = 2; /* 2133 (938ps) */
if (tclk_psecs < 938)
mp0.s.cwl = 3; /* 2400 (833ps) */
if (tclk_psecs < 833)
mp0.s.cwl = 4; /* 2666 (750ps) */
if (tclk_psecs < 750)
mp0.s.cwl = 5; /* 3200 (625ps) */
} else {
/*
** CSR CWL CAS write Latency
** === === =================================
** 0 5 ( tCK(avg) >= 2.5 ns)
** 1 6 (2.5 ns > tCK(avg) >= 1.875 ns)
** 2 7 (1.875 ns > tCK(avg) >= 1.5 ns)
** 3 8 (1.5 ns > tCK(avg) >= 1.25 ns)
** 4 9 (1.25 ns > tCK(avg) >= 1.07 ns)
** 5 10 (1.07 ns > tCK(avg) >= 0.935 ns)
** 6 11 (0.935 ns > tCK(avg) >= 0.833 ns)
** 7 12 (0.833 ns > tCK(avg) >= 0.75 ns)
*/
mp0.s.cwl = 0;
if (tclk_psecs < 2500)
mp0.s.cwl = 1;
if (tclk_psecs < 1875)
mp0.s.cwl = 2;
if (tclk_psecs < 1500)
mp0.s.cwl = 3;
if (tclk_psecs < 1250)
mp0.s.cwl = 4;
if (tclk_psecs < 1070)
mp0.s.cwl = 5;
if (tclk_psecs < 935)
mp0.s.cwl = 6;
if (tclk_psecs < 833)
mp0.s.cwl = 7;
}
s = lookup_env(priv, "ddr_cwl");
if (s)
mp0.s.cwl = simple_strtoul(s, NULL, 0) - 5;
if (ddr_type == DDR4_DRAM) {
debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
mp0.s.cwl + 9
+ ((mp0.s.cwl > 2) ? (mp0.s.cwl - 3) * 2 : 0), mp0.s.cwl);
} else {
debug("%-45s : %d, [0x%x]\n", "CAS Write Latency CWL, [CSR]",
mp0.s.cwl + 5, mp0.s.cwl);
}
mp0.s.mprloc = 0;
mp0.s.mpr = 0;
mp0.s.dll = (ddr_type == DDR4_DRAM); /* 0 for DDR3 and 1 for DDR4 */
mp0.s.al = 0;
mp0.s.wlev = 0; /* Read Only */
if (octeon_is_cpuid(OCTEON_CN70XX) || ddr_type == DDR4_DRAM)
mp0.s.tdqs = 0;
else
mp0.s.tdqs = 1;
mp0.s.qoff = 0;
s = lookup_env(priv, "ddr_cl");
if (s) {
cl = simple_strtoul(s, NULL, 0);
debug("CAS Latency : %6d\n",
cl);
}
if (ddr_type == DDR4_DRAM) {
mp0.s.cl = 0x0;
if (cl > 9)
mp0.s.cl = 0x1;
if (cl > 10)
mp0.s.cl = 0x2;
if (cl > 11)
mp0.s.cl = 0x3;
if (cl > 12)
mp0.s.cl = 0x4;
if (cl > 13)
mp0.s.cl = 0x5;
if (cl > 14)
mp0.s.cl = 0x6;
if (cl > 15)
mp0.s.cl = 0x7;
if (cl > 16)
mp0.s.cl = 0x8;
if (cl > 18)
mp0.s.cl = 0x9;
if (cl > 20)
mp0.s.cl = 0xA;
if (cl > 24)
mp0.s.cl = 0xB;
} else {
mp0.s.cl = 0x2;
if (cl > 5)
mp0.s.cl = 0x4;
if (cl > 6)
mp0.s.cl = 0x6;
if (cl > 7)
mp0.s.cl = 0x8;
if (cl > 8)
mp0.s.cl = 0xA;
if (cl > 9)
mp0.s.cl = 0xC;
if (cl > 10)
mp0.s.cl = 0xE;
if (cl > 11)
mp0.s.cl = 0x1;
if (cl > 12)
mp0.s.cl = 0x3;
if (cl > 13)
mp0.s.cl = 0x5;
if (cl > 14)
mp0.s.cl = 0x7;
if (cl > 15)
mp0.s.cl = 0x9;
}
mp0.s.rbt = 0; /* Read Only. */
mp0.s.tm = 0;
mp0.s.dllr = 0;
param = divide_roundup(twr, tclk_psecs);
if (ddr_type == DDR4_DRAM) { /* DDR4 */
mp0.s.wrp = 1;
if (param > 12)
mp0.s.wrp = 2;
if (param > 14)
mp0.s.wrp = 3;
if (param > 16)
mp0.s.wrp = 4;
if (param > 18)
mp0.s.wrp = 5;
if (param > 20)
mp0.s.wrp = 6;
if (param > 24) /* RESERVED in DDR4 spec */
mp0.s.wrp = 7;
} else { /* DDR3 */
mp0.s.wrp = 1;
if (param > 5)
mp0.s.wrp = 2;
if (param > 6)
mp0.s.wrp = 3;
if (param > 7)
mp0.s.wrp = 4;
if (param > 8)
mp0.s.wrp = 5;
if (param > 10)
mp0.s.wrp = 6;
if (param > 12)
mp0.s.wrp = 7;
}
mp0.s.ppd = 0;
s = lookup_env(priv, "ddr_wrp");
if (s)
mp0.s.wrp = simple_strtoul(s, NULL, 0);
debug("%-45s : %d, [0x%x]\n",
"Write recovery for auto precharge WRP, [CSR]", param, mp0.s.wrp);
s = lookup_env_ull(priv, "ddr_modereg_params0");
if (s)
mp0.u64 = simple_strtoull(s, NULL, 0);
debug("MODEREG_PARAMS0 : 0x%016llx\n",
mp0.u64);
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
}
static void lmc_modereg_params1(struct ddr_priv *priv)
{
union cvmx_lmcx_modereg_params1 mp1;
char *s;
int i;
mp1.u64 = odt_config[odt_idx].modereg_params1.u64;
/*
* Special request: mismatched DIMM support. Slot 0: 2-Rank,
* Slot 1: 1-Rank
*/
if (rank_mask == 0x7) { /* 2-Rank, 1-Rank */
mp1.s.rtt_nom_00 = 0;
mp1.s.rtt_nom_01 = 3; /* rttnom_40ohm */
mp1.s.rtt_nom_10 = 3; /* rttnom_40ohm */
mp1.s.rtt_nom_11 = 0;
dyn_rtt_nom_mask = 0x6;
}
s = lookup_env(priv, "ddr_rtt_nom_mask");
if (s)
dyn_rtt_nom_mask = simple_strtoul(s, NULL, 0);
/*
* Save the original rtt_nom settings before sweeping through
* settings.
*/
default_rtt_nom[0] = mp1.s.rtt_nom_00;
default_rtt_nom[1] = mp1.s.rtt_nom_01;
default_rtt_nom[2] = mp1.s.rtt_nom_10;
default_rtt_nom[3] = mp1.s.rtt_nom_11;
ddr_rtt_nom_auto = c_cfg->ddr_rtt_nom_auto;
for (i = 0; i < 4; ++i) {
u64 value;
s = lookup_env(priv, "ddr_rtt_nom_%1d%1d", !!(i & 2),
!!(i & 1));
if (!s)
s = lookup_env(priv, "ddr%d_rtt_nom_%1d%1d", if_num,
!!(i & 2), !!(i & 1));
if (s) {
value = simple_strtoul(s, NULL, 0);
mp1.u64 &= ~((u64)0x7 << (i * 12 + 9));
mp1.u64 |= ((value & 0x7) << (i * 12 + 9));
default_rtt_nom[i] = value;
ddr_rtt_nom_auto = 0;
}
}
s = lookup_env(priv, "ddr_rtt_nom");
if (!s)
s = lookup_env(priv, "ddr%d_rtt_nom", if_num);
if (s) {
u64 value;
value = simple_strtoul(s, NULL, 0);
if (dyn_rtt_nom_mask & 1) {
default_rtt_nom[0] = value;
mp1.s.rtt_nom_00 = value;
}
if (dyn_rtt_nom_mask & 2) {
default_rtt_nom[1] = value;
mp1.s.rtt_nom_01 = value;
}
if (dyn_rtt_nom_mask & 4) {
default_rtt_nom[2] = value;
mp1.s.rtt_nom_10 = value;
}
if (dyn_rtt_nom_mask & 8) {
default_rtt_nom[3] = value;
mp1.s.rtt_nom_11 = value;
}
ddr_rtt_nom_auto = 0;
}
for (i = 0; i < 4; ++i) {
u64 value;
s = lookup_env(priv, "ddr_rtt_wr_%1d%1d", !!(i & 2), !!(i & 1));
if (!s)
s = lookup_env(priv, "ddr%d_rtt_wr_%1d%1d", if_num,
!!(i & 2), !!(i & 1));
if (s) {
value = simple_strtoul(s, NULL, 0);
insrt_wr(&mp1.u64, i, value);
}
}
// Make sure 78XX pass 1 has valid RTT_WR settings, because
// configuration files may be set-up for later chips, and
// 78XX pass 1 supports no RTT_WR extension bits
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
for (i = 0; i < 4; ++i) {
// if 80 or undefined
if (extr_wr(mp1.u64, i) > 3) {
// FIXME? always insert 120
insrt_wr(&mp1.u64, i, 1);
debug("RTT_WR_%d%d set to 120 for CN78XX pass 1\n",
!!(i & 2), i & 1);
}
}
}
s = lookup_env(priv, "ddr_dic");
if (s) {
u64 value = simple_strtoul(s, NULL, 0);
for (i = 0; i < 4; ++i) {
mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
}
}
for (i = 0; i < 4; ++i) {
u64 value;
s = lookup_env(priv, "ddr_dic_%1d%1d", !!(i & 2), !!(i & 1));
if (s) {
value = simple_strtoul(s, NULL, 0);
mp1.u64 &= ~((u64)0x3 << (i * 12 + 7));
mp1.u64 |= ((value & 0x3) << (i * 12 + 7));
}
}
s = lookup_env_ull(priv, "ddr_modereg_params1");
if (s)
mp1.u64 = simple_strtoull(s, NULL, 0);
debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
mp1.s.rtt_nom_11,
mp1.s.rtt_nom_10, mp1.s.rtt_nom_01, mp1.s.rtt_nom_00);
debug("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
extr_wr(mp1.u64, 3),
extr_wr(mp1.u64, 2), extr_wr(mp1.u64, 1), extr_wr(mp1.u64, 0));
debug("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->dic_ohms[mp1.s.dic_11],
imp_val->dic_ohms[mp1.s.dic_10],
imp_val->dic_ohms[mp1.s.dic_01],
imp_val->dic_ohms[mp1.s.dic_00],
mp1.s.dic_11, mp1.s.dic_10, mp1.s.dic_01, mp1.s.dic_00);
debug("MODEREG_PARAMS1 : 0x%016llx\n",
mp1.u64);
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num), mp1.u64);
}
static void lmc_modereg_params2(struct ddr_priv *priv)
{
char *s;
int i;
if (ddr_type == DDR4_DRAM) {
union cvmx_lmcx_modereg_params2 mp2;
mp2.u64 = odt_config[odt_idx].modereg_params2.u64;
s = lookup_env(priv, "ddr_rtt_park");
if (s) {
u64 value = simple_strtoul(s, NULL, 0);
for (i = 0; i < 4; ++i) {
mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
}
}
for (i = 0; i < 4; ++i) {
u64 value;
s = lookup_env(priv, "ddr_rtt_park_%1d%1d", !!(i & 2),
!!(i & 1));
if (s) {
value = simple_strtoul(s, NULL, 0);
mp2.u64 &= ~((u64)0x7 << (i * 10 + 0));
mp2.u64 |= ((value & 0x7) << (i * 10 + 0));
}
}
s = lookup_env_ull(priv, "ddr_modereg_params2");
if (s)
mp2.u64 = simple_strtoull(s, NULL, 0);
debug("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
mp2.s.rtt_park_11, mp2.s.rtt_park_10, mp2.s.rtt_park_01,
mp2.s.rtt_park_00);
debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_RANGE",
mp2.s.vref_range_11,
mp2.s.vref_range_10,
mp2.s.vref_range_01, mp2.s.vref_range_00);
debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n", "VREF_VALUE",
mp2.s.vref_value_11,
mp2.s.vref_value_10,
mp2.s.vref_value_01, mp2.s.vref_value_00);
debug("MODEREG_PARAMS2 : 0x%016llx\n",
mp2.u64);
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS2(if_num), mp2.u64);
}
}
static void lmc_modereg_params3(struct ddr_priv *priv)
{
char *s;
if (ddr_type == DDR4_DRAM) {
union cvmx_lmcx_modereg_params3 mp3;
mp3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num));
/* Disable as workaround to Errata 20547 */
mp3.s.rd_dbi = 0;
mp3.s.tccd_l = max(divide_roundup(ddr4_tccd_lmin, tclk_psecs),
5ull) - 4;
s = lookup_env(priv, "ddr_rd_preamble");
if (s)
mp3.s.rd_preamble = !!simple_strtoul(s, NULL, 0);
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
int delay = 0;
if (lranks_per_prank == 4 && ddr_hertz >= 1000000000)
delay = 1;
mp3.s.xrank_add_tccd_l = delay;
mp3.s.xrank_add_tccd_s = delay;
}
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(if_num), mp3.u64);
debug("MODEREG_PARAMS3 : 0x%016llx\n",
mp3.u64);
}
}
static void lmc_nxm(struct ddr_priv *priv)
{
union cvmx_lmcx_nxm lmc_nxm;
int num_bits = row_lsb + row_bits + lranks_bits - 26;
char *s;
lmc_nxm.u64 = lmc_rd(priv, CVMX_LMCX_NXM(if_num));
/* .cn78xx. */
if (rank_mask & 0x1)
lmc_nxm.cn78xx.mem_msb_d0_r0 = num_bits;
if (rank_mask & 0x2)
lmc_nxm.cn78xx.mem_msb_d0_r1 = num_bits;
if (rank_mask & 0x4)
lmc_nxm.cn78xx.mem_msb_d1_r0 = num_bits;
if (rank_mask & 0x8)
lmc_nxm.cn78xx.mem_msb_d1_r1 = num_bits;
/* Set the mask for non-existent ranks. */
lmc_nxm.cn78xx.cs_mask = ~rank_mask & 0xff;
s = lookup_env_ull(priv, "ddr_nxm");
if (s)
lmc_nxm.u64 = simple_strtoull(s, NULL, 0);
debug("LMC_NXM : 0x%016llx\n",
lmc_nxm.u64);
lmc_wr(priv, CVMX_LMCX_NXM(if_num), lmc_nxm.u64);
}
static void lmc_wodt_mask(struct ddr_priv *priv)
{
union cvmx_lmcx_wodt_mask wodt_mask;
char *s;
wodt_mask.u64 = odt_config[odt_idx].odt_mask;
s = lookup_env_ull(priv, "ddr_wodt_mask");
if (s)
wodt_mask.u64 = simple_strtoull(s, NULL, 0);
debug("WODT_MASK : 0x%016llx\n",
wodt_mask.u64);
lmc_wr(priv, CVMX_LMCX_WODT_MASK(if_num), wodt_mask.u64);
}
static void lmc_rodt_mask(struct ddr_priv *priv)
{
union cvmx_lmcx_rodt_mask rodt_mask;
int rankx;
char *s;
rodt_mask.u64 = odt_config[odt_idx].rodt_ctl;
s = lookup_env_ull(priv, "ddr_rodt_mask");
if (s)
rodt_mask.u64 = simple_strtoull(s, NULL, 0);
debug("%-45s : 0x%016llx\n", "RODT_MASK", rodt_mask.u64);
lmc_wr(priv, CVMX_LMCX_RODT_MASK(if_num), rodt_mask.u64);
dyn_rtt_nom_mask = 0;
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
dyn_rtt_nom_mask |= ((rodt_mask.u64 >> (8 * rankx)) & 0xff);
}
if (num_ranks == 4) {
/*
* Normally ODT1 is wired to rank 1. For quad-ranked DIMMs
* ODT1 is wired to the third rank (rank 2). The mask,
* dyn_rtt_nom_mask, is used to indicate for which ranks
* to sweep RTT_NOM during read-leveling. Shift the bit
* from the ODT1 position over to the "ODT2" position so
* that the read-leveling analysis comes out right.
*/
int odt1_bit = dyn_rtt_nom_mask & 2;
dyn_rtt_nom_mask &= ~2;
dyn_rtt_nom_mask |= odt1_bit << 1;
}
debug("%-45s : 0x%02x\n", "DYN_RTT_NOM_MASK", dyn_rtt_nom_mask);
}
static void lmc_comp_ctl2(struct ddr_priv *priv)
{
union cvmx_lmcx_comp_ctl2 cc2;
char *s;
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
cc2.cn78xx.dqx_ctl = odt_config[odt_idx].odt_ena;
/* Default 4=34.3 ohm */
cc2.cn78xx.ck_ctl = (c_cfg->ck_ctl == 0) ? 4 : c_cfg->ck_ctl;
/* Default 4=34.3 ohm */
cc2.cn78xx.cmd_ctl = (c_cfg->cmd_ctl == 0) ? 4 : c_cfg->cmd_ctl;
/* Default 4=34.3 ohm */
cc2.cn78xx.control_ctl = (c_cfg->ctl_ctl == 0) ? 4 : c_cfg->ctl_ctl;
ddr_rodt_ctl_auto = c_cfg->ddr_rodt_ctl_auto;
s = lookup_env(priv, "ddr_rodt_ctl_auto");
if (s)
ddr_rodt_ctl_auto = !!simple_strtoul(s, NULL, 0);
default_rodt_ctl = odt_config[odt_idx].qs_dic;
s = lookup_env(priv, "ddr_rodt_ctl");
if (!s)
s = lookup_env(priv, "ddr%d_rodt_ctl", if_num);
if (s) {
default_rodt_ctl = simple_strtoul(s, NULL, 0);
ddr_rodt_ctl_auto = 0;
}
cc2.cn70xx.rodt_ctl = default_rodt_ctl;
// if DDR4, force CK_CTL to 26 ohms if it is currently 34 ohms,
// and DCLK speed is 1 GHz or more...
if (ddr_type == DDR4_DRAM && cc2.s.ck_ctl == ddr4_driver_34_ohm &&
ddr_hertz >= 1000000000) {
// lowest for DDR4 is 26 ohms
cc2.s.ck_ctl = ddr4_driver_26_ohm;
debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CK_CTL] to %d, %d ohms\n",
node, if_num, cc2.s.ck_ctl,
imp_val->drive_strength[cc2.s.ck_ctl]);
}
// if DDR4, 2DPC, UDIMM, force CONTROL_CTL and CMD_CTL to 26 ohms,
// if DCLK speed is 1 GHz or more...
if (ddr_type == DDR4_DRAM && dimm_count == 2 &&
(spd_dimm_type == 2 || spd_dimm_type == 6) &&
ddr_hertz >= 1000000000) {
// lowest for DDR4 is 26 ohms
cc2.cn78xx.control_ctl = ddr4_driver_26_ohm;
// lowest for DDR4 is 26 ohms
cc2.cn78xx.cmd_ctl = ddr4_driver_26_ohm;
debug("N%d.LMC%d: Forcing DDR4 COMP_CTL2[CONTROL_CTL,CMD_CTL] to %d, %d ohms\n",
node, if_num, ddr4_driver_26_ohm,
imp_val->drive_strength[ddr4_driver_26_ohm]);
}
s = lookup_env(priv, "ddr_ck_ctl");
if (s)
cc2.cn78xx.ck_ctl = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_cmd_ctl");
if (s)
cc2.cn78xx.cmd_ctl = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_control_ctl");
if (s)
cc2.cn70xx.control_ctl = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_dqx_ctl");
if (s)
cc2.cn78xx.dqx_ctl = simple_strtoul(s, NULL, 0);
debug("%-45s : %d, %d ohms\n", "DQX_CTL ", cc2.cn78xx.dqx_ctl,
imp_val->drive_strength[cc2.cn78xx.dqx_ctl]);
debug("%-45s : %d, %d ohms\n", "CK_CTL ", cc2.cn78xx.ck_ctl,
imp_val->drive_strength[cc2.cn78xx.ck_ctl]);
debug("%-45s : %d, %d ohms\n", "CMD_CTL ", cc2.cn78xx.cmd_ctl,
imp_val->drive_strength[cc2.cn78xx.cmd_ctl]);
debug("%-45s : %d, %d ohms\n", "CONTROL_CTL ",
cc2.cn78xx.control_ctl,
imp_val->drive_strength[cc2.cn78xx.control_ctl]);
debug("Read ODT_CTL : 0x%x (%d ohms)\n",
cc2.cn78xx.rodt_ctl, imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
debug("%-45s : 0x%016llx\n", "COMP_CTL2", cc2.u64);
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
}
static void lmc_phy_ctl(struct ddr_priv *priv)
{
union cvmx_lmcx_phy_ctl phy_ctl;
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.ts_stagger = 0;
// FIXME: are there others TBD?
phy_ctl.s.dsk_dbg_overwrt_ena = 0;
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
// C0 is TEN, C1 is A17
phy_ctl.s.c0_sel = 2;
phy_ctl.s.c1_sel = 2;
debug("N%d.LMC%d: 3DS: setting PHY_CTL[cx_csel] = %d\n",
node, if_num, phy_ctl.s.c1_sel);
}
debug("PHY_CTL : 0x%016llx\n",
phy_ctl.u64);
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
}
static void lmc_ext_config(struct ddr_priv *priv)
{
union cvmx_lmcx_ext_config ext_cfg;
char *s;
ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
ext_cfg.s.vrefint_seq_deskew = 0;
ext_cfg.s.read_ena_bprch = 1;
ext_cfg.s.read_ena_fprch = 1;
ext_cfg.s.drive_ena_fprch = 1;
ext_cfg.s.drive_ena_bprch = 1;
// make sure this is OFF for all current chips
ext_cfg.s.invert_data = 0;
s = lookup_env(priv, "ddr_read_fprch");
if (s)
ext_cfg.s.read_ena_fprch = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_read_bprch");
if (s)
ext_cfg.s.read_ena_bprch = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_drive_fprch");
if (s)
ext_cfg.s.drive_ena_fprch = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_drive_bprch");
if (s)
ext_cfg.s.drive_ena_bprch = strtoul(s, NULL, 0);
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) && lranks_per_prank > 1) {
ext_cfg.s.dimm0_cid = lranks_bits;
ext_cfg.s.dimm1_cid = lranks_bits;
debug("N%d.LMC%d: 3DS: setting EXT_CONFIG[dimmx_cid] = %d\n",
node, if_num, ext_cfg.s.dimm0_cid);
}
lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
debug("%-45s : 0x%016llx\n", "EXT_CONFIG", ext_cfg.u64);
}
static void lmc_ext_config2(struct ddr_priv *priv)
{
char *s;
// NOTE: all chips have this register, but not necessarily the
// fields we modify...
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
!octeon_is_cpuid(OCTEON_CN73XX)) {
union cvmx_lmcx_ext_config2 ext_cfg2;
int value = 1; // default to 1
ext_cfg2.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG2(if_num));
s = lookup_env(priv, "ddr_ext2_delay_unload");
if (s)
value = !!simple_strtoul(s, NULL, 0);
ext_cfg2.s.delay_unload_r0 = value;
ext_cfg2.s.delay_unload_r1 = value;
ext_cfg2.s.delay_unload_r2 = value;
ext_cfg2.s.delay_unload_r3 = value;
lmc_wr(priv, CVMX_LMCX_EXT_CONFIG2(if_num), ext_cfg2.u64);
debug("%-45s : 0x%016llx\n", "EXT_CONFIG2", ext_cfg2.u64);
}
}
static void lmc_dimm01_params_loop(struct ddr_priv *priv)
{
union cvmx_lmcx_dimmx_params dimm_p;
int dimmx = didx;
char *s;
int rc;
int i;
dimm_p.u64 = lmc_rd(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num));
if (ddr_type == DDR4_DRAM) {
union cvmx_lmcx_dimmx_ddr4_params0 ddr4_p0;
union cvmx_lmcx_dimmx_ddr4_params1 ddr4_p1;
union cvmx_lmcx_ddr4_dimm_ctl ddr4_ctl;
dimm_p.s.rc0 = 0;
dimm_p.s.rc1 = 0;
dimm_p.s.rc2 = 0;
rc = read_spd(&dimm_config_table[didx], 0,
DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CTL);
dimm_p.s.rc3 = (rc >> 4) & 0xf;
dimm_p.s.rc4 = ((rc >> 0) & 0x3) << 2;
dimm_p.s.rc4 |= ((rc >> 2) & 0x3) << 0;
rc = read_spd(&dimm_config_table[didx], 0,
DDR4_SPD_RDIMM_REGISTER_DRIVE_STRENGTH_CK);
dimm_p.s.rc5 = ((rc >> 0) & 0x3) << 2;
dimm_p.s.rc5 |= ((rc >> 2) & 0x3) << 0;
dimm_p.s.rc6 = 0;
dimm_p.s.rc7 = 0;
dimm_p.s.rc8 = 0;
dimm_p.s.rc9 = 0;
/*
* rc10 DDR4 RDIMM Operating Speed
* === ===================================================
* 0 tclk_psecs >= 1250 psec DDR4-1600 (1250 ps)
* 1 1250 psec > tclk_psecs >= 1071 psec DDR4-1866 (1071 ps)
* 2 1071 psec > tclk_psecs >= 938 psec DDR4-2133 ( 938 ps)
* 3 938 psec > tclk_psecs >= 833 psec DDR4-2400 ( 833 ps)
* 4 833 psec > tclk_psecs >= 750 psec DDR4-2666 ( 750 ps)
* 5 750 psec > tclk_psecs >= 625 psec DDR4-3200 ( 625 ps)
*/
dimm_p.s.rc10 = 0;
if (tclk_psecs < 1250)
dimm_p.s.rc10 = 1;
if (tclk_psecs < 1071)
dimm_p.s.rc10 = 2;
if (tclk_psecs < 938)
dimm_p.s.rc10 = 3;
if (tclk_psecs < 833)
dimm_p.s.rc10 = 4;
if (tclk_psecs < 750)
dimm_p.s.rc10 = 5;
dimm_p.s.rc11 = 0;
dimm_p.s.rc12 = 0;
/* 0=LRDIMM, 1=RDIMM */
dimm_p.s.rc13 = (spd_dimm_type == 4) ? 0 : 4;
dimm_p.s.rc13 |= (ddr_type == DDR4_DRAM) ?
(spd_addr_mirror << 3) : 0;
dimm_p.s.rc14 = 0;
dimm_p.s.rc15 = 0; /* 1 nCK latency adder */
ddr4_p0.u64 = 0;
ddr4_p0.s.rc8x = 0;
ddr4_p0.s.rc7x = 0;
ddr4_p0.s.rc6x = 0;
ddr4_p0.s.rc5x = 0;
ddr4_p0.s.rc4x = 0;
ddr4_p0.s.rc3x = compute_rc3x(tclk_psecs);
ddr4_p0.s.rc2x = 0;
ddr4_p0.s.rc1x = 0;
ddr4_p1.u64 = 0;
ddr4_p1.s.rcbx = 0;
ddr4_p1.s.rcax = 0;
ddr4_p1.s.rc9x = 0;
ddr4_ctl.u64 = 0;
ddr4_ctl.cn70xx.ddr4_dimm0_wmask = 0x004;
ddr4_ctl.cn70xx.ddr4_dimm1_wmask =
(dimm_count > 1) ? 0x004 : 0x0000;
/*
* Handle any overrides from envvars here...
*/
s = lookup_env(priv, "ddr_ddr4_params0");
if (s)
ddr4_p0.u64 = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_ddr4_params1");
if (s)
ddr4_p1.u64 = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_ddr4_dimm_ctl");
if (s)
ddr4_ctl.u64 = simple_strtoul(s, NULL, 0);
for (i = 0; i < 11; ++i) {
u64 value;
s = lookup_env(priv, "ddr_ddr4_rc%1xx", i + 1);
if (s) {
value = simple_strtoul(s, NULL, 0);
if (i < 8) {
ddr4_p0.u64 &= ~((u64)0xff << (i * 8));
ddr4_p0.u64 |= (value << (i * 8));
} else {
ddr4_p1.u64 &=
~((u64)0xff << ((i - 8) * 8));
ddr4_p1.u64 |= (value << ((i - 8) * 8));
}
}
}
/*
* write the final CSR values
*/
lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS0(dimmx, if_num),
ddr4_p0.u64);
lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), ddr4_ctl.u64);
lmc_wr(priv, CVMX_LMCX_DIMMX_DDR4_PARAMS1(dimmx, if_num),
ddr4_p1.u64);
debug("DIMM%d Register Control Words RCBx:RC1x : %x %x %x %x %x %x %x %x %x %x %x\n",
dimmx, ddr4_p1.s.rcbx, ddr4_p1.s.rcax,
ddr4_p1.s.rc9x, ddr4_p0.s.rc8x,
ddr4_p0.s.rc7x, ddr4_p0.s.rc6x,
ddr4_p0.s.rc5x, ddr4_p0.s.rc4x,
ddr4_p0.s.rc3x, ddr4_p0.s.rc2x, ddr4_p0.s.rc1x);
} else {
rc = read_spd(&dimm_config_table[didx], 0, 69);
dimm_p.s.rc0 = (rc >> 0) & 0xf;
dimm_p.s.rc1 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 70);
dimm_p.s.rc2 = (rc >> 0) & 0xf;
dimm_p.s.rc3 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 71);
dimm_p.s.rc4 = (rc >> 0) & 0xf;
dimm_p.s.rc5 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 72);
dimm_p.s.rc6 = (rc >> 0) & 0xf;
dimm_p.s.rc7 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 73);
dimm_p.s.rc8 = (rc >> 0) & 0xf;
dimm_p.s.rc9 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 74);
dimm_p.s.rc10 = (rc >> 0) & 0xf;
dimm_p.s.rc11 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 75);
dimm_p.s.rc12 = (rc >> 0) & 0xf;
dimm_p.s.rc13 = (rc >> 4) & 0xf;
rc = read_spd(&dimm_config_table[didx], 0, 76);
dimm_p.s.rc14 = (rc >> 0) & 0xf;
dimm_p.s.rc15 = (rc >> 4) & 0xf;
s = ddr_getenv_debug(priv, "ddr_clk_drive");
if (s) {
if (strcmp(s, "light") == 0)
dimm_p.s.rc5 = 0x0; /* Light Drive */
if (strcmp(s, "moderate") == 0)
dimm_p.s.rc5 = 0x5; /* Moderate Drive */
if (strcmp(s, "strong") == 0)
dimm_p.s.rc5 = 0xA; /* Strong Drive */
printf("Parameter found in environment. ddr_clk_drive = %s\n",
s);
}
s = ddr_getenv_debug(priv, "ddr_cmd_drive");
if (s) {
if (strcmp(s, "light") == 0)
dimm_p.s.rc3 = 0x0; /* Light Drive */
if (strcmp(s, "moderate") == 0)
dimm_p.s.rc3 = 0x5; /* Moderate Drive */
if (strcmp(s, "strong") == 0)
dimm_p.s.rc3 = 0xA; /* Strong Drive */
printf("Parameter found in environment. ddr_cmd_drive = %s\n",
s);
}
s = ddr_getenv_debug(priv, "ddr_ctl_drive");
if (s) {
if (strcmp(s, "light") == 0)
dimm_p.s.rc4 = 0x0; /* Light Drive */
if (strcmp(s, "moderate") == 0)
dimm_p.s.rc4 = 0x5; /* Moderate Drive */
printf("Parameter found in environment. ddr_ctl_drive = %s\n",
s);
}
/*
* rc10 DDR3 RDIMM Operating Speed
* == =====================================================
* 0 tclk_psecs >= 2500 psec DDR3/DDR3L-800 def
* 1 2500 psec > tclk_psecs >= 1875 psec DDR3/DDR3L-1066
* 2 1875 psec > tclk_psecs >= 1500 psec DDR3/DDR3L-1333
* 3 1500 psec > tclk_psecs >= 1250 psec DDR3/DDR3L-1600
* 4 1250 psec > tclk_psecs >= 1071 psec DDR3-1866
*/
dimm_p.s.rc10 = 0;
if (tclk_psecs < 2500)
dimm_p.s.rc10 = 1;
if (tclk_psecs < 1875)
dimm_p.s.rc10 = 2;
if (tclk_psecs < 1500)
dimm_p.s.rc10 = 3;
if (tclk_psecs < 1250)
dimm_p.s.rc10 = 4;
}
s = lookup_env(priv, "ddr_dimmx_params", i);
if (s)
dimm_p.u64 = simple_strtoul(s, NULL, 0);
for (i = 0; i < 16; ++i) {
u64 value;
s = lookup_env(priv, "ddr_rc%d", i);
if (s) {
value = simple_strtoul(s, NULL, 0);
dimm_p.u64 &= ~((u64)0xf << (i * 4));
dimm_p.u64 |= (value << (i * 4));
}
}
lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(dimmx, if_num), dimm_p.u64);
debug("DIMM%d Register Control Words RC15:RC0 : %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x\n",
dimmx, dimm_p.s.rc15, dimm_p.s.rc14, dimm_p.s.rc13,
dimm_p.s.rc12, dimm_p.s.rc11, dimm_p.s.rc10,
dimm_p.s.rc9, dimm_p.s.rc8, dimm_p.s.rc7,
dimm_p.s.rc6, dimm_p.s.rc5, dimm_p.s.rc4,
dimm_p.s.rc3, dimm_p.s.rc2, dimm_p.s.rc1, dimm_p.s.rc0);
// FIXME: recognize a DDR3 RDIMM with 4 ranks and 2 registers,
// and treat it specially
if (ddr_type == DDR3_DRAM && num_ranks == 4 &&
spd_rdimm_registers == 2 && dimmx == 0) {
debug("DDR3: Copying DIMM0_PARAMS to DIMM1_PARAMS for pseudo-DIMM #1...\n");
lmc_wr(priv, CVMX_LMCX_DIMMX_PARAMS(1, if_num), dimm_p.u64);
}
}
static void lmc_dimm01_params(struct ddr_priv *priv)
{
union cvmx_lmcx_dimm_ctl dimm_ctl;
char *s;
if (spd_rdimm) {
for (didx = 0; didx < (unsigned int)dimm_count; ++didx)
lmc_dimm01_params_loop(priv);
if (ddr_type == DDR4_DRAM) {
/* LMC0_DIMM_CTL */
dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
dimm_ctl.s.dimm0_wmask = 0xdf3f;
dimm_ctl.s.dimm1_wmask =
(dimm_count > 1) ? 0xdf3f : 0x0000;
dimm_ctl.s.tcws = 0x4e0;
dimm_ctl.s.parity = c_cfg->parity;
s = lookup_env(priv, "ddr_dimm0_wmask");
if (s) {
dimm_ctl.s.dimm0_wmask =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_dimm1_wmask");
if (s) {
dimm_ctl.s.dimm1_wmask =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_dimm_ctl_parity");
if (s)
dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_dimm_ctl_tcws");
if (s)
dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
debug("LMC DIMM_CTL : 0x%016llx\n",
dimm_ctl.u64);
lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
/* Init RCW */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
/* Write RC0D last */
dimm_ctl.s.dimm0_wmask = 0x2000;
dimm_ctl.s.dimm1_wmask = (dimm_count > 1) ?
0x2000 : 0x0000;
debug("LMC DIMM_CTL : 0x%016llx\n",
dimm_ctl.u64);
lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
/*
* Don't write any extended registers the second time
*/
lmc_wr(priv, CVMX_LMCX_DDR4_DIMM_CTL(if_num), 0);
/* Init RCW */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
} else {
/* LMC0_DIMM_CTL */
dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
dimm_ctl.s.dimm0_wmask = 0xffff;
// FIXME: recognize a DDR3 RDIMM with 4 ranks and 2
// registers, and treat it specially
if (num_ranks == 4 && spd_rdimm_registers == 2) {
debug("DDR3: Activating DIMM_CTL[dimm1_mask] bits...\n");
dimm_ctl.s.dimm1_wmask = 0xffff;
} else {
dimm_ctl.s.dimm1_wmask =
(dimm_count > 1) ? 0xffff : 0x0000;
}
dimm_ctl.s.tcws = 0x4e0;
dimm_ctl.s.parity = c_cfg->parity;
s = lookup_env(priv, "ddr_dimm0_wmask");
if (s) {
dimm_ctl.s.dimm0_wmask =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_dimm1_wmask");
if (s) {
dimm_ctl.s.dimm1_wmask =
simple_strtoul(s, NULL, 0);
}
s = lookup_env(priv, "ddr_dimm_ctl_parity");
if (s)
dimm_ctl.s.parity = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_dimm_ctl_tcws");
if (s)
dimm_ctl.s.tcws = simple_strtoul(s, NULL, 0);
debug("LMC DIMM_CTL : 0x%016llx\n",
dimm_ctl.u64);
lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
/* Init RCW */
oct3_ddr3_seq(priv, rank_mask, if_num, 0x7);
}
} else {
/* Disable register control writes for unbuffered */
union cvmx_lmcx_dimm_ctl dimm_ctl;
dimm_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DIMM_CTL(if_num));
dimm_ctl.s.dimm0_wmask = 0;
dimm_ctl.s.dimm1_wmask = 0;
lmc_wr(priv, CVMX_LMCX_DIMM_CTL(if_num), dimm_ctl.u64);
}
}
static int lmc_rank_init(struct ddr_priv *priv)
{
char *s;
if (enable_by_rank_init) {
by_rank = 3;
saved_rank_mask = rank_mask;
}
start_by_rank_init:
if (enable_by_rank_init) {
rank_mask = (1 << by_rank);
if (!(rank_mask & saved_rank_mask))
goto end_by_rank_init;
if (by_rank == 0)
rank_mask = saved_rank_mask;
debug("\n>>>>> BY_RANK: starting rank %d with mask 0x%02x\n\n",
by_rank, rank_mask);
}
/*
* Comments (steps 3 through 5) continue in oct3_ddr3_seq()
*/
union cvmx_lmcx_modereg_params0 mp0;
if (ddr_memory_preserved(priv)) {
/*
* Contents are being preserved. Take DRAM out of self-refresh
* first. Then init steps can procede normally
*/
/* self-refresh exit */
oct3_ddr3_seq(priv, rank_mask, if_num, 3);
}
mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
mp0.s.dllr = 1; /* Set during first init sequence */
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
ddr_init_seq(priv, rank_mask, if_num);
mp0.s.dllr = 0; /* Clear for normal operation */
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num), mp0.u64);
if (spd_rdimm && ddr_type == DDR4_DRAM &&
octeon_is_cpuid(OCTEON_CN7XXX)) {
debug("Running init sequence 1\n");
change_rdimm_mpr_pattern(priv, rank_mask, if_num, dimm_count);
}
memset(lanes, 0, sizeof(lanes));
for (lane = 0; lane < last_lane; lane++) {
// init all lanes to reset value
dac_settings[lane] = 127;
}
// FIXME: disable internal VREF if deskew is disabled?
if (disable_deskew_training) {
debug("N%d.LMC%d: internal VREF Training disabled, leaving them in RESET.\n",
node, if_num);
num_samples = 0;
} else if (ddr_type == DDR4_DRAM &&
!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
num_samples = DEFAULT_DAC_SAMPLES;
} else {
// if DDR3 or no ability to write DAC values
num_samples = 1;
}
perform_internal_vref_training:
total_dac_eval_retries = 0;
dac_eval_exhausted = 0;
for (sample = 0; sample < num_samples; sample++) {
dac_eval_retries = 0;
// make offset and internal vref training repeatable
do {
/*
* 6.9.8 LMC Offset Training
* LMC requires input-receiver offset training.
*/
perform_offset_training(priv, rank_mask, if_num);
/*
* 6.9.9 LMC Internal vref Training
* LMC requires input-reference-voltage training.
*/
perform_internal_vref_training(priv, rank_mask, if_num);
// read and maybe display the DAC values for a sample
read_dac_dbi_settings(priv, if_num, /*DAC*/ 1,
dac_settings);
if (num_samples == 1 || ddr_verbose(priv)) {
display_dac_dbi_settings(if_num, /*DAC*/ 1,
use_ecc, dac_settings,
"Internal VREF");
}
// for DDR4, evaluate the DAC settings and retry
// if any issues
if (ddr_type == DDR4_DRAM) {
if (evaluate_dac_settings
(if_64b, use_ecc, dac_settings)) {
dac_eval_retries += 1;
if (dac_eval_retries >
DAC_RETRIES_LIMIT) {
debug("N%d.LMC%d: DDR4 internal VREF DAC settings: retries exhausted; continuing...\n",
node, if_num);
dac_eval_exhausted += 1;
} else {
debug("N%d.LMC%d: DDR4 internal VREF DAC settings inconsistent; retrying....\n",
node, if_num);
total_dac_eval_retries += 1;
// try another sample
continue;
}
}
// taking multiple samples, otherwise do nothing
if (num_samples > 1) {
// good sample or exhausted retries,
// record it
for (lane = 0; lane < last_lane;
lane++) {
lanes[lane].bytes[sample] =
dac_settings[lane];
}
}
}
// done if DDR3, or good sample, or exhausted retries
break;
} while (1);
}
if (ddr_type == DDR4_DRAM && dac_eval_exhausted > 0) {
debug("N%d.LMC%d: DDR internal VREF DAC settings: total retries %d, exhausted %d\n",
node, if_num, total_dac_eval_retries, dac_eval_exhausted);
}
if (num_samples > 1) {
debug("N%d.LMC%d: DDR4 internal VREF DAC settings: processing multiple samples...\n",
node, if_num);
for (lane = 0; lane < last_lane; lane++) {
dac_settings[lane] =
process_samples_average(&lanes[lane].bytes[0],
num_samples, if_num, lane);
}
display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
dac_settings, "Averaged VREF");
// finally, write the final DAC values
for (lane = 0; lane < last_lane; lane++) {
load_dac_override(priv, if_num, dac_settings[lane],
lane);
}
}
// allow override of any byte-lane internal VREF
int overrode_vref_dac = 0;
for (lane = 0; lane < last_lane; lane++) {
s = lookup_env(priv, "ddr%d_vref_dac_byte%d", if_num, lane);
if (s) {
dac_settings[lane] = simple_strtoul(s, NULL, 0);
overrode_vref_dac = 1;
// finally, write the new DAC value
load_dac_override(priv, if_num, dac_settings[lane],
lane);
}
}
if (overrode_vref_dac) {
display_dac_dbi_settings(if_num, /*DAC*/ 1, use_ecc,
dac_settings, "Override VREF");
}
// as a second step, after internal VREF training, before starting
// deskew training:
// for DDR3 and OCTEON3 not O78 pass 1.x, override the DAC setting
// to 127
if (ddr_type == DDR3_DRAM && !octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) &&
!disable_deskew_training) {
load_dac_override(priv, if_num, 127, /* all */ 0x0A);
debug("N%d.LMC%d: Overriding DDR3 internal VREF DAC settings to 127.\n",
node, if_num);
}
/*
* 4.8.8 LMC Deskew Training
*
* LMC requires input-read-data deskew training.
*/
if (!disable_deskew_training) {
deskew_training_errors =
perform_deskew_training(priv, rank_mask, if_num,
spd_rawcard_aorb);
// All the Deskew lock and saturation retries (may) have
// been done, but we ended up with nibble errors; so,
// as a last ditch effort, try the Internal vref
// Training again...
if (deskew_training_errors) {
if (internal_retries <
DEFAULT_INTERNAL_VREF_TRAINING_LIMIT) {
internal_retries++;
debug("N%d.LMC%d: Deskew training results still unsettled - retrying internal vref training (%d)\n",
node, if_num, internal_retries);
goto perform_internal_vref_training;
} else {
if (restart_if_dsk_incomplete) {
debug("N%d.LMC%d: INFO: Deskew training incomplete - %d retries exhausted, Restarting LMC init...\n",
node, if_num, internal_retries);
return -EAGAIN;
}
debug("N%d.LMC%d: Deskew training incomplete - %d retries exhausted, but continuing...\n",
node, if_num, internal_retries);
}
} /* if (deskew_training_errors) */
// FIXME: treat this as the final DSK print from now on,
// and print if VBL_NORM or above also, save the results
// of the original training in case we want them later
validate_deskew_training(priv, rank_mask, if_num,
&deskew_training_results, 1);
} else { /* if (! disable_deskew_training) */
debug("N%d.LMC%d: Deskew Training disabled, printing settings before HWL.\n",
node, if_num);
validate_deskew_training(priv, rank_mask, if_num,
&deskew_training_results, 1);
} /* if (! disable_deskew_training) */
if (enable_by_rank_init) {
read_dac_dbi_settings(priv, if_num, /*dac */ 1,
&rank_dac[by_rank].bytes[0]);
get_deskew_settings(priv, if_num, &rank_dsk[by_rank]);
debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
}
end_by_rank_init:
if (enable_by_rank_init) {
//debug("\n>>>>> BY_RANK: ending rank %d\n\n", by_rank);
by_rank--;
if (by_rank >= 0)
goto start_by_rank_init;
rank_mask = saved_rank_mask;
ddr_init_seq(priv, rank_mask, if_num);
process_by_rank_dac(priv, if_num, rank_mask, rank_dac);
process_by_rank_dsk(priv, if_num, rank_mask, rank_dsk);
// FIXME: set this to prevent later checking!!!
disable_deskew_training = 1;
debug("\n>>>>> BY_RANK: FINISHED!!\n\n");
}
return 0;
}
static void lmc_config_2(struct ddr_priv *priv)
{
union cvmx_lmcx_config lmc_config;
int save_ref_zqcs_int;
u64 temp_delay_usecs;
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
/*
* Temporarily select the minimum ZQCS interval and wait
* long enough for a few ZQCS calibrations to occur. This
* should ensure that the calibration circuitry is
* stabilized before read/write leveling occurs.
*/
if (octeon_is_cpuid(OCTEON_CN7XXX)) {
save_ref_zqcs_int = lmc_config.cn78xx.ref_zqcs_int;
/* set smallest interval */
lmc_config.cn78xx.ref_zqcs_int = 1 | (32 << 7);
} else {
save_ref_zqcs_int = lmc_config.cn63xx.ref_zqcs_int;
/* set smallest interval */
lmc_config.cn63xx.ref_zqcs_int = 1 | (32 << 7);
}
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
/*
* Compute an appropriate delay based on the current ZQCS
* interval. The delay should be long enough for the
* current ZQCS delay counter to expire plus ten of the
* minimum intarvals to ensure that some calibrations
* occur.
*/
temp_delay_usecs = (((u64)save_ref_zqcs_int >> 7) * tclk_psecs *
100 * 512 * 128) / (10000 * 10000) + 10 *
((u64)32 * tclk_psecs * 100 * 512 * 128) / (10000 * 10000);
debug("Waiting %lld usecs for ZQCS calibrations to start\n",
temp_delay_usecs);
udelay(temp_delay_usecs);
if (octeon_is_cpuid(OCTEON_CN7XXX)) {
/* Restore computed interval */
lmc_config.cn78xx.ref_zqcs_int = save_ref_zqcs_int;
} else {
/* Restore computed interval */
lmc_config.cn63xx.ref_zqcs_int = save_ref_zqcs_int;
}
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), lmc_config.u64);
lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
}
static union cvmx_lmcx_wlevel_ctl wl_ctl __section(".data");
static union cvmx_lmcx_wlevel_rankx wl_rank __section(".data");
static union cvmx_lmcx_modereg_params1 mp1 __section(".data");
static int wl_mask[9] __section(".data");
static int byte_idx __section(".data");
static int ecc_ena __section(".data");
static int wl_roundup __section(".data");
static int save_mode32b __section(".data");
static int disable_hwl_validity __section(".data");
static int default_wl_rtt_nom __section(".data");
static int wl_pbm_pump __section(".data");
static void lmc_write_leveling_loop(struct ddr_priv *priv, int rankx)
{
int wloop = 0;
// retries per sample for HW-related issues with bitmasks or values
int wloop_retries = 0;
int wloop_retries_total = 0;
int wloop_retries_exhausted = 0;
#define WLOOP_RETRIES_DEFAULT 5
int wl_val_err;
int wl_mask_err_rank = 0;
int wl_val_err_rank = 0;
// array to collect counts of byte-lane values
// assume low-order 3 bits and even, so really only 2-bit values
struct wlevel_bitcnt wl_bytes[9], wl_bytes_extra[9];
int extra_bumps, extra_mask;
int rank_nom = 0;
if (!(rank_mask & (1 << rankx)))
return;
if (match_wl_rtt_nom) {
if (rankx == 0)
rank_nom = mp1.s.rtt_nom_00;
if (rankx == 1)
rank_nom = mp1.s.rtt_nom_01;
if (rankx == 2)
rank_nom = mp1.s.rtt_nom_10;
if (rankx == 3)
rank_nom = mp1.s.rtt_nom_11;
debug("N%d.LMC%d.R%d: Setting WLEVEL_CTL[rtt_nom] to %d (%d)\n",
node, if_num, rankx, rank_nom,
imp_val->rtt_nom_ohms[rank_nom]);
}
memset(wl_bytes, 0, sizeof(wl_bytes));
memset(wl_bytes_extra, 0, sizeof(wl_bytes_extra));
// restructure the looping so we can keep trying until we get the
// samples we want
while (wloop < wl_loops) {
wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
wl_ctl.cn78xx.rtt_nom =
(default_wl_rtt_nom > 0) ? (default_wl_rtt_nom - 1) : 7;
if (match_wl_rtt_nom) {
wl_ctl.cn78xx.rtt_nom =
(rank_nom > 0) ? (rank_nom - 1) : 7;
}
/* Clear write-level delays */
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), 0);
wl_mask_err = 0; /* Reset error counters */
wl_val_err = 0;
for (byte_idx = 0; byte_idx < 9; ++byte_idx)
wl_mask[byte_idx] = 0; /* Reset bitmasks */
// do all the byte-lanes at the same time
wl_ctl.cn78xx.lanemask = 0x1ff;
lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
/*
* Read and write values back in order to update the
* status field. This insures that we read the updated
* values after write-leveling has completed.
*/
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num)));
/* write-leveling */
oct3_ddr3_seq(priv, 1 << rankx, if_num, 6);
do {
wl_rank.u64 = lmc_rd(priv,
CVMX_LMCX_WLEVEL_RANKX(rankx,
if_num));
} while (wl_rank.cn78xx.status != 3);
wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
if_num));
for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
wl_mask[byte_idx] = lmc_ddr3_wl_dbg_read(priv,
if_num,
byte_idx);
if (wl_mask[byte_idx] == 0)
++wl_mask_err;
}
// check validity only if no bitmask errors
if (wl_mask_err == 0) {
if ((spd_dimm_type == 1 || spd_dimm_type == 2) &&
dram_width != 16 && if_64b &&
!disable_hwl_validity) {
// bypass if [mini|SO]-[RU]DIMM or x16 or
// 32-bit
wl_val_err =
validate_hw_wl_settings(if_num,
&wl_rank,
spd_rdimm, ecc_ena);
wl_val_err_rank += (wl_val_err != 0);
}
} else {
wl_mask_err_rank++;
}
// before we print, if we had bitmask or validity errors,
// do a retry...
if (wl_mask_err != 0 || wl_val_err != 0) {
if (wloop_retries < WLOOP_RETRIES_DEFAULT) {
wloop_retries++;
wloop_retries_total++;
// this printout is per-retry: only when VBL
// is high enough (DEV?)
// FIXME: do we want to show the bad bitmaps
// or delays here also?
debug("N%d.LMC%d.R%d: H/W Write-Leveling had %s errors - retrying...\n",
node, if_num, rankx,
(wl_mask_err) ? "Bitmask" : "Validity");
// this takes us back to the top without
// counting a sample
return;
}
// retries exhausted, do not print at normal VBL
debug("N%d.LMC%d.R%d: H/W Write-Leveling issues: %s errors\n",
node, if_num, rankx,
(wl_mask_err) ? "Bitmask" : "Validity");
wloop_retries_exhausted++;
}
// no errors or exhausted retries, use this sample
wloop_retries = 0; //reset for next sample
// when only 1 sample or forced, print the bitmasks then
// current HW WL
if (wl_loops == 1 || wl_print) {
if (wl_print > 1)
display_wl_bm(if_num, rankx, wl_mask);
display_wl(if_num, wl_rank, rankx);
}
if (wl_roundup) { /* Round up odd bitmask delays */
for (byte_idx = 0; byte_idx < (8 + ecc_ena);
++byte_idx) {
if (!(if_bytemask & (1 << byte_idx)))
return;
upd_wl_rank(&wl_rank, byte_idx,
roundup_ddr3_wlevel_bitmask
(wl_mask[byte_idx]));
}
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
wl_rank.u64);
display_wl(if_num, wl_rank, rankx);
}
// OK, we have a decent sample, no bitmask or validity errors
extra_bumps = 0;
extra_mask = 0;
for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
int ix;
if (!(if_bytemask & (1 << byte_idx)))
return;
// increment count of byte-lane value
// only 4 values
ix = (get_wl_rank(&wl_rank, byte_idx) >> 1) & 3;
wl_bytes[byte_idx].bitcnt[ix]++;
wl_bytes_extra[byte_idx].bitcnt[ix]++;
// if perfect...
if (__builtin_popcount(wl_mask[byte_idx]) == 4) {
wl_bytes_extra[byte_idx].bitcnt[ix] +=
wl_pbm_pump;
extra_bumps++;
extra_mask |= 1 << byte_idx;
}
}
if (extra_bumps) {
if (wl_print > 1) {
debug("N%d.LMC%d.R%d: HWL sample had %d bumps (0x%02x).\n",
node, if_num, rankx, extra_bumps,
extra_mask);
}
}
// if we get here, we have taken a decent sample
wloop++;
} /* while (wloop < wl_loops) */
// if we did sample more than once, try to pick a majority vote
if (wl_loops > 1) {
// look for the majority in each byte-lane
for (byte_idx = 0; byte_idx < (8 + ecc_ena); ++byte_idx) {
int mx, mc, xc, cc;
int ix, alts;
int maj, xmaj, xmx, xmc, xxc, xcc;
if (!(if_bytemask & (1 << byte_idx)))
return;
maj = find_wl_majority(&wl_bytes[byte_idx], &mx,
&mc, &xc, &cc);
xmaj = find_wl_majority(&wl_bytes_extra[byte_idx],
&xmx, &xmc, &xxc, &xcc);
if (maj != xmaj) {
if (wl_print) {
debug("N%d.LMC%d.R%d: Byte %d: HWL maj %d(%d), USING xmaj %d(%d)\n",
node, if_num, rankx,
byte_idx, maj, xc, xmaj, xxc);
}
mx = xmx;
mc = xmc;
xc = xxc;
cc = xcc;
}
// see if there was an alternate
// take out the majority choice
alts = (mc & ~(1 << mx));
if (alts != 0) {
for (ix = 0; ix < 4; ix++) {
// FIXME: could be done multiple times?
// bad if so
if (alts & (1 << ix)) {
// set the mask
hwl_alts[rankx].hwl_alt_mask |=
(1 << byte_idx);
// record the value
hwl_alts[rankx].hwl_alt_delay[byte_idx] =
ix << 1;
if (wl_print > 1) {
debug("N%d.LMC%d.R%d: SWL_TRY_HWL_ALT: Byte %d maj %d (%d) alt %d (%d).\n",
node,
if_num,
rankx,
byte_idx,
mx << 1,
xc,
ix << 1,
wl_bytes
[byte_idx].bitcnt
[ix]);
}
}
}
}
if (cc > 2) { // unlikely, but...
// assume: counts for 3 indices are all 1
// possiblities are: 0/2/4, 2/4/6, 0/4/6, 0/2/6
// and the desired?: 2 , 4 , 6, 0
// we choose the middle, assuming one of the
// outliers is bad
// NOTE: this is an ugly hack at the moment;
// there must be a better way
switch (mc) {
case 0x7:
mx = 1;
break; // was 0/2/4, choose 2
case 0xb:
mx = 0;
break; // was 0/2/6, choose 0
case 0xd:
mx = 3;
break; // was 0/4/6, choose 6
case 0xe:
mx = 2;
break; // was 2/4/6, choose 4
default:
case 0xf:
mx = 1;
break; // was 0/2/4/6, choose 2?
}
printf("N%d.LMC%d.R%d: HW WL MAJORITY: bad byte-lane %d (0x%x), using %d.\n",
node, if_num, rankx, byte_idx, mc,
mx << 1);
}
upd_wl_rank(&wl_rank, byte_idx, mx << 1);
}
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
wl_rank.u64);
display_wl_with_final(if_num, wl_rank, rankx);
// FIXME: does this help make the output a little easier
// to focus?
if (wl_print > 0)
debug("-----------\n");
} /* if (wl_loops > 1) */
// maybe print an error summary for the rank
if (wl_mask_err_rank != 0 || wl_val_err_rank != 0) {
debug("N%d.LMC%d.R%d: H/W Write-Leveling errors - %d bitmask, %d validity, %d retries, %d exhausted\n",
node, if_num, rankx, wl_mask_err_rank,
wl_val_err_rank, wloop_retries_total,
wloop_retries_exhausted);
}
}
static void lmc_write_leveling(struct ddr_priv *priv)
{
union cvmx_lmcx_config cfg;
int rankx;
char *s;
/*
* 4.8.9 LMC Write Leveling
*
* LMC supports an automatic write leveling like that described in the
* JEDEC DDR3 specifications separately per byte-lane.
*
* All of DDR PLL, LMC CK, LMC DRESET, and early LMC initializations
* must be completed prior to starting this LMC write-leveling sequence.
*
* There are many possible procedures that will write-level all the
* attached DDR3 DRAM parts. One possibility is for software to simply
* write the desired values into LMC(0)_WLEVEL_RANK(0..3). This section
* describes one possible sequence that uses LMC's autowrite-leveling
* capabilities.
*
* 1. If the DQS/DQ delays on the board may be more than the ADD/CMD
* delays, then ensure that LMC(0)_CONFIG[EARLY_DQX] is set at this
* point.
*
* Do the remaining steps 2-7 separately for each rank i with attached
* DRAM.
*
* 2. Write LMC(0)_WLEVEL_RANKi = 0.
*
* 3. For x8 parts:
*
* Without changing any other fields in LMC(0)_WLEVEL_CTL, write
* LMC(0)_WLEVEL_CTL[LANEMASK] to select all byte lanes with attached
* DRAM.
*
* For x16 parts:
*
* Without changing any other fields in LMC(0)_WLEVEL_CTL, write
* LMC(0)_WLEVEL_CTL[LANEMASK] to select all even byte lanes with
* attached DRAM.
*
* 4. Without changing any other fields in LMC(0)_CONFIG,
*
* o write LMC(0)_SEQ_CTL[SEQ_SEL] to select write-leveling
*
* o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
*
* o write LMC(0)_SEQ_CTL[INIT_START] = 1
*
* LMC will initiate write-leveling at this point. Assuming
* LMC(0)_WLEVEL_CTL [SSET] = 0, LMC first enables write-leveling on
* the selected DRAM rank via a DDR3 MR1 write, then sequences
* through
* and accumulates write-leveling results for eight different delay
* settings twice, starting at a delay of zero in this case since
* LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] = 0, increasing by 1/8 CK each
* setting, covering a total distance of one CK, then disables the
* write-leveling via another DDR3 MR1 write.
*
* After the sequence through 16 delay settings is complete:
*
* o LMC sets LMC(0)_WLEVEL_RANKi[STATUS] = 3
*
* o LMC sets LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] (for all ranks selected
* by LMC(0)_WLEVEL_CTL[LANEMASK]) to indicate the first write
* leveling result of 1 that followed result of 0 during the
* sequence, except that the LMC always writes
* LMC(0)_WLEVEL_RANKi[BYTE*<0>]=0.
*
* o Software can read the eight write-leveling results from the
* first pass through the delay settings by reading
* LMC(0)_WLEVEL_DBG[BITMASK] (after writing
* LMC(0)_WLEVEL_DBG[BYTE]). (LMC does not retain the writeleveling
* results from the second pass through the eight delay
* settings. They should often be identical to the
* LMC(0)_WLEVEL_DBG[BITMASK] results, though.)
*
* 5. Wait until LMC(0)_WLEVEL_RANKi[STATUS] != 2.
*
* LMC will have updated LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] for all byte
* lanes selected by LMC(0)_WLEVEL_CTL[LANEMASK] at this point.
* LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] will still be the value that
* software wrote in substep 2 above, which is 0.
*
* 6. For x16 parts:
*
* Without changing any other fields in LMC(0)_WLEVEL_CTL, write
* LMC(0)_WLEVEL_CTL[LANEMASK] to select all odd byte lanes with
* attached DRAM.
*
* Repeat substeps 4 and 5 with this new LMC(0)_WLEVEL_CTL[LANEMASK]
* setting. Skip to substep 7 if this has already been done.
*
* For x8 parts:
*
* Skip this substep. Go to substep 7.
*
* 7. Calculate LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings for all byte
* lanes on all ranks with attached DRAM.
*
* At this point, all byte lanes on rank i with attached DRAM should
* have been write-leveled, and LMC(0)_WLEVEL_RANKi[BYTE*<2:0>] has
* the result for each byte lane.
*
* But note that the DDR3 write-leveling sequence will only determine
* the delay modulo the CK cycle time, and cannot determine how many
* additional CK cycles of delay are present. Software must calculate
* the number of CK cycles, or equivalently, the
* LMC(0)_WLEVEL_RANKi[BYTE*<4:3>] settings.
*
* This BYTE*<4:3> calculation is system/board specific.
*
* Many techniques can be used to calculate write-leveling BYTE*<4:3>
* values, including:
*
* o Known values for some byte lanes.
*
* o Relative values for some byte lanes relative to others.
*
* For example, suppose lane X is likely to require a larger
* write-leveling delay than lane Y. A BYTEX<2:0> value that is much
* smaller than the BYTEY<2:0> value may then indicate that the
* required lane X delay wrapped into the next CK, so BYTEX<4:3>
* should be set to BYTEY<4:3>+1.
*
* When ECC DRAM is not present (i.e. when DRAM is not attached to
* the DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the
* DDR_DQS_<4>_* and DDR_DQ<35:32> chip signals), write
* LMC(0)_WLEVEL_RANK*[BYTE8] = LMC(0)_WLEVEL_RANK*[BYTE0],
* using the final calculated BYTE0 value.
* Write LMC(0)_WLEVEL_RANK*[BYTE4] = LMC(0)_WLEVEL_RANK*[BYTE0],
* using the final calculated BYTE0 value.
*
* 8. Initialize LMC(0)_WLEVEL_RANK* values for all unused ranks.
*
* Let rank i be a rank with attached DRAM.
*
* For all ranks j that do not have attached DRAM, set
* LMC(0)_WLEVEL_RANKj = LMC(0)_WLEVEL_RANKi.
*/
rankx = 0;
wl_roundup = 0;
disable_hwl_validity = 0;
// wl_pbm_pump: weight for write-leveling PBMs...
// 0 causes original behavior
// 1 allows a minority of 2 pbms to outscore a majority of 3 non-pbms
// 4 would allow a minority of 1 pbm to outscore a majority of 4
// non-pbms
wl_pbm_pump = 4; // FIXME: is 4 too much?
if (wl_loops) {
debug("N%d.LMC%d: Performing Hardware Write-Leveling\n", node,
if_num);
} else {
/* Force software write-leveling to run */
wl_mask_err = 1;
debug("N%d.LMC%d: Forcing software Write-Leveling\n", node,
if_num);
}
default_wl_rtt_nom = (ddr_type == DDR3_DRAM) ?
rttnom_20ohm : ddr4_rttnom_40ohm;
cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
ecc_ena = cfg.s.ecc_ena;
save_mode32b = cfg.cn78xx.mode32b;
cfg.cn78xx.mode32b = (!if_64b);
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
s = lookup_env(priv, "ddr_wlevel_roundup");
if (s)
wl_roundup = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_wlevel_printall");
if (s)
wl_print = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_wlevel_pbm_bump");
if (s)
wl_pbm_pump = strtoul(s, NULL, 0);
// default to disable when RL sequential delay check is disabled
disable_hwl_validity = disable_sequential_delay_check;
s = lookup_env(priv, "ddr_disable_hwl_validity");
if (s)
disable_hwl_validity = !!strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_wl_rtt_nom");
if (s)
default_wl_rtt_nom = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_match_wl_rtt_nom");
if (s)
match_wl_rtt_nom = !!simple_strtoul(s, NULL, 0);
if (match_wl_rtt_nom)
mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
// For DDR3, we do not touch WLEVEL_CTL fields OR_DIS or BITMASK
// For DDR4, we touch WLEVEL_CTL fields OR_DIS or BITMASK here
if (ddr_type == DDR4_DRAM) {
int default_or_dis = 1;
int default_bitmask = 0xff;
// when x4, use only the lower nibble
if (dram_width == 4) {
default_bitmask = 0x0f;
if (wl_print) {
debug("N%d.LMC%d: WLEVEL_CTL: default bitmask is 0x%02x for DDR4 x4\n",
node, if_num, default_bitmask);
}
}
wl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_CTL(if_num));
wl_ctl.s.or_dis = default_or_dis;
wl_ctl.s.bitmask = default_bitmask;
// allow overrides
s = lookup_env(priv, "ddr_wlevel_ctl_or_dis");
if (s)
wl_ctl.s.or_dis = !!strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_wlevel_ctl_bitmask");
if (s)
wl_ctl.s.bitmask = simple_strtoul(s, NULL, 0);
// print only if not defaults
if (wl_ctl.s.or_dis != default_or_dis ||
wl_ctl.s.bitmask != default_bitmask) {
debug("N%d.LMC%d: WLEVEL_CTL: or_dis=%d, bitmask=0x%02x\n",
node, if_num, wl_ctl.s.or_dis, wl_ctl.s.bitmask);
}
// always write
lmc_wr(priv, CVMX_LMCX_WLEVEL_CTL(if_num), wl_ctl.u64);
}
// Start the hardware write-leveling loop per rank
for (rankx = 0; rankx < dimm_count * 4; rankx++)
lmc_write_leveling_loop(priv, rankx);
cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
cfg.cn78xx.mode32b = save_mode32b;
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
// At the end of HW Write Leveling, check on some DESKEW things...
if (!disable_deskew_training) {
struct deskew_counts dsk_counts;
int retry_count = 0;
debug("N%d.LMC%d: Check Deskew Settings before Read-Leveling.\n",
node, if_num);
do {
validate_deskew_training(priv, rank_mask, if_num,
&dsk_counts, 1);
// only RAWCARD A or B will not benefit from
// retraining if there's only saturation
// or any rawcard if there is a nibble error
if ((!spd_rawcard_aorb && dsk_counts.saturated > 0) ||
(dsk_counts.nibrng_errs != 0 ||
dsk_counts.nibunl_errs != 0)) {
retry_count++;
debug("N%d.LMC%d: Deskew Status indicates saturation or nibble errors - retry %d Training.\n",
node, if_num, retry_count);
perform_deskew_training(priv, rank_mask, if_num,
spd_rawcard_aorb);
} else {
break;
}
} while (retry_count < 5);
}
}
static void lmc_workaround(struct ddr_priv *priv)
{
/* Workaround Trcd overflow by using Additive latency. */
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
union cvmx_lmcx_modereg_params0 mp0;
union cvmx_lmcx_timing_params1 tp1;
union cvmx_lmcx_control ctrl;
int rankx;
tp1.u64 = lmc_rd(priv, CVMX_LMCX_TIMING_PARAMS1(if_num));
mp0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
if (tp1.cn78xx.trcd == 0) {
debug("Workaround Trcd overflow by using Additive latency.\n");
/* Hard code this to 12 and enable additive latency */
tp1.cn78xx.trcd = 12;
mp0.s.al = 2; /* CL-2 */
ctrl.s.pocas = 1;
debug("MODEREG_PARAMS0 : 0x%016llx\n",
mp0.u64);
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
mp0.u64);
debug("TIMING_PARAMS1 : 0x%016llx\n",
tp1.u64);
lmc_wr(priv, CVMX_LMCX_TIMING_PARAMS1(if_num), tp1.u64);
debug("LMC_CONTROL : 0x%016llx\n",
ctrl.u64);
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
/* MR1 */
ddr4_mrw(priv, if_num, rankx, -1, 1, 0);
}
}
}
// this is here just for output, to allow check of the Deskew
// settings one last time...
if (!disable_deskew_training) {
struct deskew_counts dsk_counts;
debug("N%d.LMC%d: Check Deskew Settings before software Write-Leveling.\n",
node, if_num);
validate_deskew_training(priv, rank_mask, if_num, &dsk_counts,
3);
}
/*
* Workaround Errata 26304 (T88@2.0, O75@1.x, O78@2.x)
*
* When the CSRs LMCX_DLL_CTL3[WR_DESKEW_ENA] = 1 AND
* LMCX_PHY_CTL2[DQS[0..8]_DSK_ADJ] > 4, set
* LMCX_EXT_CONFIG[DRIVE_ENA_BPRCH] = 1.
*/
if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
octeon_is_cpuid(OCTEON_CNF75XX_PASS1_X)) {
union cvmx_lmcx_dll_ctl3 dll_ctl3;
union cvmx_lmcx_phy_ctl2 phy_ctl2;
union cvmx_lmcx_ext_config ext_cfg;
int increased_dsk_adj = 0;
int byte;
phy_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL2(if_num));
ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
for (byte = 0; byte < 8; ++byte) {
if (!(if_bytemask & (1 << byte)))
continue;
increased_dsk_adj |=
(((phy_ctl2.u64 >> (byte * 3)) & 0x7) > 4);
}
if (dll_ctl3.s.wr_deskew_ena == 1 && increased_dsk_adj) {
ext_cfg.s.drive_ena_bprch = 1;
lmc_wr(priv, CVMX_LMCX_EXT_CONFIG(if_num), ext_cfg.u64);
debug("LMC%d: Forcing DRIVE_ENA_BPRCH for Workaround Errata 26304.\n",
if_num);
}
}
}
// Software Write-Leveling block
#define VREF_RANGE1_LIMIT 0x33 // range1 is valid for 0x00 - 0x32
#define VREF_RANGE2_LIMIT 0x18 // range2 is valid for 0x00 - 0x17
// full window is valid for 0x00 to 0x4A
// let 0x00 - 0x17 be range2, 0x18 - 0x4a be range 1
#define VREF_LIMIT (VREF_RANGE1_LIMIT + VREF_RANGE2_LIMIT)
#define VREF_FINAL (VREF_LIMIT - 1)
enum sw_wl_status {
WL_ESTIMATED = 0, /* HW/SW wleveling failed. Reslt estimated */
WL_HARDWARE = 1, /* H/W wleveling succeeded */
WL_SOFTWARE = 2, /* S/W wleveling passed 2 contiguous setting */
WL_SOFTWARE1 = 3, /* S/W wleveling passed 1 marginal setting */
};
static u64 rank_addr __section(".data");
static int vref_val __section(".data");
static int final_vref_val __section(".data");
static int final_vref_range __section(".data");
static int start_vref_val __section(".data");
static int computed_final_vref_val __section(".data");
static char best_vref_val_count __section(".data");
static char vref_val_count __section(".data");
static char best_vref_val_start __section(".data");
static char vref_val_start __section(".data");
static int bytes_failed __section(".data");
static enum sw_wl_status byte_test_status[9] __section(".data");
static enum sw_wl_status sw_wl_rank_status __section(".data");
static int sw_wl_failed __section(".data");
static int sw_wl_hw __section(".data");
static int measured_vref_flag __section(".data");
static void ddr4_vref_loop(struct ddr_priv *priv, int rankx)
{
char *s;
if (vref_val < VREF_FINAL) {
int vrange, vvalue;
if (vref_val < VREF_RANGE2_LIMIT) {
vrange = 1;
vvalue = vref_val;
} else {
vrange = 0;
vvalue = vref_val - VREF_RANGE2_LIMIT;
}
set_vref(priv, if_num, rankx, vrange, vvalue);
} else { /* if (vref_val < VREF_FINAL) */
/* Print the final vref value first. */
/* Always print the computed first if its valid */
if (computed_final_vref_val >= 0) {
debug("N%d.LMC%d.R%d: vref Computed Summary : %2d (0x%02x)\n",
node, if_num, rankx,
computed_final_vref_val, computed_final_vref_val);
}
if (!measured_vref_flag) { // setup to use the computed
best_vref_val_count = 1;
final_vref_val = computed_final_vref_val;
} else { // setup to use the measured
if (best_vref_val_count > 0) {
best_vref_val_count =
max(best_vref_val_count, (char)2);
final_vref_val = best_vref_val_start +
divide_nint(best_vref_val_count - 1, 2);
if (final_vref_val < VREF_RANGE2_LIMIT) {
final_vref_range = 1;
} else {
final_vref_range = 0;
final_vref_val -= VREF_RANGE2_LIMIT;
}
int vvlo = best_vref_val_start;
int vrlo;
int vvhi = best_vref_val_start +
best_vref_val_count - 1;
int vrhi;
if (vvlo < VREF_RANGE2_LIMIT) {
vrlo = 2;
} else {
vrlo = 1;
vvlo -= VREF_RANGE2_LIMIT;
}
if (vvhi < VREF_RANGE2_LIMIT) {
vrhi = 2;
} else {
vrhi = 1;
vvhi -= VREF_RANGE2_LIMIT;
}
debug("N%d.LMC%d.R%d: vref Training Summary : 0x%02x/%1d <----- 0x%02x/%1d -----> 0x%02x/%1d, range: %2d\n",
node, if_num, rankx, vvlo, vrlo,
final_vref_val,
final_vref_range + 1, vvhi, vrhi,
best_vref_val_count - 1);
} else {
/*
* If nothing passed use the default vref
* value for this rank
*/
union cvmx_lmcx_modereg_params2 mp2;
mp2.u64 =
lmc_rd(priv,
CVMX_LMCX_MODEREG_PARAMS2(if_num));
final_vref_val = (mp2.u64 >>
(rankx * 10 + 3)) & 0x3f;
final_vref_range = (mp2.u64 >>
(rankx * 10 + 9)) & 0x01;
debug("N%d.LMC%d.R%d: vref Using Default : %2d <----- %2d (0x%02x) -----> %2d, range%1d\n",
node, if_num, rankx, final_vref_val,
final_vref_val, final_vref_val,
final_vref_val, final_vref_range + 1);
}
}
// allow override
s = lookup_env(priv, "ddr%d_vref_val_%1d%1d",
if_num, !!(rankx & 2), !!(rankx & 1));
if (s)
final_vref_val = strtoul(s, NULL, 0);
set_vref(priv, if_num, rankx, final_vref_range, final_vref_val);
}
}
#define WL_MIN_NO_ERRORS_COUNT 3 // FIXME? three passes without errors
static int errors __section(".data");
static int byte_delay[9] __section(".data");
static u64 bytemask __section(".data");
static int bytes_todo __section(".data");
static int no_errors_count __section(".data");
static u64 bad_bits[2] __section(".data");
static u64 sum_dram_dclk __section(".data");
static u64 sum_dram_ops __section(".data");
static u64 start_dram_dclk __section(".data");
static u64 stop_dram_dclk __section(".data");
static u64 start_dram_ops __section(".data");
static u64 stop_dram_ops __section(".data");
static void lmc_sw_write_leveling_loop(struct ddr_priv *priv, int rankx)
{
int delay;
int b;
// write the current set of WL delays
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num), wl_rank.u64);
wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
// do the test
if (sw_wl_hw) {
errors = run_best_hw_patterns(priv, if_num, rank_addr,
DBTRAIN_TEST, bad_bits);
errors &= bytes_todo; // keep only the ones we are still doing
} else {
start_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
start_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
errors = test_dram_byte64(priv, if_num, rank_addr, bytemask,
bad_bits);
stop_dram_dclk = lmc_rd(priv, CVMX_LMCX_DCLK_CNT(if_num));
stop_dram_ops = lmc_rd(priv, CVMX_LMCX_OPS_CNT(if_num));
sum_dram_dclk += stop_dram_dclk - start_dram_dclk;
sum_dram_ops += stop_dram_ops - start_dram_ops;
}
debug("WL pass1: test_dram_byte returned 0x%x\n", errors);
// remember, errors will not be returned for byte-lanes that have
// maxxed out...
if (errors == 0) {
no_errors_count++; // bump
// bypass check/update completely
if (no_errors_count > 1)
return; // to end of do-while
} else {
no_errors_count = 0; // reset
}
// check errors by byte
for (b = 0; b < 9; ++b) {
if (!(bytes_todo & (1 << b)))
continue;
delay = byte_delay[b];
// yes, an error in this byte lane
if (errors & (1 << b)) {
debug(" byte %d delay %2d Errors\n", b, delay);
// since this byte had an error, we move to the next
// delay value, unless done with it
delay += 8; // incr by 8 to do delay high-order bits
if (delay < 32) {
upd_wl_rank(&wl_rank, b, delay);
debug(" byte %d delay %2d New\n",
b, delay);
byte_delay[b] = delay;
} else {
// reached max delay, maybe really done with
// this byte
// consider an alt only for computed VREF and
if (!measured_vref_flag &&
(hwl_alts[rankx].hwl_alt_mask & (1 << b))) {
// if an alt exists...
// just orig low-3 bits
int bad_delay = delay & 0x6;
// yes, use it
delay = hwl_alts[rankx].hwl_alt_delay[b];
// clear that flag
hwl_alts[rankx].hwl_alt_mask &=
~(1 << b);
upd_wl_rank(&wl_rank, b, delay);
byte_delay[b] = delay;
debug(" byte %d delay %2d ALTERNATE\n",
b, delay);
debug("N%d.LMC%d.R%d: SWL: Byte %d: %d FAIL, trying ALTERNATE %d\n",
node, if_num,
rankx, b, bad_delay, delay);
} else {
unsigned int bits_bad;
if (b < 8) {
// test no longer, remove from
// byte mask
bytemask &=
~(0xffULL << (8 * b));
bits_bad = (unsigned int)
((bad_bits[0] >>
(8 * b)) & 0xffUL);
} else {
bits_bad = (unsigned int)
(bad_bits[1] & 0xffUL);
}
// remove from bytes to do
bytes_todo &= ~(1 << b);
// make sure this is set for this case
byte_test_status[b] = WL_ESTIMATED;
debug(" byte %d delay %2d Exhausted\n",
b, delay);
if (!measured_vref_flag) {
// this is too noisy when doing
// measured VREF
debug("N%d.LMC%d.R%d: SWL: Byte %d (0x%02x): delay %d EXHAUSTED\n",
node, if_num, rankx,
b, bits_bad, delay);
}
}
}
} else {
// no error, stay with current delay, but keep testing
// it...
debug(" byte %d delay %2d Passed\n", b, delay);
byte_test_status[b] = WL_HARDWARE; // change status
}
} /* for (b = 0; b < 9; ++b) */
}
static void sw_write_lvl_use_ecc(struct ddr_priv *priv, int rankx)
{
int save_byte8 = wl_rank.s.byte8;
byte_test_status[8] = WL_HARDWARE; /* H/W delay value */
if (save_byte8 != wl_rank.s.byte3 &&
save_byte8 != wl_rank.s.byte4) {
int test_byte8 = save_byte8;
int test_byte8_error;
int byte8_error = 0x1f;
int adder;
int avg_bytes = divide_nint(wl_rank.s.byte3 + wl_rank.s.byte4,
2);
for (adder = 0; adder <= 32; adder += 8) {
test_byte8_error = abs((adder + save_byte8) -
avg_bytes);
if (test_byte8_error < byte8_error) {
byte8_error = test_byte8_error;
test_byte8 = save_byte8 + adder;
}
}
// only do the check if we are not using measured VREF
if (!measured_vref_flag) {
/* Use only even settings, rounding down... */
test_byte8 &= ~1;
// do validity check on the calculated ECC delay value
// this depends on the DIMM type
if (spd_rdimm) { // RDIMM
// but not mini-RDIMM
if (spd_dimm_type != 5) {
// it can be > byte4, but should never
// be > byte3
if (test_byte8 > wl_rank.s.byte3) {
/* say it is still estimated */
byte_test_status[8] =
WL_ESTIMATED;
}
}
} else { // UDIMM
if (test_byte8 < wl_rank.s.byte3 ||
test_byte8 > wl_rank.s.byte4) {
// should never be outside the
// byte 3-4 range
/* say it is still estimated */
byte_test_status[8] = WL_ESTIMATED;
}
}
/*
* Report whenever the calculation appears bad.
* This happens if some of the original values were off,
* or unexpected geometry from DIMM type, or custom
* circuitry (NIC225E, I am looking at you!).
* We will trust the calculated value, and depend on
* later testing to catch any instances when that
* value is truly bad.
*/
// ESTIMATED means there may be an issue
if (byte_test_status[8] == WL_ESTIMATED) {
debug("N%d.LMC%d.R%d: SWL: (%cDIMM): calculated ECC delay unexpected (%d/%d/%d)\n",
node, if_num, rankx,
(spd_rdimm ? 'R' : 'U'), wl_rank.s.byte4,
test_byte8, wl_rank.s.byte3);
byte_test_status[8] = WL_HARDWARE;
}
}
/* Use only even settings */
wl_rank.s.byte8 = test_byte8 & ~1;
}
if (wl_rank.s.byte8 != save_byte8) {
/* Change the status if s/w adjusted the delay */
byte_test_status[8] = WL_SOFTWARE; /* Estimated delay */
}
}
static __maybe_unused void parallel_wl_block_delay(struct ddr_priv *priv,
int rankx)
{
int errors;
int byte_delay[8];
int byte_passed[8];
u64 bytemask;
u64 bitmask;
int wl_offset;
int bytes_todo;
int sw_wl_offset = 1;
int delay;
int b;
for (b = 0; b < 8; ++b)
byte_passed[b] = 0;
bytes_todo = if_bytemask;
for (wl_offset = sw_wl_offset; wl_offset >= 0; --wl_offset) {
debug("Starting wl_offset for-loop: %d\n", wl_offset);
bytemask = 0;
for (b = 0; b < 8; ++b) {
byte_delay[b] = 0;
// this does not contain fully passed bytes
if (!(bytes_todo & (1 << b)))
continue;
// reset across passes if not fully passed
byte_passed[b] = 0;
upd_wl_rank(&wl_rank, b, 0); // all delays start at 0
bitmask = ((!if_64b) && (b == 4)) ? 0x0f : 0xff;
// set the bytes bits in the bytemask
bytemask |= bitmask << (8 * b);
} /* for (b = 0; b < 8; ++b) */
// start a pass if there is any byte lane to test
while (bytemask != 0) {
debug("Starting bytemask while-loop: 0x%llx\n",
bytemask);
// write this set of WL delays
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
wl_rank.u64);
wl_rank.u64 = lmc_rd(priv,
CVMX_LMCX_WLEVEL_RANKX(rankx,
if_num));
// do the test
if (sw_wl_hw) {
errors = run_best_hw_patterns(priv, if_num,
rank_addr,
DBTRAIN_TEST,
NULL) & 0xff;
} else {
errors = test_dram_byte64(priv, if_num,
rank_addr, bytemask,
NULL);
}
debug("test_dram_byte returned 0x%x\n", errors);
// check errors by byte
for (b = 0; b < 8; ++b) {
if (!(bytes_todo & (1 << b)))
continue;
delay = byte_delay[b];
if (errors & (1 << b)) { // yes, an error
debug(" byte %d delay %2d Errors\n",
b, delay);
byte_passed[b] = 0;
} else { // no error
byte_passed[b] += 1;
// Look for consecutive working settings
if (byte_passed[b] == (1 + wl_offset)) {
debug(" byte %d delay %2d FULLY Passed\n",
b, delay);
if (wl_offset == 1) {
byte_test_status[b] =
WL_SOFTWARE;
} else if (wl_offset == 0) {
byte_test_status[b] =
WL_SOFTWARE1;
}
// test no longer, remove
// from byte mask this pass
bytemask &= ~(0xffULL <<
(8 * b));
// remove completely from
// concern
bytes_todo &= ~(1 << b);
// on to the next byte, bypass
// delay updating!!
continue;
} else {
debug(" byte %d delay %2d Passed\n",
b, delay);
}
}
// error or no, here we move to the next delay
// value for this byte, unless done all delays
// only a byte that has "fully passed" will
// bypass around this,
delay += 2;
if (delay < 32) {
upd_wl_rank(&wl_rank, b, delay);
debug(" byte %d delay %2d New\n",
b, delay);
byte_delay[b] = delay;
} else {
// reached max delay, done with this
// byte
debug(" byte %d delay %2d Exhausted\n",
b, delay);
// test no longer, remove from byte
// mask this pass
bytemask &= ~(0xffULL << (8 * b));
}
} /* for (b = 0; b < 8; ++b) */
debug("End of for-loop: bytemask 0x%llx\n", bytemask);
} /* while (bytemask != 0) */
}
for (b = 0; b < 8; ++b) {
// any bytes left in bytes_todo did not pass
if (bytes_todo & (1 << b)) {
union cvmx_lmcx_rlevel_rankx lmc_rlevel_rank;
/*
* Last resort. Use Rlevel settings to estimate
* Wlevel if software write-leveling fails
*/
debug("Using RLEVEL as WLEVEL estimate for byte %d\n",
b);
lmc_rlevel_rank.u64 =
lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
rlevel_to_wlevel(&lmc_rlevel_rank, &wl_rank, b);
}
} /* for (b = 0; b < 8; ++b) */
}
static int lmc_sw_write_leveling(struct ddr_priv *priv)
{
/* Try to determine/optimize write-level delays experimentally. */
union cvmx_lmcx_wlevel_rankx wl_rank_hw_res;
union cvmx_lmcx_config cfg;
int rankx;
int byte;
char *s;
int i;
int active_rank;
int sw_wl_enable = 1; /* FIX... Should be customizable. */
int interfaces;
static const char * const wl_status_strings[] = {
"(e)",
" ",
" ",
"(1)"
};
// FIXME: make HW-assist the default now?
int sw_wl_hw_default = SW_WLEVEL_HW_DEFAULT;
int dram_connection = c_cfg->dram_connection;
s = lookup_env(priv, "ddr_sw_wlevel_hw");
if (s)
sw_wl_hw_default = !!strtoul(s, NULL, 0);
if (!if_64b) // must use SW algo if 32-bit mode
sw_wl_hw_default = 0;
// can never use hw-assist
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
sw_wl_hw_default = 0;
s = lookup_env(priv, "ddr_software_wlevel");
if (s)
sw_wl_enable = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr%d_dram_connection", if_num);
if (s)
dram_connection = !!strtoul(s, NULL, 0);
cvmx_rng_enable();
/*
* Get the measured_vref setting from the config, check for an
* override...
*/
/* NOTE: measured_vref=1 (ON) means force use of MEASURED vref... */
// NOTE: measured VREF can only be done for DDR4
if (ddr_type == DDR4_DRAM) {
measured_vref_flag = c_cfg->measured_vref;
s = lookup_env(priv, "ddr_measured_vref");
if (s)
measured_vref_flag = !!strtoul(s, NULL, 0);
} else {
measured_vref_flag = 0; // OFF for DDR3
}
/*
* Ensure disabled ECC for DRAM tests using the SW algo, else leave
* it untouched
*/
if (!sw_wl_hw_default) {
cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
cfg.cn78xx.ecc_ena = 0;
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
}
/*
* We need to track absolute rank number, as well as how many
* active ranks we have. Two single rank DIMMs show up as
* ranks 0 and 2, but only 2 ranks are active.
*/
active_rank = 0;
interfaces = __builtin_popcount(if_mask);
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
final_vref_range = 0;
start_vref_val = 0;
computed_final_vref_val = -1;
sw_wl_rank_status = WL_HARDWARE;
sw_wl_failed = 0;
sw_wl_hw = sw_wl_hw_default;
if (!sw_wl_enable)
break;
if (!(rank_mask & (1 << rankx)))
continue;
debug("N%d.LMC%d.R%d: Performing Software Write-Leveling %s\n",
node, if_num, rankx,
(sw_wl_hw) ? "with H/W assist" :
"with S/W algorithm");
if (ddr_type == DDR4_DRAM && num_ranks != 4) {
// always compute when we can...
computed_final_vref_val =
compute_vref_val(priv, if_num, rankx, dimm_count,
num_ranks, imp_val,
is_stacked_die, dram_connection);
// but only use it if allowed
if (!measured_vref_flag) {
// skip all the measured vref processing,
// just the final setting
start_vref_val = VREF_FINAL;
}
}
/* Save off the h/w wl results */
wl_rank_hw_res.u64 = lmc_rd(priv,
CVMX_LMCX_WLEVEL_RANKX(rankx,
if_num));
vref_val_count = 0;
vref_val_start = 0;
best_vref_val_count = 0;
best_vref_val_start = 0;
/* Loop one extra time using the Final vref value. */
for (vref_val = start_vref_val; vref_val < VREF_LIMIT;
++vref_val) {
if (ddr_type == DDR4_DRAM)
ddr4_vref_loop(priv, rankx);
/* Restore the saved value */
wl_rank.u64 = wl_rank_hw_res.u64;
for (byte = 0; byte < 9; ++byte)
byte_test_status[byte] = WL_ESTIMATED;
if (wl_mask_err == 0) {
/*
* Determine address of DRAM to test for
* pass 1 of software write leveling.
*/
rank_addr = active_rank *
(1ull << (pbank_lsb - bunk_enable +
(interfaces / 2)));
/*
* Adjust address for boot bus hole in memory
* map.
*/
if (rank_addr > 0x10000000)
rank_addr += 0x10000000;
debug("N%d.LMC%d.R%d: Active Rank %d Address: 0x%llx\n",
node, if_num, rankx, active_rank,
rank_addr);
// start parallel write-leveling block for
// delay high-order bits
errors = 0;
no_errors_count = 0;
sum_dram_dclk = 0;
sum_dram_ops = 0;
if (if_64b) {
bytes_todo = (sw_wl_hw) ?
if_bytemask : 0xFF;
bytemask = ~0ULL;
} else {
// 32-bit, must be using SW algo,
// only data bytes
bytes_todo = 0x0f;
bytemask = 0x00000000ffffffffULL;
}
for (byte = 0; byte < 9; ++byte) {
if (!(bytes_todo & (1 << byte))) {
byte_delay[byte] = 0;
} else {
byte_delay[byte] =
get_wl_rank(&wl_rank, byte);
}
} /* for (byte = 0; byte < 9; ++byte) */
do {
lmc_sw_write_leveling_loop(priv, rankx);
} while (no_errors_count <
WL_MIN_NO_ERRORS_COUNT);
if (!sw_wl_hw) {
u64 percent_x10;
if (sum_dram_dclk == 0)
sum_dram_dclk = 1;
percent_x10 = sum_dram_ops * 1000 /
sum_dram_dclk;
debug("N%d.LMC%d.R%d: ops %llu, cycles %llu, used %llu.%llu%%\n",
node, if_num, rankx, sum_dram_ops,
sum_dram_dclk, percent_x10 / 10,
percent_x10 % 10);
}
if (errors) {
debug("End WLEV_64 while loop: vref_val %d(0x%x), errors 0x%02x\n",
vref_val, vref_val, errors);
}
// end parallel write-leveling block for
// delay high-order bits
// if we used HW-assist, we did the ECC byte
// when approp.
if (sw_wl_hw) {
if (wl_print) {
debug("N%d.LMC%d.R%d: HW-assisted SWL - ECC estimate not needed.\n",
node, if_num, rankx);
}
goto no_ecc_estimate;
}
if ((if_bytemask & 0xff) == 0xff) {
if (use_ecc) {
sw_write_lvl_use_ecc(priv,
rankx);
} else {
/* H/W delay value */
byte_test_status[8] =
WL_HARDWARE;
/* ECC is not used */
wl_rank.s.byte8 =
wl_rank.s.byte0;
}
} else {
if (use_ecc) {
/* Estimate the ECC byte dly */
// add hi-order to b4
wl_rank.s.byte4 |=
(wl_rank.s.byte3 &
0x38);
if ((wl_rank.s.byte4 & 0x06) <
(wl_rank.s.byte3 & 0x06)) {
// must be next clock
wl_rank.s.byte4 += 8;
}
} else {
/* ECC is not used */
wl_rank.s.byte4 =
wl_rank.s.byte0;
}
/*
* Change the status if s/w adjusted
* the delay
*/
/* Estimated delay */
byte_test_status[4] = WL_SOFTWARE;
} /* if ((if_bytemask & 0xff) == 0xff) */
} /* if (wl_mask_err == 0) */
no_ecc_estimate:
bytes_failed = 0;
for (byte = 0; byte < 9; ++byte) {
/* Don't accumulate errors for untested bytes */
if (!(if_bytemask & (1 << byte)))
continue;
bytes_failed +=
(byte_test_status[byte] == WL_ESTIMATED);
}
/* vref training loop is only used for DDR4 */
if (ddr_type != DDR4_DRAM)
break;
if (bytes_failed == 0) {
if (vref_val_count == 0)
vref_val_start = vref_val;
++vref_val_count;
if (vref_val_count > best_vref_val_count) {
best_vref_val_count = vref_val_count;
best_vref_val_start = vref_val_start;
debug("N%d.LMC%d.R%d: vref Training (%2d) : 0x%02x <----- ???? -----> 0x%02x\n",
node, if_num, rankx, vref_val,
best_vref_val_start,
best_vref_val_start +
best_vref_val_count - 1);
}
} else {
vref_val_count = 0;
debug("N%d.LMC%d.R%d: vref Training (%2d) : failed\n",
node, if_num, rankx, vref_val);
}
}
/*
* Determine address of DRAM to test for software write
* leveling.
*/
rank_addr = active_rank * (1ull << (pbank_lsb - bunk_enable +
(interfaces / 2)));
/* Adjust address for boot bus hole in memory map. */
if (rank_addr > 0x10000000)
rank_addr += 0x10000000;
debug("Rank Address: 0x%llx\n", rank_addr);
if (bytes_failed) {
// FIXME? the big hammer, did not even try SW WL pass2,
// assume only chip reset will help
debug("N%d.LMC%d.R%d: S/W write-leveling pass 1 failed\n",
node, if_num, rankx);
sw_wl_failed = 1;
} else { /* if (bytes_failed) */
// SW WL pass 1 was OK, write the settings
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
wl_rank.u64);
wl_rank.u64 = lmc_rd(priv,
CVMX_LMCX_WLEVEL_RANKX(rankx,
if_num));
// do validity check on the delay values by running
// the test 1 more time...
// FIXME: we really need to check the ECC byte setting
// here as well, so we need to enable ECC for this test!
// if there are any errors, claim SW WL failure
u64 datamask = (if_64b) ? 0xffffffffffffffffULL :
0x00000000ffffffffULL;
int errors;
// do the test
if (sw_wl_hw) {
errors = run_best_hw_patterns(priv, if_num,
rank_addr,
DBTRAIN_TEST,
NULL) & 0xff;
} else {
errors = test_dram_byte64(priv, if_num,
rank_addr, datamask,
NULL);
}
if (errors) {
debug("N%d.LMC%d.R%d: Wlevel Rank Final Test errors 0x%03x\n",
node, if_num, rankx, errors);
sw_wl_failed = 1;
}
} /* if (bytes_failed) */
// FIXME? dump the WL settings, so we get more of a clue
// as to what happened where
debug("N%d.LMC%d.R%d: Wlevel Rank %#4x, 0x%016llX : %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %2d%3s %s\n",
node, if_num, rankx, wl_rank.s.status, wl_rank.u64,
wl_rank.s.byte8, wl_status_strings[byte_test_status[8]],
wl_rank.s.byte7, wl_status_strings[byte_test_status[7]],
wl_rank.s.byte6, wl_status_strings[byte_test_status[6]],
wl_rank.s.byte5, wl_status_strings[byte_test_status[5]],
wl_rank.s.byte4, wl_status_strings[byte_test_status[4]],
wl_rank.s.byte3, wl_status_strings[byte_test_status[3]],
wl_rank.s.byte2, wl_status_strings[byte_test_status[2]],
wl_rank.s.byte1, wl_status_strings[byte_test_status[1]],
wl_rank.s.byte0, wl_status_strings[byte_test_status[0]],
(sw_wl_rank_status == WL_HARDWARE) ? "" : "(s)");
// finally, check for fatal conditions: either chip reset
// right here, or return error flag
if ((ddr_type == DDR4_DRAM && best_vref_val_count == 0) ||
sw_wl_failed) {
if (!ddr_disable_chip_reset) { // do chip RESET
printf("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Resetting node...\n",
node, if_num, rankx);
mdelay(500);
do_reset(NULL, 0, 0, NULL);
} else {
// return error flag so LMC init can be retried.
debug("N%d.LMC%d.R%d: INFO: Short memory test indicates a retry is needed. Restarting LMC init...\n",
node, if_num, rankx);
return -EAGAIN; // 0 indicates restart possible.
}
}
active_rank++;
}
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
int parameter_set = 0;
u64 value;
if (!(rank_mask & (1 << rankx)))
continue;
wl_rank.u64 = lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx,
if_num));
for (i = 0; i < 9; ++i) {
s = lookup_env(priv, "ddr%d_wlevel_rank%d_byte%d",
if_num, rankx, i);
if (s) {
parameter_set |= 1;
value = strtoul(s, NULL, 0);
upd_wl_rank(&wl_rank, i, value);
}
}
s = lookup_env_ull(priv, "ddr%d_wlevel_rank%d", if_num, rankx);
if (s) {
parameter_set |= 1;
value = strtoull(s, NULL, 0);
wl_rank.u64 = value;
}
if (parameter_set) {
lmc_wr(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num),
wl_rank.u64);
wl_rank.u64 =
lmc_rd(priv, CVMX_LMCX_WLEVEL_RANKX(rankx, if_num));
display_wl(if_num, wl_rank, rankx);
}
// if there are unused entries to be filled
if ((rank_mask & 0x0F) != 0x0F) {
if (rankx < 3) {
debug("N%d.LMC%d.R%d: checking for WLEVEL_RANK unused entries.\n",
node, if_num, rankx);
// if rank 0, write ranks 1 and 2 here if empty
if (rankx == 0) {
// check that rank 1 is empty
if (!(rank_mask & (1 << 1))) {
debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
node, if_num, rankx, 1);
lmc_wr(priv,
CVMX_LMCX_WLEVEL_RANKX(1,
if_num),
wl_rank.u64);
}
// check that rank 2 is empty
if (!(rank_mask & (1 << 2))) {
debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
node, if_num, rankx, 2);
lmc_wr(priv,
CVMX_LMCX_WLEVEL_RANKX(2,
if_num),
wl_rank.u64);
}
}
// if rank 0, 1 or 2, write rank 3 here if empty
// check that rank 3 is empty
if (!(rank_mask & (1 << 3))) {
debug("N%d.LMC%d.R%d: writing WLEVEL_RANK unused entry R%d.\n",
node, if_num, rankx, 3);
lmc_wr(priv,
CVMX_LMCX_WLEVEL_RANKX(3,
if_num),
wl_rank.u64);
}
}
}
}
/* Enable 32-bit mode if required. */
cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
cfg.cn78xx.mode32b = (!if_64b);
debug("%-45s : %d\n", "MODE32B", cfg.cn78xx.mode32b);
/* Restore the ECC configuration */
if (!sw_wl_hw_default)
cfg.cn78xx.ecc_ena = use_ecc;
lmc_wr(priv, CVMX_LMCX_CONFIG(if_num), cfg.u64);
return 0;
}
static void lmc_dll(struct ddr_priv *priv)
{
union cvmx_lmcx_dll_ctl3 ddr_dll_ctl3;
int setting[9];
int i;
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
for (i = 0; i < 9; ++i) {
SET_DDR_DLL_CTL3(dll90_byte_sel, ENCODE_DLL90_BYTE_SEL(i));
lmc_wr(priv, CVMX_LMCX_DLL_CTL3(if_num), ddr_dll_ctl3.u64);
lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
ddr_dll_ctl3.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL3(if_num));
setting[i] = GET_DDR_DLL_CTL3(dll90_setting);
debug("%d. LMC%d_DLL_CTL3[%d] = %016llx %d\n", i, if_num,
GET_DDR_DLL_CTL3(dll90_byte_sel), ddr_dll_ctl3.u64,
setting[i]);
}
debug("N%d.LMC%d: %-36s : %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",
node, if_num, "DLL90 Setting 8:0",
setting[8], setting[7], setting[6], setting[5], setting[4],
setting[3], setting[2], setting[1], setting[0]);
process_custom_dll_offsets(priv, if_num, "ddr_dll_write_offset",
c_cfg->dll_write_offset,
"ddr%d_dll_write_offset_byte%d", 1);
process_custom_dll_offsets(priv, if_num, "ddr_dll_read_offset",
c_cfg->dll_read_offset,
"ddr%d_dll_read_offset_byte%d", 2);
}
#define SLOT_CTL_INCR(csr, chip, field, incr) \
csr.chip.field = (csr.chip.field < (64 - incr)) ? \
(csr.chip.field + incr) : 63
#define INCR(csr, chip, field, incr) \
csr.chip.field = (csr.chip.field < (64 - incr)) ? \
(csr.chip.field + incr) : 63
static void lmc_workaround_2(struct ddr_priv *priv)
{
/* Workaround Errata 21063 */
if (octeon_is_cpuid(OCTEON_CN78XX) ||
octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
union cvmx_lmcx_slot_ctl0 slot_ctl0;
union cvmx_lmcx_slot_ctl1 slot_ctl1;
union cvmx_lmcx_slot_ctl2 slot_ctl2;
union cvmx_lmcx_ext_config ext_cfg;
slot_ctl0.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL0(if_num));
slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
ext_cfg.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(if_num));
/* When ext_cfg.s.read_ena_bprch is set add 1 */
if (ext_cfg.s.read_ena_bprch) {
SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_init, 1);
SLOT_CTL_INCR(slot_ctl0, cn78xx, r2w_l_init, 1);
SLOT_CTL_INCR(slot_ctl1, cn78xx, r2w_xrank_init, 1);
SLOT_CTL_INCR(slot_ctl2, cn78xx, r2w_xdimm_init, 1);
}
/* Always add 2 */
SLOT_CTL_INCR(slot_ctl1, cn78xx, w2r_xrank_init, 2);
SLOT_CTL_INCR(slot_ctl2, cn78xx, w2r_xdimm_init, 2);
lmc_wr(priv, CVMX_LMCX_SLOT_CTL0(if_num), slot_ctl0.u64);
lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
}
/* Workaround Errata 21216 */
if (octeon_is_cpuid(OCTEON_CN78XX_PASS1_X) ||
octeon_is_cpuid(OCTEON_CN70XX_PASS1_X)) {
union cvmx_lmcx_slot_ctl1 slot_ctl1;
union cvmx_lmcx_slot_ctl2 slot_ctl2;
slot_ctl1.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL1(if_num));
slot_ctl1.cn78xx.w2w_xrank_init =
max(10, (int)slot_ctl1.cn78xx.w2w_xrank_init);
lmc_wr(priv, CVMX_LMCX_SLOT_CTL1(if_num), slot_ctl1.u64);
slot_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_SLOT_CTL2(if_num));
slot_ctl2.cn78xx.w2w_xdimm_init =
max(10, (int)slot_ctl2.cn78xx.w2w_xdimm_init);
lmc_wr(priv, CVMX_LMCX_SLOT_CTL2(if_num), slot_ctl2.u64);
}
}
static void lmc_final(struct ddr_priv *priv)
{
/*
* 4.8.11 Final LMC Initialization
*
* Early LMC initialization, LMC write-leveling, and LMC read-leveling
* must be completed prior to starting this final LMC initialization.
*
* LMC hardware updates the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1,
* LMC(0)_SLOT_CTL2 CSRs with minimum values based on the selected
* readleveling and write-leveling settings. Software should not write
* the final LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and LMC(0)_SLOT_CTL2
* values until after the final read-leveling and write-leveling
* settings are written.
*
* Software must ensure the LMC(0)_SLOT_CTL0, LMC(0)_SLOT_CTL1, and
* LMC(0)_SLOT_CTL2 CSR values are appropriate for this step. These CSRs
* select the minimum gaps between read operations and write operations
* of various types.
*
* Software must not reduce the values in these CSR fields below the
* values previously selected by the LMC hardware (during write-leveling
* and read-leveling steps above).
*
* All sections in this chapter may be used to derive proper settings
* for these registers.
*
* For minimal read latency, L2C_CTL[EF_ENA,EF_CNT] should be programmed
* properly. This should be done prior to the first read.
*/
/* Clear any residual ECC errors */
int num_tads = 1;
int tad;
int num_mcis = 1;
int mci;
if (octeon_is_cpuid(OCTEON_CN78XX)) {
num_tads = 8;
num_mcis = 4;
} else if (octeon_is_cpuid(OCTEON_CN70XX)) {
num_tads = 1;
num_mcis = 1;
} else if (octeon_is_cpuid(OCTEON_CN73XX) ||
octeon_is_cpuid(OCTEON_CNF75XX)) {
num_tads = 4;
num_mcis = 3;
}
lmc_wr(priv, CVMX_LMCX_INT(if_num), -1ULL);
lmc_rd(priv, CVMX_LMCX_INT(if_num));
for (tad = 0; tad < num_tads; tad++) {
l2c_wr(priv, CVMX_L2C_TADX_INT(tad),
l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
debug("%-45s : (%d) 0x%08llx\n", "CVMX_L2C_TAD_INT", tad,
l2c_rd(priv, CVMX_L2C_TADX_INT(tad)));
}
for (mci = 0; mci < num_mcis; mci++) {
l2c_wr(priv, CVMX_L2C_MCIX_INT(mci),
l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
debug("%-45s : (%d) 0x%08llx\n", "L2C_MCI_INT", mci,
l2c_rd(priv, CVMX_L2C_MCIX_INT(mci)));
}
debug("%-45s : 0x%08llx\n", "LMC_INT",
lmc_rd(priv, CVMX_LMCX_INT(if_num)));
}
static void lmc_scrambling(struct ddr_priv *priv)
{
// Make sure scrambling is disabled during init...
union cvmx_lmcx_control ctrl;
union cvmx_lmcx_scramble_cfg0 lmc_scramble_cfg0;
union cvmx_lmcx_scramble_cfg1 lmc_scramble_cfg1;
union cvmx_lmcx_scramble_cfg2 lmc_scramble_cfg2;
union cvmx_lmcx_ns_ctl lmc_ns_ctl;
int use_scramble = 0; // default OFF
char *s;
ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
lmc_scramble_cfg0.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num));
lmc_scramble_cfg1.u64 = lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num));
lmc_scramble_cfg2.u64 = 0; // quiet compiler
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
lmc_scramble_cfg2.u64 =
lmc_rd(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num));
}
lmc_ns_ctl.u64 = lmc_rd(priv, CVMX_LMCX_NS_CTL(if_num));
s = lookup_env_ull(priv, "ddr_use_scramble");
if (s)
use_scramble = simple_strtoull(s, NULL, 0);
/* Generate random values if scrambling is needed */
if (use_scramble) {
lmc_scramble_cfg0.u64 = cvmx_rng_get_random64();
lmc_scramble_cfg1.u64 = cvmx_rng_get_random64();
lmc_scramble_cfg2.u64 = cvmx_rng_get_random64();
lmc_ns_ctl.s.ns_scramble_dis = 0;
lmc_ns_ctl.s.adr_offset = 0;
ctrl.s.scramble_ena = 1;
}
s = lookup_env_ull(priv, "ddr_scramble_cfg0");
if (s) {
lmc_scramble_cfg0.u64 = simple_strtoull(s, NULL, 0);
ctrl.s.scramble_ena = 1;
}
debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG0",
lmc_scramble_cfg0.u64);
lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), lmc_scramble_cfg0.u64);
s = lookup_env_ull(priv, "ddr_scramble_cfg1");
if (s) {
lmc_scramble_cfg1.u64 = simple_strtoull(s, NULL, 0);
ctrl.s.scramble_ena = 1;
}
debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG1",
lmc_scramble_cfg1.u64);
lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), lmc_scramble_cfg1.u64);
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X)) {
s = lookup_env_ull(priv, "ddr_scramble_cfg2");
if (s) {
lmc_scramble_cfg2.u64 = simple_strtoull(s, NULL, 0);
ctrl.s.scramble_ena = 1;
}
debug("%-45s : 0x%016llx\n", "LMC_SCRAMBLE_CFG2",
lmc_scramble_cfg1.u64);
lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num),
lmc_scramble_cfg2.u64);
}
s = lookup_env_ull(priv, "ddr_ns_ctl");
if (s)
lmc_ns_ctl.u64 = simple_strtoull(s, NULL, 0);
debug("%-45s : 0x%016llx\n", "LMC_NS_CTL", lmc_ns_ctl.u64);
lmc_wr(priv, CVMX_LMCX_NS_CTL(if_num), lmc_ns_ctl.u64);
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
}
struct rl_score {
u64 setting;
int score;
};
static union cvmx_lmcx_rlevel_rankx rl_rank __section(".data");
static union cvmx_lmcx_rlevel_ctl rl_ctl __section(".data");
static unsigned char rodt_ctl __section(".data");
static int rl_rodt_err __section(".data");
static unsigned char rtt_nom __section(".data");
static unsigned char rtt_idx __section(".data");
static char min_rtt_nom_idx __section(".data");
static char max_rtt_nom_idx __section(".data");
static char min_rodt_ctl __section(".data");
static char max_rodt_ctl __section(".data");
static int rl_dbg_loops __section(".data");
static unsigned char save_ddr2t __section(".data");
static int rl_samples __section(".data");
static char rl_compute __section(".data");
static char saved_ddr__ptune __section(".data");
static char saved_ddr__ntune __section(".data");
static char rl_comp_offs __section(".data");
static char saved_int_zqcs_dis __section(".data");
static int max_adj_rl_del_inc __section(".data");
static int print_nom_ohms __section(".data");
static int rl_print __section(".data");
#ifdef ENABLE_HARDCODED_RLEVEL
static char part_number[21] __section(".data");
#endif /* ENABLE_HARDCODED_RLEVEL */
struct perfect_counts {
u16 count[9][32]; // 8+ECC by 64 values
u32 mask[9]; // 8+ECC, bitmask of perfect delays
};
static struct perfect_counts rank_perf[4] __section(".data");
static struct perfect_counts rodt_perfect_counts __section(".data");
static int pbm_lowsum_limit __section(".data");
// FIXME: PBM skip for RODT 240 and 34
static u32 pbm_rodt_skip __section(".data");
// control rank majority processing
static int disable_rank_majority __section(".data");
// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
// for DDR3
static int enable_rldelay_bump __section(".data");
static int rldelay_bump_incr __section(".data");
static int disable_rlv_bump_this_byte __section(".data");
static u64 value_mask __section(".data");
static struct rlevel_byte_data rl_byte[9] __section(".data");
static int sample_loops __section(".data");
static int max_samples __section(".data");
static int rl_rank_errors __section(".data");
static int rl_mask_err __section(".data");
static int rl_nonseq_err __section(".data");
static struct rlevel_bitmask rl_mask[9] __section(".data");
static int rl_best_rank_score __section(".data");
static int rodt_row_skip_mask __section(".data");
static void rodt_loop(struct ddr_priv *priv, int rankx, struct rl_score
rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
{
union cvmx_lmcx_comp_ctl2 cc2;
const int rl_separate_ab = 1;
int i;
rl_best_rank_score = DEFAULT_BEST_RANK_SCORE;
rl_rodt_err = 0;
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
cc2.cn78xx.rodt_ctl = rodt_ctl;
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
udelay(1); /* Give it a little time to take affect */
if (rl_print > 1) {
debug("Read ODT_CTL : 0x%x (%d ohms)\n",
cc2.cn78xx.rodt_ctl,
imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
}
memset(rl_byte, 0, sizeof(rl_byte));
memset(&rodt_perfect_counts, 0, sizeof(rodt_perfect_counts));
// when iter RODT is the target RODT, take more samples...
max_samples = rl_samples;
if (rodt_ctl == default_rodt_ctl)
max_samples += rl_samples + 1;
for (sample_loops = 0; sample_loops < max_samples; sample_loops++) {
int redoing_nonseq_errs = 0;
rl_mask_err = 0;
if (!(rl_separate_ab && spd_rdimm &&
ddr_type == DDR4_DRAM)) {
/* Clear read-level delays */
lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
/* read-leveling */
oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
do {
rl_rank.u64 =
lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
} while (rl_rank.cn78xx.status != 3);
}
rl_rank.u64 =
lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
// start bitmask interpretation block
memset(rl_mask, 0, sizeof(rl_mask));
if (rl_separate_ab && spd_rdimm && ddr_type == DDR4_DRAM) {
union cvmx_lmcx_rlevel_rankx rl_rank_aside;
union cvmx_lmcx_modereg_params0 mp0;
/* A-side */
mp0.u64 =
lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
lmc_wr(priv,
CVMX_LMCX_MODEREG_PARAMS0(if_num),
mp0.u64);
/* Clear read-level delays */
lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
/* read-leveling */
oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
do {
rl_rank.u64 =
lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
} while (rl_rank.cn78xx.status != 3);
rl_rank.u64 =
lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
rl_rank_aside.u64 = rl_rank.u64;
rl_mask[0].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 0);
rl_mask[1].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 1);
rl_mask[2].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 2);
rl_mask[3].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 3);
rl_mask[8].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 8);
/* A-side complete */
/* B-side */
mp0.u64 =
lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
mp0.s.mprloc = 3; /* MPR Page 0 Location 3 */
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
mp0.u64);
/* Clear read-level delays */
lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), 0);
/* read-leveling */
oct3_ddr3_seq(priv, 1 << rankx, if_num, 1);
do {
rl_rank.u64 =
lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
} while (rl_rank.cn78xx.status != 3);
rl_rank.u64 =
lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
rl_mask[4].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 4);
rl_mask[5].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 5);
rl_mask[6].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 6);
rl_mask[7].bm = lmc_ddr3_rl_dbg_read(priv, if_num, 7);
/* B-side complete */
upd_rl_rank(&rl_rank, 0, rl_rank_aside.s.byte0);
upd_rl_rank(&rl_rank, 1, rl_rank_aside.s.byte1);
upd_rl_rank(&rl_rank, 2, rl_rank_aside.s.byte2);
upd_rl_rank(&rl_rank, 3, rl_rank_aside.s.byte3);
/* ECC A-side */
upd_rl_rank(&rl_rank, 8, rl_rank_aside.s.byte8);
mp0.u64 =
lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num));
mp0.s.mprloc = 0; /* MPR Page 0 Location 0 */
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(if_num),
mp0.u64);
}
/*
* Evaluate the quality of the read-leveling delays from the
* bitmasks. Also save off a software computed read-leveling
* mask that may be used later to qualify the delay results
* from Octeon.
*/
for (i = 0; i < (8 + ecc_ena); ++i) {
int bmerr;
if (!(if_bytemask & (1 << i)))
continue;
if (!(rl_separate_ab && spd_rdimm &&
ddr_type == DDR4_DRAM)) {
rl_mask[i].bm =
lmc_ddr3_rl_dbg_read(priv, if_num, i);
}
bmerr = validate_ddr3_rlevel_bitmask(&rl_mask[i],
ddr_type);
rl_mask[i].errs = bmerr;
rl_mask_err += bmerr;
// count only the "perfect" bitmasks
if (ddr_type == DDR4_DRAM && !bmerr) {
int delay;
// FIXME: for now, simple filtering:
// do NOT count PBMs for RODTs in skip mask
if ((1U << rodt_ctl) & pbm_rodt_skip)
continue;
// FIXME: could optimize this a bit?
delay = get_rl_rank(&rl_rank, i);
rank_perf[rankx].count[i][delay] += 1;
rank_perf[rankx].mask[i] |=
(1ULL << delay);
rodt_perfect_counts.count[i][delay] += 1;
rodt_perfect_counts.mask[i] |= (1ULL << delay);
}
}
/* Set delays for unused bytes to match byte 0. */
for (i = 0; i < 9; ++i) {
if (if_bytemask & (1 << i))
continue;
upd_rl_rank(&rl_rank, i, rl_rank.s.byte0);
}
/*
* Save a copy of the byte delays in physical
* order for sequential evaluation.
*/
unpack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, rl_rank);
redo_nonseq_errs:
rl_nonseq_err = 0;
if (!disable_sequential_delay_check) {
for (i = 0; i < 9; ++i)
rl_byte[i].sqerrs = 0;
if ((if_bytemask & 0xff) == 0xff) {
/*
* Evaluate delay sequence across the whole
* range of bytes for standard dimms.
*/
/* 1=RDIMM, 5=Mini-RDIMM */
if (spd_dimm_type == 1 || spd_dimm_type == 5) {
int reg_adj_del = abs(rl_byte[4].delay -
rl_byte[5].delay);
/*
* Registered dimm topology routes
* from the center.
*/
rl_nonseq_err +=
nonseq_del(rl_byte, 0,
3 + ecc_ena,
max_adj_rl_del_inc);
rl_nonseq_err +=
nonseq_del(rl_byte, 5,
7 + ecc_ena,
max_adj_rl_del_inc);
// byte 5 sqerrs never gets cleared
// for RDIMMs
rl_byte[5].sqerrs = 0;
if (reg_adj_del > 1) {
/*
* Assess proximity of bytes on
* opposite sides of register
*/
rl_nonseq_err += (reg_adj_del -
1) *
RLEVEL_ADJACENT_DELAY_ERROR;
// update byte 5 error
rl_byte[5].sqerrs +=
(reg_adj_del - 1) *
RLEVEL_ADJACENT_DELAY_ERROR;
}
}
/* 2=UDIMM, 6=Mini-UDIMM */
if (spd_dimm_type == 2 || spd_dimm_type == 6) {
/*
* Unbuffered dimm topology routes
* from end to end.
*/
rl_nonseq_err += nonseq_del(rl_byte, 0,
7 + ecc_ena,
max_adj_rl_del_inc);
}
} else {
rl_nonseq_err += nonseq_del(rl_byte, 0,
3 + ecc_ena,
max_adj_rl_del_inc);
}
} /* if (! disable_sequential_delay_check) */
rl_rank_errors = rl_mask_err + rl_nonseq_err;
// print original sample here only if we are not really
// averaging or picking best
// also do not print if we were redoing the NONSEQ score
// for using COMPUTED
if (!redoing_nonseq_errs && rl_samples < 2) {
if (rl_print > 1) {
display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
display_rl_bm_scores(if_num, rankx, rl_mask,
ecc_ena);
display_rl_seq_scores(if_num, rankx, rl_byte,
ecc_ena);
}
display_rl_with_score(if_num, rl_rank, rankx,
rl_rank_errors);
}
if (rl_compute) {
if (!redoing_nonseq_errs) {
/* Recompute the delays based on the bitmask */
for (i = 0; i < (8 + ecc_ena); ++i) {
if (!(if_bytemask & (1 << i)))
continue;
upd_rl_rank(&rl_rank, i,
compute_ddr3_rlevel_delay(
rl_mask[i].mstart,
rl_mask[i].width,
rl_ctl));
}
/*
* Override the copy of byte delays with the
* computed results.
*/
unpack_rlevel_settings(if_bytemask, ecc_ena,
rl_byte, rl_rank);
redoing_nonseq_errs = 1;
goto redo_nonseq_errs;
} else {
/*
* now print this if already printed the
* original sample
*/
if (rl_samples < 2 || rl_print) {
display_rl_with_computed(if_num,
rl_rank, rankx,
rl_rank_errors);
}
}
} /* if (rl_compute) */
// end bitmask interpretation block
// if it is a better (lower) score, then keep it
if (rl_rank_errors < rl_best_rank_score) {
rl_best_rank_score = rl_rank_errors;
// save the new best delays and best errors
for (i = 0; i < (8 + ecc_ena); ++i) {
rl_byte[i].best = rl_byte[i].delay;
rl_byte[i].bestsq = rl_byte[i].sqerrs;
// save bitmasks and their scores as well
// xlate UNPACKED index to PACKED index to
// get from rl_mask
rl_byte[i].bm = rl_mask[XUP(i, !!ecc_ena)].bm;
rl_byte[i].bmerrs =
rl_mask[XUP(i, !!ecc_ena)].errs;
}
}
rl_rodt_err += rl_rank_errors;
}
/* We recorded the best score across the averaging loops */
rl_score[rtt_nom][rodt_ctl][rankx].score = rl_best_rank_score;
/*
* Restore the delays from the best fields that go with the best
* score
*/
for (i = 0; i < 9; ++i) {
rl_byte[i].delay = rl_byte[i].best;
rl_byte[i].sqerrs = rl_byte[i].bestsq;
}
rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
pack_rlevel_settings(if_bytemask, ecc_ena, rl_byte, &rl_rank);
if (rl_samples > 1) {
// restore the "best" bitmasks and their scores for printing
for (i = 0; i < 9; ++i) {
if ((if_bytemask & (1 << i)) == 0)
continue;
// xlate PACKED index to UNPACKED index to get from
// rl_byte
rl_mask[i].bm = rl_byte[XPU(i, !!ecc_ena)].bm;
rl_mask[i].errs = rl_byte[XPU(i, !!ecc_ena)].bmerrs;
}
// maybe print bitmasks/scores here
if (rl_print > 1) {
display_rl_bm(if_num, rankx, rl_mask, ecc_ena);
display_rl_bm_scores(if_num, rankx, rl_mask, ecc_ena);
display_rl_seq_scores(if_num, rankx, rl_byte, ecc_ena);
display_rl_with_rodt(if_num, rl_rank, rankx,
rl_score[rtt_nom][rodt_ctl][rankx].score,
print_nom_ohms,
imp_val->rodt_ohms[rodt_ctl],
WITH_RODT_BESTSCORE);
debug("-----------\n");
}
}
rl_score[rtt_nom][rodt_ctl][rankx].setting = rl_rank.u64;
// print out the PBMs for the current RODT
if (ddr_type == DDR4_DRAM && rl_print > 1) { // verbosity?
// FIXME: change verbosity level after debug complete...
for (i = 0; i < 9; i++) {
u64 temp_mask;
int num_values;
// FIXME: PBM skip for RODTs in mask
if ((1U << rodt_ctl) & pbm_rodt_skip)
continue;
temp_mask = rodt_perfect_counts.mask[i];
num_values = __builtin_popcountll(temp_mask);
i = __builtin_ffsll(temp_mask) - 1;
debug("N%d.LMC%d.R%d: PERFECT: RODT %3d: Byte %d: mask 0x%02llx (%d): ",
node, if_num, rankx,
imp_val->rodt_ohms[rodt_ctl],
i, temp_mask >> i, num_values);
while (temp_mask != 0) {
i = __builtin_ffsll(temp_mask) - 1;
debug("%2d(%2d) ", i,
rodt_perfect_counts.count[i][i]);
temp_mask &= ~(1UL << i);
} /* while (temp_mask != 0) */
debug("\n");
}
}
}
static void rank_major_loop(struct ddr_priv *priv, int rankx, struct rl_score
rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4])
{
/* Start with an arbitrarily high score */
int best_rank_score = DEFAULT_BEST_RANK_SCORE;
int best_rank_rtt_nom = 0;
int best_rank_ctl = 0;
int best_rank_ohms = 0;
int best_rankx = 0;
int dimm_rank_mask;
int max_rank_score;
union cvmx_lmcx_rlevel_rankx saved_rl_rank;
int next_ohms;
int orankx;
int next_score = 0;
int best_byte, new_byte, temp_byte, orig_best_byte;
int rank_best_bytes[9];
int byte_sh;
int avg_byte;
int avg_diff;
int i;
if (!(rank_mask & (1 << rankx)))
return;
// some of the rank-related loops below need to operate only on
// the ranks of a single DIMM,
// so create a mask for their use here
if (num_ranks == 4) {
dimm_rank_mask = rank_mask; // should be 1111
} else {
dimm_rank_mask = rank_mask & 3; // should be 01 or 11
if (rankx >= 2) {
// doing a rank on the second DIMM, should be
// 0100 or 1100
dimm_rank_mask <<= 2;
}
}
debug("DIMM rank mask: 0x%x, rank mask: 0x%x, rankx: %d\n",
dimm_rank_mask, rank_mask, rankx);
// this is the start of the BEST ROW SCORE LOOP
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_val->rtt_nom_table[rtt_idx];
debug("N%d.LMC%d.R%d: starting RTT_NOM %d (%d)\n",
node, if_num, rankx, rtt_nom,
imp_val->rtt_nom_ohms[rtt_nom]);
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
--rodt_ctl) {
next_ohms = imp_val->rodt_ohms[rodt_ctl];
// skip RODT rows in mask, but *NOT* rows with too
// high a score;
// we will not use the skipped ones for printing or
// evaluating, but we need to allow all the
// non-skipped ones to be candidates for "best"
if (((1 << rodt_ctl) & rodt_row_skip_mask) != 0) {
debug("N%d.LMC%d.R%d: SKIPPING rodt:%d (%d) with rank_score:%d\n",
node, if_num, rankx, rodt_ctl,
next_ohms, next_score);
continue;
}
// this is ROFFIX-0528
for (orankx = 0; orankx < dimm_count * 4; orankx++) {
// stay on the same DIMM
if (!(dimm_rank_mask & (1 << orankx)))
continue;
next_score = rl_score[rtt_nom][rodt_ctl][orankx].score;
// always skip a higher score
if (next_score > best_rank_score)
continue;
// if scores are equal
if (next_score == best_rank_score) {
// always skip lower ohms
if (next_ohms < best_rank_ohms)
continue;
// if same ohms
if (next_ohms == best_rank_ohms) {
// always skip the other rank(s)
if (orankx != rankx)
continue;
}
// else next_ohms are greater,
// always choose it
}
// else next_score is less than current best,
// so always choose it
debug("N%d.LMC%d.R%d: new best score: rank %d, rodt %d(%3d), new best %d, previous best %d(%d)\n",
node, if_num, rankx, orankx, rodt_ctl, next_ohms, next_score,
best_rank_score, best_rank_ohms);
best_rank_score = next_score;
best_rank_rtt_nom = rtt_nom;
//best_rank_nom_ohms = rtt_nom_ohms;
best_rank_ctl = rodt_ctl;
best_rank_ohms = next_ohms;
best_rankx = orankx;
rl_rank.u64 =
rl_score[rtt_nom][rodt_ctl][orankx].setting;
}
}
}
// this is the end of the BEST ROW SCORE LOOP
// DANGER, Will Robinson!! Abort now if we did not find a best
// score at all...
if (best_rank_score == DEFAULT_BEST_RANK_SCORE) {
printf("N%d.LMC%d.R%d: WARNING: no best rank score found - resetting node...\n",
node, if_num, rankx);
mdelay(500);
do_reset(NULL, 0, 0, NULL);
}
// FIXME: relative now, but still arbitrary...
max_rank_score = best_rank_score;
if (ddr_type == DDR4_DRAM) {
// halve the range if 2 DIMMs unless they are single rank...
max_rank_score += (MAX_RANK_SCORE_LIMIT / ((num_ranks > 1) ?
dimm_count : 1));
} else {
// Since DDR3 typically has a wider score range,
// keep more of them always
max_rank_score += MAX_RANK_SCORE_LIMIT;
}
if (!ecc_ena) {
/* ECC is not used */
rl_rank.s.byte8 = rl_rank.s.byte0;
}
// at the end, write the best row settings to the current rank
lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num), rl_rank.u64);
rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
saved_rl_rank.u64 = rl_rank.u64;
// this is the start of the PRINT LOOP
int pass;
// for pass==0, print current rank, pass==1 print other rank(s)
// this is done because we want to show each ranks RODT values
// together, not interlaced
// keep separates for ranks - pass=0 target rank, pass=1 other
// rank on DIMM
int mask_skipped[2] = {0, 0};
int score_skipped[2] = {0, 0};
int selected_rows[2] = {0, 0};
int zero_scores[2] = {0, 0};
for (pass = 0; pass < 2; pass++) {
for (orankx = 0; orankx < dimm_count * 4; orankx++) {
// stay on the same DIMM
if (!(dimm_rank_mask & (1 << orankx)))
continue;
if ((pass == 0 && orankx != rankx) ||
(pass != 0 && orankx == rankx))
continue;
for (rtt_idx = min_rtt_nom_idx;
rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_val->rtt_nom_table[rtt_idx];
if (dyn_rtt_nom_mask == 0) {
print_nom_ohms = -1;
} else {
print_nom_ohms =
imp_val->rtt_nom_ohms[rtt_nom];
}
// cycle through all the RODT values...
for (rodt_ctl = max_rodt_ctl;
rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
union cvmx_lmcx_rlevel_rankx
temp_rl_rank;
int temp_score =
rl_score[rtt_nom][rodt_ctl][orankx].score;
int skip_row;
temp_rl_rank.u64 =
rl_score[rtt_nom][rodt_ctl][orankx].setting;
// skip RODT rows in mask, or rows
// with too high a score;
// we will not use them for printing
// or evaluating...
if ((1 << rodt_ctl) &
rodt_row_skip_mask) {
skip_row = WITH_RODT_SKIPPING;
++mask_skipped[pass];
} else if (temp_score >
max_rank_score) {
skip_row = WITH_RODT_SKIPPING;
++score_skipped[pass];
} else {
skip_row = WITH_RODT_BLANK;
++selected_rows[pass];
if (temp_score == 0)
++zero_scores[pass];
}
// identify and print the BEST ROW
// when it comes up
if (skip_row == WITH_RODT_BLANK &&
best_rankx == orankx &&
best_rank_rtt_nom == rtt_nom &&
best_rank_ctl == rodt_ctl)
skip_row = WITH_RODT_BESTROW;
if (rl_print) {
display_rl_with_rodt(if_num,
temp_rl_rank, orankx, temp_score,
print_nom_ohms,
imp_val->rodt_ohms[rodt_ctl],
skip_row);
}
}
}
}
}
debug("N%d.LMC%d.R%d: RLROWS: selected %d+%d, zero_scores %d+%d, mask_skipped %d+%d, score_skipped %d+%d\n",
node, if_num, rankx, selected_rows[0], selected_rows[1],
zero_scores[0], zero_scores[1], mask_skipped[0], mask_skipped[1],
score_skipped[0], score_skipped[1]);
// this is the end of the PRINT LOOP
// now evaluate which bytes need adjusting
// collect the new byte values; first init with current best for
// neighbor use
for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
rank_best_bytes[i] = (int)(rl_rank.u64 >> byte_sh) &
RLEVEL_BYTE_MSK;
}
// this is the start of the BEST BYTE LOOP
for (i = 0, byte_sh = 0; i < 8 + ecc_ena; i++, byte_sh += 6) {
int sum = 0, count = 0;
int count_less = 0, count_same = 0, count_more = 0;
int count_byte; // save the value we counted around
// for rank majority use
int rank_less = 0, rank_same = 0, rank_more = 0;
int neighbor;
int neigh_byte;
best_byte = rank_best_bytes[i];
orig_best_byte = rank_best_bytes[i];
// this is the start of the BEST BYTE AVERAGING LOOP
// validate the initial "best" byte by looking at the
// average of the unskipped byte-column entries
// we want to do this before we go further, so we can
// try to start with a better initial value
// this is the so-called "BESTBUY" patch set
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
++rtt_idx) {
rtt_nom = imp_val->rtt_nom_table[rtt_idx];
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
--rodt_ctl) {
union cvmx_lmcx_rlevel_rankx temp_rl_rank;
int temp_score;
// average over all the ranks
for (orankx = 0; orankx < dimm_count * 4;
orankx++) {
// stay on the same DIMM
if (!(dimm_rank_mask & (1 << orankx)))
continue;
temp_score =
rl_score[rtt_nom][rodt_ctl][orankx].score;
// skip RODT rows in mask, or rows with
// too high a score;
// we will not use them for printing or
// evaluating...
if (!((1 << rodt_ctl) &
rodt_row_skip_mask) &&
temp_score <= max_rank_score) {
temp_rl_rank.u64 =
rl_score[rtt_nom][rodt_ctl][orankx].setting;
temp_byte =
(int)(temp_rl_rank.u64 >> byte_sh) &
RLEVEL_BYTE_MSK;
sum += temp_byte;
count++;
}
}
}
}
// this is the end of the BEST BYTE AVERAGING LOOP
// FIXME: validate count and sum??
avg_byte = (int)divide_nint(sum, count);
avg_diff = best_byte - avg_byte;
new_byte = best_byte;
if (avg_diff != 0) {
// bump best up/dn by 1, not necessarily all the
// way to avg
new_byte = best_byte + ((avg_diff > 0) ? -1 : 1);
}
if (rl_print) {
debug("N%d.LMC%d.R%d: START: Byte %d: best %d is different by %d from average %d, using %d.\n",
node, if_num, rankx,
i, best_byte, avg_diff, avg_byte, new_byte);
}
best_byte = new_byte;
count_byte = new_byte; // save the value we will count around
// At this point best_byte is either:
// 1. the original byte-column value from the best scoring
// RODT row, OR
// 2. that value bumped toward the average of all the
// byte-column values
//
// best_byte will not change from here on...
// this is the start of the BEST BYTE COUNTING LOOP
// NOTE: we do this next loop separately from above, because
// we count relative to "best_byte"
// which may have been modified by the above averaging
// operation...
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
++rtt_idx) {
rtt_nom = imp_val->rtt_nom_table[rtt_idx];
for (rodt_ctl = max_rodt_ctl; rodt_ctl >= min_rodt_ctl;
--rodt_ctl) {
union cvmx_lmcx_rlevel_rankx temp_rl_rank;
int temp_score;
for (orankx = 0; orankx < dimm_count * 4;
orankx++) { // count over all the ranks
// stay on the same DIMM
if (!(dimm_rank_mask & (1 << orankx)))
continue;
temp_score =
rl_score[rtt_nom][rodt_ctl][orankx].score;
// skip RODT rows in mask, or rows
// with too high a score;
// we will not use them for printing
// or evaluating...
if (((1 << rodt_ctl) &
rodt_row_skip_mask) ||
temp_score > max_rank_score)
continue;
temp_rl_rank.u64 =
rl_score[rtt_nom][rodt_ctl][orankx].setting;
temp_byte = (temp_rl_rank.u64 >>
byte_sh) & RLEVEL_BYTE_MSK;
if (temp_byte == 0)
; // do not count it if illegal
else if (temp_byte == best_byte)
count_same++;
else if (temp_byte == best_byte - 1)
count_less++;
else if (temp_byte == best_byte + 1)
count_more++;
// else do not count anything more
// than 1 away from the best
// no rank counting if disabled
if (disable_rank_majority)
continue;
// FIXME? count is relative to
// best_byte; should it be rank-based?
// rank counts only on main rank
if (orankx != rankx)
continue;
else if (temp_byte == best_byte)
rank_same++;
else if (temp_byte == best_byte - 1)
rank_less++;
else if (temp_byte == best_byte + 1)
rank_more++;
}
}
}
if (rl_print) {
debug("N%d.LMC%d.R%d: COUNT: Byte %d: orig %d now %d, more %d same %d less %d (%d/%d/%d)\n",
node, if_num, rankx,
i, orig_best_byte, best_byte,
count_more, count_same, count_less,
rank_more, rank_same, rank_less);
}
// this is the end of the BEST BYTE COUNTING LOOP
// choose the new byte value
// we need to check that there is no gap greater than 2
// between adjacent bytes (adjacency depends on DIMM type)
// use the neighbor value to help decide
// initially, the rank_best_bytes[] will contain values from
// the chosen lowest score rank
new_byte = 0;
// neighbor is index-1 unless we are index 0 or index 8 (ECC)
neighbor = (i == 8) ? 3 : ((i == 0) ? 1 : i - 1);
neigh_byte = rank_best_bytes[neighbor];
// can go up or down or stay the same, so look at a numeric
// average to help
new_byte = (int)divide_nint(((count_more * (best_byte + 1)) +
(count_same * (best_byte + 0)) +
(count_less * (best_byte - 1))),
max(1, (count_more + count_same +
count_less)));
// use neighbor to help choose with average
if (i > 0 && (abs(neigh_byte - new_byte) > 2) &&
!disable_sequential_delay_check) {
// but not for byte 0
int avg_pick = new_byte;
if ((new_byte - best_byte) != 0) {
// back to best, average did not get better
new_byte = best_byte;
} else {
// avg was the same, still too far, now move
// it towards the neighbor
new_byte += (neigh_byte > new_byte) ? 1 : -1;
}
if (rl_print) {
debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: neighbor %d too different %d from average %d, picking %d.\n",
node, if_num, rankx,
i, neighbor, neigh_byte, avg_pick,
new_byte);
}
} else {
// NOTE:
// For now, we let the neighbor processing above trump
// the new simple majority processing here.
// This is mostly because we have seen no smoking gun
// for a neighbor bad choice (yet?).
// Also note that we will ALWAYS be using byte 0
// majority, because of the if clause above.
// majority is dependent on the counts, which are
// relative to best_byte, so start there
int maj_byte = best_byte;
int rank_maj;
int rank_sum;
if (count_more > count_same &&
count_more > count_less) {
maj_byte++;
} else if (count_less > count_same &&
count_less > count_more) {
maj_byte--;
}
if (maj_byte != new_byte) {
// print only when majority choice is
// different from average
if (rl_print) {
debug("N%d.LMC%d.R%d: MAJORTY: Byte %d: picking majority of %d over average %d.\n",
node, if_num, rankx, i, maj_byte,
new_byte);
}
new_byte = maj_byte;
} else {
if (rl_print) {
debug("N%d.LMC%d.R%d: AVERAGE: Byte %d: picking average of %d.\n",
node, if_num, rankx, i, new_byte);
}
}
if (!disable_rank_majority) {
// rank majority is dependent on the rank
// counts, which are relative to best_byte,
// so start there, and adjust according to the
// rank counts majority
rank_maj = best_byte;
if (rank_more > rank_same &&
rank_more > rank_less) {
rank_maj++;
} else if (rank_less > rank_same &&
rank_less > rank_more) {
rank_maj--;
}
rank_sum = rank_more + rank_same + rank_less;
// now, let rank majority possibly rule over
// the current new_byte however we got it
if (rank_maj != new_byte) { // only if different
// Here is where we decide whether to
// completely apply RANK_MAJORITY or not
// ignore if less than
if (rank_maj < new_byte) {
if (rl_print) {
debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: LESS: NOT using %d over %d.\n",
node, if_num,
rankx, i,
rank_maj,
new_byte);
}
} else {
// For the moment, we do it
// ONLY when running 2-slot
// configs
// OR when rank_sum is big
// enough
if (dimm_count > 1 ||
rank_sum > 2) {
// print only when rank
// majority choice is
// selected
if (rl_print) {
debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: picking %d over %d.\n",
node,
if_num,
rankx,
i,
rank_maj,
new_byte);
}
new_byte = rank_maj;
} else {
// FIXME: print some
// info when we could
// have chosen RANKMAJ
// but did not
if (rl_print) {
debug("N%d.LMC%d.R%d: RANKMAJ: Byte %d: NOT using %d over %d (best=%d,sum=%d).\n",
node,
if_num,
rankx,
i,
rank_maj,
new_byte,
best_byte,
rank_sum);
}
}
}
}
} /* if (!disable_rank_majority) */
}
// one last check:
// if new_byte is still count_byte, BUT there was no count
// for that value, DO SOMETHING!!!
// FIXME: go back to original best byte from the best row
if (new_byte == count_byte && count_same == 0) {
new_byte = orig_best_byte;
if (rl_print) {
debug("N%d.LMC%d.R%d: FAILSAF: Byte %d: going back to original %d.\n",
node, if_num, rankx, i, new_byte);
}
}
// Look at counts for "perfect" bitmasks (PBMs) if we had
// any for this byte-lane.
// Remember, we only counted for DDR4, so zero means none
// or DDR3, and we bypass this...
value_mask = rank_perf[rankx].mask[i];
disable_rlv_bump_this_byte = 0;
if (value_mask != 0 && rl_ctl.cn78xx.offset == 1) {
int i, delay_count, delay_max = 0, del_val = 0;
int num_values = __builtin_popcountll(value_mask);
int sum_counts = 0;
u64 temp_mask = value_mask;
disable_rlv_bump_this_byte = 1;
i = __builtin_ffsll(temp_mask) - 1;
if (rl_print)
debug("N%d.LMC%d.R%d: PERFECT: Byte %d: OFF1: mask 0x%02llx (%d): ",
node, if_num, rankx, i, value_mask >> i,
num_values);
while (temp_mask != 0) {
i = __builtin_ffsll(temp_mask) - 1;
delay_count = rank_perf[rankx].count[i][i];
sum_counts += delay_count;
if (rl_print)
debug("%2d(%2d) ", i, delay_count);
if (delay_count >= delay_max) {
delay_max = delay_count;
del_val = i;
}
temp_mask &= ~(1UL << i);
} /* while (temp_mask != 0) */
// if sum_counts is small, just use NEW_BYTE
if (sum_counts < pbm_lowsum_limit) {
if (rl_print)
debug(": LOWSUM (%2d), choose ORIG ",
sum_counts);
del_val = new_byte;
delay_max = rank_perf[rankx].count[i][del_val];
}
// finish printing here...
if (rl_print) {
debug(": USING %2d (%2d) D%d\n", del_val,
delay_max, disable_rlv_bump_this_byte);
}
new_byte = del_val; // override with best PBM choice
} else if ((value_mask != 0) && (rl_ctl.cn78xx.offset == 2)) {
// if (value_mask != 0) {
int i, delay_count, del_val;
int num_values = __builtin_popcountll(value_mask);
int sum_counts = 0;
u64 temp_mask = value_mask;
i = __builtin_ffsll(temp_mask) - 1;
if (rl_print)
debug("N%d.LMC%d.R%d: PERFECT: Byte %d: mask 0x%02llx (%d): ",
node, if_num, rankx, i, value_mask >> i,
num_values);
while (temp_mask != 0) {
i = __builtin_ffsll(temp_mask) - 1;
delay_count = rank_perf[rankx].count[i][i];
sum_counts += delay_count;
if (rl_print)
debug("%2d(%2d) ", i, delay_count);
temp_mask &= ~(1UL << i);
} /* while (temp_mask != 0) */
del_val = __builtin_ffsll(value_mask) - 1;
delay_count =
rank_perf[rankx].count[i][del_val];
// overkill, normally only 1-4 bits
i = (value_mask >> del_val) & 0x1F;
// if sum_counts is small, treat as special and use
// NEW_BYTE
if (sum_counts < pbm_lowsum_limit) {
if (rl_print)
debug(": LOWSUM (%2d), choose ORIG",
sum_counts);
i = 99; // SPECIAL case...
}
switch (i) {
case 0x01 /* 00001b */:
// allow BUMP
break;
case 0x13 /* 10011b */:
case 0x0B /* 01011b */:
case 0x03 /* 00011b */:
del_val += 1; // take the second
disable_rlv_bump_this_byte = 1; // allow no BUMP
break;
case 0x0D /* 01101b */:
case 0x05 /* 00101b */:
// test count of lowest and all
if (delay_count >= 5 || sum_counts <= 5)
del_val += 1; // take the hole
else
del_val += 2; // take the next set
disable_rlv_bump_this_byte = 1; // allow no BUMP
break;
case 0x0F /* 01111b */:
case 0x17 /* 10111b */:
case 0x07 /* 00111b */:
del_val += 1; // take the second
if (delay_count < 5) { // lowest count is small
int second =
rank_perf[rankx].count[i][del_val];
int third =
rank_perf[rankx].count[i][del_val + 1];
// test if middle is more than 1 OR
// top is more than 1;
// this means if they are BOTH 1,
// then we keep the second...
if (second > 1 || third > 1) {
// if middle is small OR top
// is large
if (second < 5 ||
third > 1) {
// take the top
del_val += 1;
if (rl_print)
debug(": TOP7 ");
}
}
}
disable_rlv_bump_this_byte = 1; // allow no BUMP
break;
default: // all others...
if (rl_print)
debug(": ABNORMAL, choose ORIG");
case 99: // special
// FIXME: choose original choice?
del_val = new_byte;
disable_rlv_bump_this_byte = 1; // allow no BUMP
break;
}
delay_count =
rank_perf[rankx].count[i][del_val];
// finish printing here...
if (rl_print)
debug(": USING %2d (%2d) D%d\n", del_val,
delay_count, disable_rlv_bump_this_byte);
new_byte = del_val; // override with best PBM choice
} else {
if (ddr_type == DDR4_DRAM) { // only report when DDR4
// FIXME: remove or increase VBL for this
// output...
if (rl_print)
debug("N%d.LMC%d.R%d: PERFECT: Byte %d: ZERO PBMs, USING %d\n",
node, if_num, rankx, i,
new_byte);
// prevent ODD bump, rely on original
disable_rlv_bump_this_byte = 1;
}
} /* if (value_mask != 0) */
// optionally bump the delay value
if (enable_rldelay_bump && !disable_rlv_bump_this_byte) {
if ((new_byte & enable_rldelay_bump) ==
enable_rldelay_bump) {
int bump_value = new_byte + rldelay_bump_incr;
if (rl_print) {
debug("N%d.LMC%d.R%d: RLVBUMP: Byte %d: CHANGING %d to %d (%s)\n",
node, if_num, rankx, i,
new_byte, bump_value,
(value_mask &
(1 << bump_value)) ?
"PBM" : "NOPBM");
}
new_byte = bump_value;
}
}
// last checks for count-related purposes
if (new_byte == best_byte && count_more > 0 &&
count_less == 0) {
// we really should take best_byte + 1
if (rl_print) {
debug("N%d.LMC%d.R%d: CADJMOR: Byte %d: CHANGING %d to %d\n",
node, if_num, rankx, i,
new_byte, best_byte + 1);
new_byte = best_byte + 1;
}
} else if ((new_byte < best_byte) && (count_same > 0)) {
// we really should take best_byte
if (rl_print) {
debug("N%d.LMC%d.R%d: CADJSAM: Byte %d: CHANGING %d to %d\n",
node, if_num, rankx, i,
new_byte, best_byte);
new_byte = best_byte;
}
} else if (new_byte > best_byte) {
if ((new_byte == (best_byte + 1)) &&
count_more == 0 && count_less > 0) {
// we really should take best_byte
if (rl_print) {
debug("N%d.LMC%d.R%d: CADJLE1: Byte %d: CHANGING %d to %d\n",
node, if_num, rankx, i,
new_byte, best_byte);
new_byte = best_byte;
}
} else if ((new_byte >= (best_byte + 2)) &&
((count_more > 0) || (count_same > 0))) {
if (rl_print) {
debug("N%d.LMC%d.R%d: CADJLE2: Byte %d: CHANGING %d to %d\n",
node, if_num, rankx, i,
new_byte, best_byte + 1);
new_byte = best_byte + 1;
}
}
}
if (rl_print) {
debug("N%d.LMC%d.R%d: SUMMARY: Byte %d: orig %d now %d, more %d same %d less %d, using %d\n",
node, if_num, rankx, i, orig_best_byte,
best_byte, count_more, count_same, count_less,
new_byte);
}
// update the byte with the new value (NOTE: orig value in
// the CSR may not be current "best")
upd_rl_rank(&rl_rank, i, new_byte);
// save new best for neighbor use
rank_best_bytes[i] = new_byte;
} /* for (i = 0; i < 8+ecc_ena; i++) */
////////////////// this is the end of the BEST BYTE LOOP
if (saved_rl_rank.u64 != rl_rank.u64) {
lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
rl_rank.u64);
rl_rank.u64 = lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx, if_num));
debug("Adjusting Read-Leveling per-RANK settings.\n");
} else {
debug("Not Adjusting Read-Leveling per-RANK settings.\n");
}
display_rl_with_final(if_num, rl_rank, rankx);
// FIXME: does this help make the output a little easier to focus?
if (rl_print > 0)
debug("-----------\n");
#define RLEVEL_RANKX_EXTRAS_INCR 0
// if there are unused entries to be filled
if ((rank_mask & 0x0f) != 0x0f) {
// copy the current rank
union cvmx_lmcx_rlevel_rankx temp_rl_rank = rl_rank;
if (rankx < 3) {
#if RLEVEL_RANKX_EXTRAS_INCR > 0
int byte, delay;
// modify the copy in prep for writing to empty slot(s)
for (byte = 0; byte < 9; byte++) {
delay = get_rl_rank(&temp_rl_rank, byte) +
RLEVEL_RANKX_EXTRAS_INCR;
if (delay > RLEVEL_BYTE_MSK)
delay = RLEVEL_BYTE_MSK;
upd_rl_rank(&temp_rl_rank, byte, delay);
}
#endif
// if rank 0, write rank 1 and rank 2 here if empty
if (rankx == 0) {
// check that rank 1 is empty
if (!(rank_mask & (1 << 1))) {
debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
node, if_num, rankx, 1);
lmc_wr(priv,
CVMX_LMCX_RLEVEL_RANKX(1,
if_num),
temp_rl_rank.u64);
}
// check that rank 2 is empty
if (!(rank_mask & (1 << 2))) {
debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
node, if_num, rankx, 2);
lmc_wr(priv,
CVMX_LMCX_RLEVEL_RANKX(2,
if_num),
temp_rl_rank.u64);
}
}
// if ranks 0, 1 or 2, write rank 3 here if empty
// check that rank 3 is empty
if (!(rank_mask & (1 << 3))) {
debug("N%d.LMC%d.R%d: writing RLEVEL_RANK unused entry R%d.\n",
node, if_num, rankx, 3);
lmc_wr(priv, CVMX_LMCX_RLEVEL_RANKX(3, if_num),
temp_rl_rank.u64);
}
}
}
}
static void lmc_read_leveling(struct ddr_priv *priv)
{
struct rl_score rl_score[RTT_NOM_OHMS_COUNT][RODT_OHMS_COUNT][4];
union cvmx_lmcx_control ctl;
union cvmx_lmcx_config cfg;
int rankx;
char *s;
int i;
/*
* 4.8.10 LMC Read Leveling
*
* LMC supports an automatic read-leveling separately per byte-lane
* using the DDR3 multipurpose register predefined pattern for system
* calibration defined in the JEDEC DDR3 specifications.
*
* All of DDR PLL, LMC CK, and LMC DRESET, and early LMC initializations
* must be completed prior to starting this LMC read-leveling sequence.
*
* Software could simply write the desired read-leveling values into
* LMC(0)_RLEVEL_RANK(0..3). This section describes a sequence that uses
* LMC's autoread-leveling capabilities.
*
* When LMC does the read-leveling sequence for a rank, it first enables
* the DDR3 multipurpose register predefined pattern for system
* calibration on the selected DRAM rank via a DDR3 MR3 write, then
* executes 64 RD operations at different internal delay settings, then
* disables the predefined pattern via another DDR3 MR3 write
* operation. LMC determines the pass or fail of each of the 64 settings
* independently for each byte lane, then writes appropriate
* LMC(0)_RLEVEL_RANK(0..3)[BYTE*] values for the rank.
*
* After read-leveling for a rank, software can read the 64 pass/fail
* indications for one byte lane via LMC(0)_RLEVEL_DBG[BITMASK].
* Software can observe all pass/fail results for all byte lanes in a
* rank via separate read-leveling sequences on the rank with different
* LMC(0)_RLEVEL_CTL[BYTE] values.
*
* The 64 pass/fail results will typically have failures for the low
* delays, followed by a run of some passing settings, followed by more
* failures in the remaining high delays. LMC sets
* LMC(0)_RLEVEL_RANK(0..3)[BYTE*] to one of the passing settings.
* First, LMC selects the longest run of successes in the 64 results.
* (In the unlikely event that there is more than one longest run, LMC
* selects the first one.) Then if LMC(0)_RLEVEL_CTL[OFFSET_EN] = 1 and
* the selected run has more than LMC(0)_RLEVEL_CTL[OFFSET] successes,
* LMC selects the last passing setting in the run minus
* LMC(0)_RLEVEL_CTL[OFFSET]. Otherwise LMC selects the middle setting
* in the run (rounding earlier when necessary). We expect the
* read-leveling sequence to produce good results with the reset values
* LMC(0)_RLEVEL_CTL [OFFSET_EN]=1, LMC(0)_RLEVEL_CTL[OFFSET] = 2.
*
* The read-leveling sequence has the following steps:
*
* 1. Select desired LMC(0)_RLEVEL_CTL[OFFSET_EN,OFFSET,BYTE] settings.
* Do the remaining substeps 2-4 separately for each rank i with
* attached DRAM.
*
* 2. Without changing any other fields in LMC(0)_CONFIG,
*
* o write LMC(0)_SEQ_CTL[SEQ_SEL] to select read-leveling
*
* o write LMC(0)_CONFIG[RANKMASK] = (1 << i)
*
* o write LMC(0)_SEQ_CTL[INIT_START] = 1
*
* This initiates the previously-described read-leveling.
*
* 3. Wait until LMC(0)_RLEVEL_RANKi[STATUS] != 2
*
* LMC will have updated LMC(0)_RLEVEL_RANKi[BYTE*] for all byte
* lanes at this point.
*
* If ECC DRAM is not present (i.e. when DRAM is not attached to the
* DDR_CBS_0_* and DDR_CB<7:0> chip signals, or the DDR_DQS_<4>_* and
* DDR_DQ<35:32> chip signals), write LMC(0)_RLEVEL_RANK*[BYTE8] =
* LMC(0)_RLEVEL_RANK*[BYTE0]. Write LMC(0)_RLEVEL_RANK*[BYTE4] =
* LMC(0)_RLEVEL_RANK*[BYTE0].
*
* 4. If desired, consult LMC(0)_RLEVEL_DBG[BITMASK] and compare to
* LMC(0)_RLEVEL_RANKi[BYTE*] for the lane selected by
* LMC(0)_RLEVEL_CTL[BYTE]. If desired, modify
* LMC(0)_RLEVEL_CTL[BYTE] to a new value and repeat so that all
* BITMASKs can be observed.
*
* 5. Initialize LMC(0)_RLEVEL_RANK* values for all unused ranks.
*
* Let rank i be a rank with attached DRAM.
*
* For all ranks j that do not have attached DRAM, set
* LMC(0)_RLEVEL_RANKj = LMC(0)_RLEVEL_RANKi.
*
* This read-leveling sequence can help select the proper CN70XX ODT
* resistance value (LMC(0)_COMP_CTL2[RODT_CTL]). A hardware-generated
* LMC(0)_RLEVEL_RANKi[BYTEj] value (for a used byte lane j) that is
* drastically different from a neighboring LMC(0)_RLEVEL_RANKi[BYTEk]
* (for a used byte lane k) can indicate that the CN70XX ODT value is
* bad. It is possible to simultaneously optimize both
* LMC(0)_COMP_CTL2[RODT_CTL] and LMC(0)_RLEVEL_RANKn[BYTE*] values by
* performing this read-leveling sequence for several
* LMC(0)_COMP_CTL2[RODT_CTL] values and selecting the one with the
* best LMC(0)_RLEVEL_RANKn[BYTE*] profile for the ranks.
*/
rl_rodt_err = 0;
rl_dbg_loops = 1;
saved_int_zqcs_dis = 0;
max_adj_rl_del_inc = 0;
rl_print = RLEVEL_PRINTALL_DEFAULT;
#ifdef ENABLE_HARDCODED_RLEVEL
part_number[21] = {0};
#endif /* ENABLE_HARDCODED_RLEVEL */
pbm_lowsum_limit = 5; // FIXME: is this a good default?
// FIXME: PBM skip for RODT 240 and 34
pbm_rodt_skip = (1U << ddr4_rodt_ctl_240_ohm) |
(1U << ddr4_rodt_ctl_34_ohm);
disable_rank_majority = 0; // control rank majority processing
// default to mask 11b ODDs for DDR4 (except 73xx), else DISABLE
// for DDR3
rldelay_bump_incr = 0;
disable_rlv_bump_this_byte = 0;
enable_rldelay_bump = (ddr_type == DDR4_DRAM) ?
((octeon_is_cpuid(OCTEON_CN73XX)) ? 1 : 3) : 0;
s = lookup_env(priv, "ddr_disable_rank_majority");
if (s)
disable_rank_majority = !!simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_pbm_lowsum_limit");
if (s)
pbm_lowsum_limit = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_pbm_rodt_skip");
if (s)
pbm_rodt_skip = simple_strtoul(s, NULL, 0);
memset(rank_perf, 0, sizeof(rank_perf));
ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
save_ddr2t = ctl.cn78xx.ddr2t;
cfg.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(if_num));
ecc_ena = cfg.cn78xx.ecc_ena;
s = lookup_env(priv, "ddr_rlevel_2t");
if (s)
ctl.cn78xx.ddr2t = simple_strtoul(s, NULL, 0);
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
debug("LMC%d: Performing Read-Leveling\n", if_num);
rl_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
rl_samples = c_cfg->rlevel_average_loops;
if (rl_samples == 0) {
rl_samples = RLEVEL_SAMPLES_DEFAULT;
// up the samples for these cases
if (dimm_count == 1 || num_ranks == 1)
rl_samples = rl_samples * 2 + 1;
}
rl_compute = c_cfg->rlevel_compute;
rl_ctl.cn78xx.offset_en = c_cfg->offset_en;
rl_ctl.cn78xx.offset = spd_rdimm
? c_cfg->offset_rdimm
: c_cfg->offset_udimm;
int value = 1; // should ALWAYS be set
s = lookup_env(priv, "ddr_rlevel_delay_unload");
if (s)
value = !!simple_strtoul(s, NULL, 0);
rl_ctl.cn78xx.delay_unload_0 = value;
rl_ctl.cn78xx.delay_unload_1 = value;
rl_ctl.cn78xx.delay_unload_2 = value;
rl_ctl.cn78xx.delay_unload_3 = value;
// use OR_DIS=1 to try for better results
rl_ctl.cn78xx.or_dis = 1;
/*
* If we will be switching to 32bit mode level based on only
* four bits because there are only 4 ECC bits.
*/
rl_ctl.cn78xx.bitmask = (if_64b) ? 0xFF : 0x0F;
// allow overrides
s = lookup_env(priv, "ddr_rlevel_ctl_or_dis");
if (s)
rl_ctl.cn78xx.or_dis = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_ctl_bitmask");
if (s)
rl_ctl.cn78xx.bitmask = simple_strtoul(s, NULL, 0);
rl_comp_offs = spd_rdimm
? c_cfg->rlevel_comp_offset_rdimm
: c_cfg->rlevel_comp_offset_udimm;
s = lookup_env(priv, "ddr_rlevel_comp_offset");
if (s)
rl_comp_offs = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_offset");
if (s)
rl_ctl.cn78xx.offset = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_offset_en");
if (s)
rl_ctl.cn78xx.offset_en = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_ctl");
if (s)
rl_ctl.u64 = simple_strtoul(s, NULL, 0);
lmc_wr(priv,
CVMX_LMCX_RLEVEL_CTL(if_num),
rl_ctl.u64);
// do this here so we can look at final RLEVEL_CTL[offset] setting...
s = lookup_env(priv, "ddr_enable_rldelay_bump");
if (s) {
// also use as mask bits
enable_rldelay_bump = strtoul(s, NULL, 0);
}
if (enable_rldelay_bump != 0)
rldelay_bump_incr = (rl_ctl.cn78xx.offset == 1) ? -1 : 1;
s = lookup_env(priv, "ddr%d_rlevel_debug_loops", if_num);
if (s)
rl_dbg_loops = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rtt_nom_auto");
if (s)
ddr_rtt_nom_auto = !!simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_average");
if (s)
rl_samples = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_compute");
if (s)
rl_compute = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_rlevel_printall");
if (s)
rl_print = simple_strtoul(s, NULL, 0);
debug("RLEVEL_CTL : 0x%016llx\n",
rl_ctl.u64);
debug("RLEVEL_OFFSET : %6d\n",
rl_ctl.cn78xx.offset);
debug("RLEVEL_OFFSET_EN : %6d\n",
rl_ctl.cn78xx.offset_en);
/*
* The purpose for the indexed table is to sort the settings
* by the ohm value to simplify the testing when incrementing
* through the settings. (index => ohms) 1=120, 2=60, 3=40,
* 4=30, 5=20
*/
min_rtt_nom_idx = (c_cfg->min_rtt_nom_idx == 0) ?
1 : c_cfg->min_rtt_nom_idx;
max_rtt_nom_idx = (c_cfg->max_rtt_nom_idx == 0) ?
5 : c_cfg->max_rtt_nom_idx;
min_rodt_ctl = (c_cfg->min_rodt_ctl == 0) ? 1 : c_cfg->min_rodt_ctl;
max_rodt_ctl = (c_cfg->max_rodt_ctl == 0) ? 5 : c_cfg->max_rodt_ctl;
s = lookup_env(priv, "ddr_min_rodt_ctl");
if (s)
min_rodt_ctl = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_max_rodt_ctl");
if (s)
max_rodt_ctl = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_min_rtt_nom_idx");
if (s)
min_rtt_nom_idx = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_max_rtt_nom_idx");
if (s)
max_rtt_nom_idx = simple_strtoul(s, NULL, 0);
#ifdef ENABLE_HARDCODED_RLEVEL
if (c_cfg->rl_tbl) {
/* Check for hard-coded read-leveling settings */
get_dimm_part_number(part_number, &dimm_config_table[0],
0, ddr_type);
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
rl_rank.u64 = lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
i = 0;
while (c_cfg->rl_tbl[i].part) {
debug("DIMM part number:\"%s\", SPD: \"%s\"\n",
c_cfg->rl_tbl[i].part, part_number);
if ((strcmp(part_number,
c_cfg->rl_tbl[i].part) == 0) &&
(abs(c_cfg->rl_tbl[i].speed -
2 * ddr_hertz / (1000 * 1000)) < 10)) {
debug("Using hard-coded read leveling for DIMM part number: \"%s\"\n",
part_number);
rl_rank.u64 =
c_cfg->rl_tbl[i].rl_rank[if_num][rankx];
lmc_wr(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num),
rl_rank.u64);
rl_rank.u64 =
lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
display_rl(if_num, rl_rank, rankx);
/* Disable h/w read-leveling */
rl_dbg_loops = 0;
break;
}
++i;
}
}
}
#endif /* ENABLE_HARDCODED_RLEVEL */
max_adj_rl_del_inc = c_cfg->maximum_adjacent_rlevel_delay_increment;
s = lookup_env(priv, "ddr_maximum_adjacent_rlevel_delay_increment");
if (s)
max_adj_rl_del_inc = strtoul(s, NULL, 0);
while (rl_dbg_loops--) {
union cvmx_lmcx_modereg_params1 mp1;
union cvmx_lmcx_comp_ctl2 cc2;
/* Initialize the error scoreboard */
memset(rl_score, 0, sizeof(rl_score));
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
saved_ddr__ptune = cc2.cn78xx.ddr__ptune;
saved_ddr__ntune = cc2.cn78xx.ddr__ntune;
/* Disable dynamic compensation settings */
if (rl_comp_offs != 0) {
cc2.cn78xx.ptune = saved_ddr__ptune;
cc2.cn78xx.ntune = saved_ddr__ntune;
/*
* Round up the ptune calculation to bias the odd
* cases toward ptune
*/
cc2.cn78xx.ptune += divide_roundup(rl_comp_offs, 2);
cc2.cn78xx.ntune -= rl_comp_offs / 2;
ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
/* Disable ZQCS while in bypass. */
ctl.s.int_zqcs_dis = 1;
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
cc2.cn78xx.byp = 1; /* Enable bypass mode */
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
/* Read again */
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
}
mp1.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num));
for (rtt_idx = min_rtt_nom_idx; rtt_idx <= max_rtt_nom_idx;
++rtt_idx) {
rtt_nom = imp_val->rtt_nom_table[rtt_idx];
/*
* When the read ODT mask is zero the dyn_rtt_nom_mask
* is zero than RTT_NOM will not be changing during
* read-leveling. Since the value is fixed we only need
* to test it once.
*/
if (dyn_rtt_nom_mask == 0) {
// flag not to print NOM ohms
print_nom_ohms = -1;
} else {
if (dyn_rtt_nom_mask & 1)
mp1.s.rtt_nom_00 = rtt_nom;
if (dyn_rtt_nom_mask & 2)
mp1.s.rtt_nom_01 = rtt_nom;
if (dyn_rtt_nom_mask & 4)
mp1.s.rtt_nom_10 = rtt_nom;
if (dyn_rtt_nom_mask & 8)
mp1.s.rtt_nom_11 = rtt_nom;
// FIXME? rank 0 ohms always?
print_nom_ohms =
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00];
}
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
mp1.u64);
if (print_nom_ohms >= 0 && rl_print > 1) {
debug("\n");
debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
mp1.s.rtt_nom_11,
mp1.s.rtt_nom_10,
mp1.s.rtt_nom_01,
mp1.s.rtt_nom_00);
}
ddr_init_seq(priv, rank_mask, if_num);
// Try RANK outside RODT to rearrange the output...
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
for (rodt_ctl = max_rodt_ctl;
rodt_ctl >= min_rodt_ctl; --rodt_ctl)
rodt_loop(priv, rankx, rl_score);
}
}
/* Re-enable dynamic compensation settings. */
if (rl_comp_offs != 0) {
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
cc2.cn78xx.ptune = 0;
cc2.cn78xx.ntune = 0;
cc2.cn78xx.byp = 0; /* Disable bypass mode */
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
/* Read once */
lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
/* Read again */
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
cc2.cn78xx.ddr__ptune, cc2.cn78xx.ddr__ntune);
ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
/* Restore original setting */
ctl.s.int_zqcs_dis = saved_int_zqcs_dis;
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
}
int override_compensation = 0;
s = lookup_env(priv, "ddr__ptune");
if (s)
saved_ddr__ptune = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr__ntune");
if (s) {
saved_ddr__ntune = strtoul(s, NULL, 0);
override_compensation = 1;
}
if (override_compensation) {
cc2.cn78xx.ptune = saved_ddr__ptune;
cc2.cn78xx.ntune = saved_ddr__ntune;
ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
saved_int_zqcs_dis = ctl.s.int_zqcs_dis;
/* Disable ZQCS while in bypass. */
ctl.s.int_zqcs_dis = 1;
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
cc2.cn78xx.byp = 1; /* Enable bypass mode */
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
/* Read again */
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
debug("DDR__PTUNE/DDR__NTUNE : %d/%d\n",
cc2.cn78xx.ptune, cc2.cn78xx.ntune);
}
/* Evaluation block */
/* Still at initial value? */
int best_rodt_score = DEFAULT_BEST_RANK_SCORE;
int auto_rodt_ctl = 0;
int auto_rtt_nom = 0;
int rodt_score;
rodt_row_skip_mask = 0;
// just add specific RODT rows to the skip mask for DDR4
// at this time...
if (ddr_type == DDR4_DRAM) {
// skip RODT row 34 ohms for all DDR4 types
rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_34_ohm);
// skip RODT row 40 ohms for all DDR4 types
rodt_row_skip_mask |= (1 << ddr4_rodt_ctl_40_ohm);
// For now, do not skip RODT row 40 or 48 ohm when
// ddr_hertz is above 1075 MHz
if (ddr_hertz > 1075000000) {
// noskip RODT row 40 ohms
rodt_row_skip_mask &=
~(1 << ddr4_rodt_ctl_40_ohm);
// noskip RODT row 48 ohms
rodt_row_skip_mask &=
~(1 << ddr4_rodt_ctl_48_ohm);
}
// For now, do not skip RODT row 48 ohm for 2Rx4
// stacked die DIMMs
if (is_stacked_die && num_ranks == 2 &&
dram_width == 4) {
// noskip RODT row 48 ohms
rodt_row_skip_mask &=
~(1 << ddr4_rodt_ctl_48_ohm);
}
// for now, leave all rows eligible when we have
// mini-DIMMs...
if (spd_dimm_type == 5 || spd_dimm_type == 6)
rodt_row_skip_mask = 0;
// for now, leave all rows eligible when we have
// a 2-slot 1-rank config
if (dimm_count == 2 && num_ranks == 1)
rodt_row_skip_mask = 0;
debug("Evaluating Read-Leveling Scoreboard for AUTO settings.\n");
for (rtt_idx = min_rtt_nom_idx;
rtt_idx <= max_rtt_nom_idx; ++rtt_idx) {
rtt_nom = imp_val->rtt_nom_table[rtt_idx];
for (rodt_ctl = max_rodt_ctl;
rodt_ctl >= min_rodt_ctl; --rodt_ctl) {
rodt_score = 0;
for (rankx = 0; rankx < dimm_count * 4;
rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
debug("rl_score[rtt_nom=%d][rodt_ctl=%d][rankx=%d].score:%d\n",
rtt_nom, rodt_ctl, rankx,
rl_score[rtt_nom][rodt_ctl][rankx].score);
rodt_score +=
rl_score[rtt_nom][rodt_ctl][rankx].score;
}
// FIXME: do we need to skip RODT rows
// here, like we do below in the
// by-RANK settings?
/*
* When using automatic ODT settings use
* the ODT settings associated with the
* best score for all of the tested ODT
* combinations.
*/
if (rodt_score < best_rodt_score ||
(rodt_score == best_rodt_score &&
(imp_val->rodt_ohms[rodt_ctl] >
imp_val->rodt_ohms[auto_rodt_ctl]))) {
debug("AUTO: new best score for rodt:%d (%d), new score:%d, previous score:%d\n",
rodt_ctl,
imp_val->rodt_ohms[rodt_ctl],
rodt_score,
best_rodt_score);
best_rodt_score = rodt_score;
auto_rodt_ctl = rodt_ctl;
auto_rtt_nom = rtt_nom;
}
}
}
mp1.u64 = lmc_rd(priv,
CVMX_LMCX_MODEREG_PARAMS1(if_num));
if (ddr_rtt_nom_auto) {
/* Store the automatically set RTT_NOM value */
if (dyn_rtt_nom_mask & 1)
mp1.s.rtt_nom_00 = auto_rtt_nom;
if (dyn_rtt_nom_mask & 2)
mp1.s.rtt_nom_01 = auto_rtt_nom;
if (dyn_rtt_nom_mask & 4)
mp1.s.rtt_nom_10 = auto_rtt_nom;
if (dyn_rtt_nom_mask & 8)
mp1.s.rtt_nom_11 = auto_rtt_nom;
} else {
/*
* restore the manual settings to the register
*/
mp1.s.rtt_nom_00 = default_rtt_nom[0];
mp1.s.rtt_nom_01 = default_rtt_nom[1];
mp1.s.rtt_nom_10 = default_rtt_nom[2];
mp1.s.rtt_nom_11 = default_rtt_nom[3];
}
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS1(if_num),
mp1.u64);
debug("RTT_NOM %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_11],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_10],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_01],
imp_val->rtt_nom_ohms[mp1.s.rtt_nom_00],
mp1.s.rtt_nom_11,
mp1.s.rtt_nom_10,
mp1.s.rtt_nom_01,
mp1.s.rtt_nom_00);
debug("RTT_WR %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 3)],
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 2)],
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 1)],
imp_val->rtt_wr_ohms[extr_wr(mp1.u64, 0)],
extr_wr(mp1.u64, 3),
extr_wr(mp1.u64, 2),
extr_wr(mp1.u64, 1),
extr_wr(mp1.u64, 0));
debug("DIC %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->dic_ohms[mp1.s.dic_11],
imp_val->dic_ohms[mp1.s.dic_10],
imp_val->dic_ohms[mp1.s.dic_01],
imp_val->dic_ohms[mp1.s.dic_00],
mp1.s.dic_11,
mp1.s.dic_10,
mp1.s.dic_01,
mp1.s.dic_00);
if (ddr_type == DDR4_DRAM) {
union cvmx_lmcx_modereg_params2 mp2;
/*
* We must read the CSR, and not depend on
* odt_config[odt_idx].odt_mask2, since we could
* have overridden values with envvars.
* NOTE: this corrects the printout, since the
* CSR is not written with the old values...
*/
mp2.u64 = lmc_rd(priv,
CVMX_LMCX_MODEREG_PARAMS2(if_num));
debug("RTT_PARK %3d, %3d, %3d, %3d ohms : %x,%x,%x,%x\n",
imp_val->rtt_nom_ohms[mp2.s.rtt_park_11],
imp_val->rtt_nom_ohms[mp2.s.rtt_park_10],
imp_val->rtt_nom_ohms[mp2.s.rtt_park_01],
imp_val->rtt_nom_ohms[mp2.s.rtt_park_00],
mp2.s.rtt_park_11,
mp2.s.rtt_park_10,
mp2.s.rtt_park_01,
mp2.s.rtt_park_00);
debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n",
"VREF_RANGE",
mp2.s.vref_range_11,
mp2.s.vref_range_10,
mp2.s.vref_range_01,
mp2.s.vref_range_00);
debug("%-45s : 0x%x,0x%x,0x%x,0x%x\n",
"VREF_VALUE",
mp2.s.vref_value_11,
mp2.s.vref_value_10,
mp2.s.vref_value_01,
mp2.s.vref_value_00);
}
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
if (ddr_rodt_ctl_auto) {
cc2.cn78xx.rodt_ctl = auto_rodt_ctl;
} else {
// back to the original setting
cc2.cn78xx.rodt_ctl = default_rodt_ctl;
}
lmc_wr(priv, CVMX_LMCX_COMP_CTL2(if_num), cc2.u64);
cc2.u64 = lmc_rd(priv, CVMX_LMCX_COMP_CTL2(if_num));
debug("Read ODT_CTL : 0x%x (%d ohms)\n",
cc2.cn78xx.rodt_ctl,
imp_val->rodt_ohms[cc2.cn78xx.rodt_ctl]);
/*
* Use the delays associated with the best score for
* each individual rank
*/
debug("Evaluating Read-Leveling Scoreboard for per-RANK settings.\n");
// this is the the RANK MAJOR LOOP
for (rankx = 0; rankx < dimm_count * 4; rankx++)
rank_major_loop(priv, rankx, rl_score);
} /* Evaluation block */
} /* while(rl_dbg_loops--) */
ctl.cn78xx.ddr2t = save_ddr2t;
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctl.u64);
ctl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
/* Display final 2T value */
debug("DDR2T : %6d\n",
ctl.cn78xx.ddr2t);
ddr_init_seq(priv, rank_mask, if_num);
for (rankx = 0; rankx < dimm_count * 4; rankx++) {
u64 value;
int parameter_set = 0;
if (!(rank_mask & (1 << rankx)))
continue;
rl_rank.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
for (i = 0; i < 9; ++i) {
s = lookup_env(priv, "ddr%d_rlevel_rank%d_byte%d",
if_num, rankx, i);
if (s) {
parameter_set |= 1;
value = simple_strtoul(s, NULL, 0);
upd_rl_rank(&rl_rank, i, value);
}
}
s = lookup_env_ull(priv, "ddr%d_rlevel_rank%d", if_num, rankx);
if (s) {
parameter_set |= 1;
value = simple_strtoull(s, NULL, 0);
rl_rank.u64 = value;
}
if (parameter_set) {
lmc_wr(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx, if_num),
rl_rank.u64);
rl_rank.u64 = lmc_rd(priv,
CVMX_LMCX_RLEVEL_RANKX(rankx,
if_num));
display_rl(if_num, rl_rank, rankx);
}
}
}
int init_octeon3_ddr3_interface(struct ddr_priv *priv,
struct ddr_conf *_ddr_conf, u32 _ddr_hertz,
u32 cpu_hertz, u32 ddr_ref_hertz, int _if_num,
u32 _if_mask)
{
union cvmx_lmcx_control ctrl;
int ret;
char *s;
int i;
if_num = _if_num;
ddr_hertz = _ddr_hertz;
ddr_conf = _ddr_conf;
if_mask = _if_mask;
odt_1rank_config = ddr_conf->odt_1rank_config;
odt_2rank_config = ddr_conf->odt_2rank_config;
odt_4rank_config = ddr_conf->odt_4rank_config;
dimm_config_table = ddr_conf->dimm_config_table;
c_cfg = &ddr_conf->custom_lmc_config;
/*
* Compute clock rates to the nearest picosecond.
*/
tclk_psecs = hertz_to_psecs(ddr_hertz); /* Clock in psecs */
eclk_psecs = hertz_to_psecs(cpu_hertz); /* Clock in psecs */
dimm_count = 0;
/* Accumulate and report all the errors before giving up */
fatal_error = 0;
/* Flag that indicates safe DDR settings should be used */
safe_ddr_flag = 0;
if_64b = 1; /* Octeon II Default: 64bit interface width */
mem_size_mbytes = 0;
bank_bits = 0;
column_bits_start = 1;
use_ecc = 1;
min_cas_latency = 0, max_cas_latency = 0, override_cas_latency = 0;
spd_package = 0;
spd_rawcard = 0;
spd_rawcard_aorb = 0;
spd_rdimm_registers = 0;
is_stacked_die = 0;
is_3ds_dimm = 0; // 3DS
lranks_per_prank = 1; // 3DS: logical ranks per package rank
lranks_bits = 0; // 3DS: logical ranks bits
die_capacity = 0; // in Mbits; only used for 3DS
wl_mask_err = 0;
dyn_rtt_nom_mask = 0;
ddr_disable_chip_reset = 1;
match_wl_rtt_nom = 0;
internal_retries = 0;
disable_deskew_training = 0;
restart_if_dsk_incomplete = 0;
last_lane = ((if_64b) ? 8 : 4) + use_ecc;
disable_sequential_delay_check = 0;
wl_print = WLEVEL_PRINTALL_DEFAULT;
enable_by_rank_init = 1; // FIXME: default by-rank ON
saved_rank_mask = 0;
node = 0;
memset(hwl_alts, 0, sizeof(hwl_alts));
/*
* Initialize these to shut up the compiler. They are configured
* and used only for DDR4
*/
ddr4_trrd_lmin = 6000;
ddr4_tccd_lmin = 6000;
debug("\nInitializing node %d DDR interface %d, DDR Clock %d, DDR Reference Clock %d, CPUID 0x%08x\n",
node, if_num, ddr_hertz, ddr_ref_hertz, read_c0_prid());
if (dimm_config_table[0].spd_addrs[0] == 0 &&
!dimm_config_table[0].spd_ptrs[0]) {
printf("ERROR: No dimms specified in the dimm_config_table.\n");
return -1;
}
// allow some overrides to be done
// this one controls several things related to DIMM geometry: HWL and RL
disable_sequential_delay_check = c_cfg->disable_sequential_delay_check;
s = lookup_env(priv, "ddr_disable_sequential_delay_check");
if (s)
disable_sequential_delay_check = strtoul(s, NULL, 0);
// this one controls whether chip RESET is done, or LMC init restarted
// from step 6.9.6
s = lookup_env(priv, "ddr_disable_chip_reset");
if (s)
ddr_disable_chip_reset = !!strtoul(s, NULL, 0);
// this one controls whether Deskew Training is performed
s = lookup_env(priv, "ddr_disable_deskew_training");
if (s)
disable_deskew_training = !!strtoul(s, NULL, 0);
if (ddr_verbose(priv)) {
printf("DDR SPD Table:");
for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
if (dimm_config_table[didx].spd_addrs[0] == 0)
break;
printf(" --ddr%dspd=0x%02x", if_num,
dimm_config_table[didx].spd_addrs[0]);
if (dimm_config_table[didx].spd_addrs[1] != 0)
printf(",0x%02x",
dimm_config_table[didx].spd_addrs[1]);
}
printf("\n");
}
/*
* Walk the DRAM Socket Configuration Table to see what is installed.
*/
for (didx = 0; didx < DDR_CFG_T_MAX_DIMMS; ++didx) {
/* Check for lower DIMM socket populated */
if (validate_dimm(priv, &dimm_config_table[didx], 0)) {
if (ddr_verbose(priv))
report_dimm(&dimm_config_table[didx], 0,
dimm_count, if_num);
++dimm_count;
} else {
break;
} /* Finished when there is no lower DIMM */
}
initialize_ddr_clock(priv, ddr_conf, cpu_hertz, ddr_hertz,
ddr_ref_hertz, if_num, if_mask);
if (!odt_1rank_config)
odt_1rank_config = disable_odt_config;
if (!odt_2rank_config)
odt_2rank_config = disable_odt_config;
if (!odt_4rank_config)
odt_4rank_config = disable_odt_config;
s = env_get("ddr_safe");
if (s) {
safe_ddr_flag = !!simple_strtoul(s, NULL, 0);
printf("Parameter found in environment. ddr_safe = %d\n",
safe_ddr_flag);
}
if (dimm_count == 0) {
printf("ERROR: DIMM 0 not detected.\n");
return (-1);
}
if (c_cfg->mode32b)
if_64b = 0;
s = lookup_env(priv, "if_64b");
if (s)
if_64b = !!simple_strtoul(s, NULL, 0);
if (if_64b == 1) {
if (octeon_is_cpuid(OCTEON_CN70XX)) {
printf("64-bit interface width is not supported for this Octeon model\n");
++fatal_error;
}
}
/* ddr_type only indicates DDR4 or DDR3 */
ddr_type = (read_spd(&dimm_config_table[0], 0,
DDR4_SPD_KEY_BYTE_DEVICE_TYPE) == 0x0C) ? 4 : 3;
debug("DRAM Device Type: DDR%d\n", ddr_type);
if (ddr_type == DDR4_DRAM) {
int spd_module_type;
int asymmetric;
const char *signal_load[4] = { "", "MLS", "3DS", "RSV" };
imp_val = &ddr4_impedence_val;
spd_addr =
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_ADDRESSING_ROW_COL_BITS);
spd_org =
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MODULE_ORGANIZATION);
spd_banks =
0xFF & read_spd(&dimm_config_table[0], 0,
DDR4_SPD_DENSITY_BANKS);
bank_bits =
(2 + ((spd_banks >> 4) & 0x3)) + ((spd_banks >> 6) & 0x3);
/* Controller can only address 4 bits. */
bank_bits = min((int)bank_bits, 4);
spd_package =
0XFF & read_spd(&dimm_config_table[0], 0,
DDR4_SPD_PACKAGE_TYPE);
if (spd_package & 0x80) { // non-monolithic device
is_stacked_die = ((spd_package & 0x73) == 0x11);
debug("DDR4: Package Type 0x%02x (%s), %d die\n",
spd_package, signal_load[(spd_package & 3)],
((spd_package >> 4) & 7) + 1);
is_3ds_dimm = ((spd_package & 3) == 2); // is it 3DS?
if (is_3ds_dimm) { // is it 3DS?
lranks_per_prank = ((spd_package >> 4) & 7) + 1;
// FIXME: should make sure it is only 2H or 4H
// or 8H?
lranks_bits = lranks_per_prank >> 1;
if (lranks_bits == 4)
lranks_bits = 3;
}
} else if (spd_package != 0) {
// FIXME: print non-zero monolithic device definition
debug("DDR4: Package Type MONOLITHIC: %d die, signal load %d\n",
((spd_package >> 4) & 7) + 1, (spd_package & 3));
}
asymmetric = (spd_org >> 6) & 1;
if (asymmetric) {
int spd_secondary_pkg =
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_SECONDARY_PACKAGE_TYPE);
debug("DDR4: Module Organization: ASYMMETRICAL: Secondary Package Type 0x%02x\n",
spd_secondary_pkg);
} else {
u64 bus_width =
8 << (0x07 &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MODULE_MEMORY_BUS_WIDTH));
u64 ddr_width = 4 << ((spd_org >> 0) & 0x7);
u64 module_cap;
int shift = (spd_banks & 0x0F);
die_capacity = (shift < 8) ? (256UL << shift) :
((12UL << (shift & 1)) << 10);
debug("DDR4: Module Organization: SYMMETRICAL: capacity per die %d %cbit\n",
(die_capacity > 512) ? (die_capacity >> 10) :
die_capacity, (die_capacity > 512) ? 'G' : 'M');
module_cap = ((u64)die_capacity << 20) / 8UL *
bus_width / ddr_width *
(1UL + ((spd_org >> 3) & 0x7));
// is it 3DS?
if (is_3ds_dimm) {
module_cap *= (u64)(((spd_package >> 4) & 7) +
1);
}
debug("DDR4: Module Organization: SYMMETRICAL: capacity per module %lld GB\n",
module_cap >> 30);
}
spd_rawcard =
0xFF & read_spd(&dimm_config_table[0], 0,
DDR4_SPD_REFERENCE_RAW_CARD);
debug("DDR4: Reference Raw Card 0x%02x\n", spd_rawcard);
spd_module_type =
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_KEY_BYTE_MODULE_TYPE);
if (spd_module_type & 0x80) { // HYBRID module
debug("DDR4: HYBRID module, type %s\n",
((spd_module_type & 0x70) ==
0x10) ? "NVDIMM" : "UNKNOWN");
}
spd_thermal_sensor =
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MODULE_THERMAL_SENSOR);
spd_dimm_type = spd_module_type & 0x0F;
spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
(spd_dimm_type == 8);
if (spd_rdimm) {
u16 spd_mfgr_id, spd_register_rev, spd_mod_attr;
static const u16 manu_ids[4] = {
0xb380, 0x3286, 0x9780, 0xb304
};
static const char *manu_names[4] = {
"XXX", "XXXXXXX", "XX", "XXXXX"
};
int mc;
spd_mfgr_id =
(0xFFU &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
((0xFFU &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_REGISTER_MANUFACTURER_ID_MSB))
<< 8);
spd_register_rev =
0xFFU & read_spd(&dimm_config_table[0], 0,
DDR4_SPD_REGISTER_REVISION_NUMBER);
for (mc = 0; mc < 4; mc++)
if (manu_ids[mc] == spd_mfgr_id)
break;
debug("DDR4: RDIMM Register Manufacturer ID: %s, Revision: 0x%02x\n",
(mc >= 4) ? "UNKNOWN" : manu_names[mc],
spd_register_rev);
// RAWCARD A or B must be bit 7=0 and bits 4-0
// either 00000(A) or 00001(B)
spd_rawcard_aorb = ((spd_rawcard & 0x9fUL) <= 1);
// RDIMM Module Attributes
spd_mod_attr =
0xFFU & read_spd(&dimm_config_table[0], 0,
DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE);
spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
debug("DDR4: RDIMM Module Attributes (0x%02x): Register Type DDR4RCD%02d, DRAM rows %d, Registers %d\n",
spd_mod_attr, (spd_mod_attr >> 4) + 1,
((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
spd_rdimm_registers);
}
dimm_type_name = ddr4_dimm_types[spd_dimm_type];
} else { /* if (ddr_type == DDR4_DRAM) */
const char *signal_load[4] = { "UNK", "MLS", "SLS", "RSV" };
imp_val = &ddr3_impedence_val;
spd_addr =
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_ADDRESSING_ROW_COL_BITS);
spd_org =
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MODULE_ORGANIZATION);
spd_banks =
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_DENSITY_BANKS) & 0xff;
bank_bits = 3 + ((spd_banks >> 4) & 0x7);
/* Controller can only address 3 bits. */
bank_bits = min((int)bank_bits, 3);
spd_dimm_type =
0x0f & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_KEY_BYTE_MODULE_TYPE);
spd_rdimm = (spd_dimm_type == 1) || (spd_dimm_type == 5) ||
(spd_dimm_type == 9);
spd_package =
0xFF & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_SDRAM_DEVICE_TYPE);
if (spd_package & 0x80) { // non-standard device
debug("DDR3: Device Type 0x%02x (%s), %d die\n",
spd_package, signal_load[(spd_package & 3)],
((1 << ((spd_package >> 4) & 7)) >> 1));
} else if (spd_package != 0) {
// FIXME: print non-zero monolithic device definition
debug("DDR3: Device Type MONOLITHIC: %d die, signal load %d\n",
((1 << (spd_package >> 4) & 7) >> 1),
(spd_package & 3));
}
spd_rawcard =
0xFF & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_REFERENCE_RAW_CARD);
debug("DDR3: Reference Raw Card 0x%02x\n", spd_rawcard);
spd_thermal_sensor =
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MODULE_THERMAL_SENSOR);
if (spd_rdimm) {
int spd_mfgr_id, spd_register_rev, spd_mod_attr;
spd_mfgr_id =
(0xFFU &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_REGISTER_MANUFACTURER_ID_LSB)) |
((0xFFU &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_REGISTER_MANUFACTURER_ID_MSB))
<< 8);
spd_register_rev =
0xFFU & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_REGISTER_REVISION_NUMBER);
debug("DDR3: RDIMM Register Manufacturer ID 0x%x Revision 0x%02x\n",
spd_mfgr_id, spd_register_rev);
// Module Attributes
spd_mod_attr =
0xFFU & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_ADDRESS_MAPPING);
spd_rdimm_registers = ((1 << (spd_mod_attr & 3)) >> 1);
debug("DDR3: RDIMM Module Attributes (0x%02x): DRAM rows %d, Registers %d\n",
spd_mod_attr,
((1 << ((spd_mod_attr >> 2) & 3)) >> 1),
spd_rdimm_registers);
}
dimm_type_name = ddr3_dimm_types[spd_dimm_type];
}
if (spd_thermal_sensor & 0x80) {
debug("DDR%d: SPD: Thermal Sensor PRESENT\n",
(ddr_type == DDR4_DRAM) ? 4 : 3);
}
debug("spd_addr : %#06x\n", spd_addr);
debug("spd_org : %#06x\n", spd_org);
debug("spd_banks : %#06x\n", spd_banks);
row_bits = 12 + ((spd_addr >> 3) & 0x7);
col_bits = 9 + ((spd_addr >> 0) & 0x7);
num_ranks = 1 + ((spd_org >> 3) & 0x7);
dram_width = 4 << ((spd_org >> 0) & 0x7);
num_banks = 1 << bank_bits;
s = lookup_env(priv, "ddr_num_ranks");
if (s)
num_ranks = simple_strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_enable_by_rank_init");
if (s)
enable_by_rank_init = !!simple_strtoul(s, NULL, 0);
// FIXME: for now, we can only handle a DDR4 2rank-1slot config
// FIXME: also, by-rank init does not work correctly if 32-bit mode...
if (enable_by_rank_init && (ddr_type != DDR4_DRAM ||
dimm_count != 1 || if_64b != 1 ||
num_ranks != 2))
enable_by_rank_init = 0;
if (enable_by_rank_init) {
struct dimm_odt_config *odt_config;
union cvmx_lmcx_modereg_params1 mp1;
union cvmx_lmcx_modereg_params2 modereg_params2;
int by_rank_rodt, by_rank_wr, by_rank_park;
// Do ODT settings changes which work best for 2R-1S configs
debug("DDR4: 2R-1S special BY-RANK init ODT settings updated\n");
// setup for modifying config table values - 2 ranks and 1 DIMM
odt_config =
(struct dimm_odt_config *)&ddr_conf->odt_2rank_config[0];
// original was 80, first try was 60
by_rank_rodt = ddr4_rodt_ctl_48_ohm;
s = lookup_env(priv, "ddr_by_rank_rodt");
if (s)
by_rank_rodt = strtoul(s, NULL, 0);
odt_config->qs_dic = /*RODT_CTL */ by_rank_rodt;
// this is for MODEREG_PARAMS1 fields
// fetch the original settings
mp1.u64 = odt_config->modereg_params1.u64;
by_rank_wr = ddr4_rttwr_80ohm; // originals were 240
s = lookup_env(priv, "ddr_by_rank_wr");
if (s)
by_rank_wr = simple_strtoul(s, NULL, 0);
// change specific settings here...
insrt_wr(&mp1.u64, /*rank */ 00, by_rank_wr);
insrt_wr(&mp1.u64, /*rank */ 01, by_rank_wr);
// save final settings
odt_config->modereg_params1.u64 = mp1.u64;
// this is for MODEREG_PARAMS2 fields
// fetch the original settings
modereg_params2.u64 = odt_config->modereg_params2.u64;
by_rank_park = ddr4_rttpark_none; // originals were 120
s = lookup_env(priv, "ddr_by_rank_park");
if (s)
by_rank_park = simple_strtoul(s, NULL, 0);
// change specific settings here...
modereg_params2.s.rtt_park_00 = by_rank_park;
modereg_params2.s.rtt_park_01 = by_rank_park;
// save final settings
odt_config->modereg_params2.u64 = modereg_params2.u64;
}
/*
* FIX
* Check that values are within some theoretical limits.
* col_bits(min) = row_lsb(min) - bank_bits(max) - bus_bits(max) =
* 14 - 3 - 4 = 7
* col_bits(max) = row_lsb(max) - bank_bits(min) - bus_bits(min) =
* 18 - 2 - 3 = 13
*/
if (col_bits > 13 || col_bits < 7) {
printf("Unsupported number of Col Bits: %d\n", col_bits);
++fatal_error;
}
/*
* FIX
* Check that values are within some theoretical limits.
* row_bits(min) = pbank_lsb(min) - row_lsb(max) - rank_bits =
* 26 - 18 - 1 = 7
* row_bits(max) = pbank_lsb(max) - row_lsb(min) - rank_bits =
* 33 - 14 - 1 = 18
*/
if (row_bits > 18 || row_bits < 7) {
printf("Unsupported number of Row Bits: %d\n", row_bits);
++fatal_error;
}
s = lookup_env(priv, "ddr_rdimm_ena");
if (s)
spd_rdimm = !!simple_strtoul(s, NULL, 0);
wl_loops = WLEVEL_LOOPS_DEFAULT;
// accept generic or interface-specific override
s = lookup_env(priv, "ddr_wlevel_loops");
if (!s)
s = lookup_env(priv, "ddr%d_wlevel_loops", if_num);
if (s)
wl_loops = strtoul(s, NULL, 0);
s = lookup_env(priv, "ddr_ranks");
if (s)
num_ranks = simple_strtoul(s, NULL, 0);
bunk_enable = (num_ranks > 1);
if (octeon_is_cpuid(OCTEON_CN7XXX))
column_bits_start = 3;
else
printf("ERROR: Unsupported Octeon model: 0x%x\n",
read_c0_prid());
row_lsb = column_bits_start + col_bits + bank_bits - (!if_64b);
debug("row_lsb = column_bits_start + col_bits + bank_bits = %d\n",
row_lsb);
pbank_lsb = row_lsb + row_bits + bunk_enable;
debug("pbank_lsb = row_lsb + row_bits + bunk_enable = %d\n", pbank_lsb);
if (lranks_per_prank > 1) {
pbank_lsb = row_lsb + row_bits + lranks_bits + bunk_enable;
debug("DDR4: 3DS: pbank_lsb = (%d row_lsb) + (%d row_bits) + (%d lranks_bits) + (%d bunk_enable) = %d\n",
row_lsb, row_bits, lranks_bits, bunk_enable, pbank_lsb);
}
mem_size_mbytes = dimm_count * ((1ull << pbank_lsb) >> 20);
if (num_ranks == 4) {
/*
* Quad rank dimm capacity is equivalent to two dual-rank
* dimms.
*/
mem_size_mbytes *= 2;
}
/*
* Mask with 1 bits set for for each active rank, allowing 2 bits
* per dimm. This makes later calculations simpler, as a variety
* of CSRs use this layout. This init needs to be updated for dual
* configs (ie non-identical DIMMs).
*
* Bit 0 = dimm0, rank 0
* Bit 1 = dimm0, rank 1
* Bit 2 = dimm1, rank 0
* Bit 3 = dimm1, rank 1
* ...
*/
rank_mask = 0x1;
if (num_ranks > 1)
rank_mask = 0x3;
if (num_ranks > 2)
rank_mask = 0xf;
for (i = 1; i < dimm_count; i++)
rank_mask |= ((rank_mask & 0x3) << (2 * i));
/*
* If we are booting from RAM, the DRAM controller is
* already set up. Just return the memory size
*/
if (priv->flags & FLAG_RAM_RESIDENT) {
debug("Ram Boot: Skipping LMC config\n");
return mem_size_mbytes;
}
if (ddr_type == DDR4_DRAM) {
spd_ecc =
!!(read_spd
(&dimm_config_table[0], 0,
DDR4_SPD_MODULE_MEMORY_BUS_WIDTH) & 8);
} else {
spd_ecc =
!!(read_spd
(&dimm_config_table[0], 0,
DDR3_SPD_MEMORY_BUS_WIDTH) & 8);
}
char rank_spec[8];
printable_rank_spec(rank_spec, num_ranks, dram_width, spd_package);
debug("Summary: %d %s%s %s %s, row bits=%d, col bits=%d, bank bits=%d\n",
dimm_count, dimm_type_name, (dimm_count > 1) ? "s" : "",
rank_spec,
(spd_ecc) ? "ECC" : "non-ECC", row_bits, col_bits, bank_bits);
if (ddr_type == DDR4_DRAM) {
spd_cas_latency =
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_CAS_LATENCIES_BYTE0)) << 0);
spd_cas_latency |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_CAS_LATENCIES_BYTE1)) << 8);
spd_cas_latency |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_CAS_LATENCIES_BYTE2)) << 16);
spd_cas_latency |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR4_SPD_CAS_LATENCIES_BYTE3)) << 24);
} else {
spd_cas_latency =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_CAS_LATENCIES_LSB);
spd_cas_latency |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_CAS_LATENCIES_MSB)) << 8);
}
debug("spd_cas_latency : %#06x\n", spd_cas_latency);
if (ddr_type == DDR4_DRAM) {
/*
* No other values for DDR4 MTB and FTB are specified at the
* current time so don't bother reading them. Can't speculate
* how new values will be represented.
*/
int spdmtb = 125;
int spdftb = 1;
taamin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_CAS_LATENCY_TAAMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0],
0, DDR4_SPD_MIN_CAS_LATENCY_FINE_TAAMIN);
ddr4_tckavgmin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MINIMUM_CYCLE_TIME_TCKAVGMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_CYCLE_TIME_FINE_TCKAVGMIN);
ddr4_tckavgmax = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MAXIMUM_CYCLE_TIME_TCKAVGMAX) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MAX_CYCLE_TIME_FINE_TCKAVGMAX);
ddr4_trdcmin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_RAS_CAS_DELAY_TRCDMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_RAS_TO_CAS_DELAY_FINE_TRCDMIN);
ddr4_trpmin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ROW_PRECHARGE_DELAY_FINE_TRPMIN);
ddr4_trasmin = spdmtb *
(((read_spd
(&dimm_config_table[0], 0,
DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8) +
(read_spd
(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN) & 0xff));
ddr4_trcmin = spdmtb *
((((read_spd
(&dimm_config_table[0], 0,
DDR4_SPD_UPPER_NIBBLES_TRAS_TRC) >> 4) & 0xf) <<
8) + (read_spd
(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN) &
0xff))
+ spdftb * (signed char)read_spd(&dimm_config_table[0],
0,
DDR4_SPD_MIN_ACT_TO_ACT_REFRESH_DELAY_FINE_TRCMIN);
ddr4_trfc1min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC1MIN) & 0xff) <<
8) + (read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC1MIN) & 0xff));
ddr4_trfc2min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC2MIN) & 0xff) <<
8) + (read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC2MIN) & 0xff));
ddr4_trfc4min = spdmtb * (((read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_REFRESH_RECOVERY_MSB_TRFC4MIN) & 0xff) <<
8) + (read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_REFRESH_RECOVERY_LSB_TRFC4MIN) & 0xff));
ddr4_tfawmin = spdmtb * (((read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_MSN_TFAWMIN) & 0xf) <<
8) + (read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_FOUR_ACTIVE_WINDOW_LSB_TFAWMIN) & 0xff));
ddr4_trrd_smin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ROW_ACTIVE_DELAY_SAME_TRRD_SMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ACT_TO_ACT_DELAY_DIFF_FINE_TRRD_SMIN);
ddr4_trrd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ROW_ACTIVE_DELAY_DIFF_TRRD_LMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_ACT_TO_ACT_DELAY_SAME_FINE_TRRD_LMIN);
ddr4_tccd_lmin = spdmtb * read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_CAS_TO_CAS_DELAY_TCCD_LMIN) +
spdftb * (signed char)read_spd(&dimm_config_table[0], 0,
DDR4_SPD_MIN_CAS_TO_CAS_DELAY_FINE_TCCD_LMIN);
debug("%-45s : %6d ps\n", "Medium Timebase (MTB)", spdmtb);
debug("%-45s : %6d ps\n", "Fine Timebase (FTB)", spdftb);
debug("%-45s : %6d ps (%ld MT/s)\n",
"SDRAM Minimum Cycle Time (tCKAVGmin)", ddr4_tckavgmin,
pretty_psecs_to_mts(ddr4_tckavgmin));
debug("%-45s : %6d ps\n",
"SDRAM Maximum Cycle Time (tCKAVGmax)", ddr4_tckavgmax);
debug("%-45s : %6d ps\n", "Minimum CAS Latency Time (taamin)",
taamin);
debug("%-45s : %6d ps\n",
"Minimum RAS to CAS Delay Time (tRCDmin)", ddr4_trdcmin);
debug("%-45s : %6d ps\n",
"Minimum Row Precharge Delay Time (tRPmin)", ddr4_trpmin);
debug("%-45s : %6d ps\n",
"Minimum Active to Precharge Delay (tRASmin)",
ddr4_trasmin);
debug("%-45s : %6d ps\n",
"Minimum Active to Active/Refr. Delay (tRCmin)",
ddr4_trcmin);
debug("%-45s : %6d ps\n",
"Minimum Refresh Recovery Delay (tRFC1min)",
ddr4_trfc1min);
debug("%-45s : %6d ps\n",
"Minimum Refresh Recovery Delay (tRFC2min)",
ddr4_trfc2min);
debug("%-45s : %6d ps\n",
"Minimum Refresh Recovery Delay (tRFC4min)",
ddr4_trfc4min);
debug("%-45s : %6d ps\n",
"Minimum Four Activate Window Time (tFAWmin)",
ddr4_tfawmin);
debug("%-45s : %6d ps\n",
"Minimum Act. to Act. Delay (tRRD_Smin)", ddr4_trrd_smin);
debug("%-45s : %6d ps\n",
"Minimum Act. to Act. Delay (tRRD_Lmin)", ddr4_trrd_lmin);
debug("%-45s : %6d ps\n",
"Minimum CAS to CAS Delay Time (tCCD_Lmin)",
ddr4_tccd_lmin);
#define DDR4_TWR 15000
#define DDR4_TWTR_S 2500
tckmin = ddr4_tckavgmin;
twr = DDR4_TWR;
trcd = ddr4_trdcmin;
trrd = ddr4_trrd_smin;
trp = ddr4_trpmin;
tras = ddr4_trasmin;
trc = ddr4_trcmin;
trfc = ddr4_trfc1min;
twtr = DDR4_TWTR_S;
tfaw = ddr4_tfawmin;
if (spd_rdimm) {
spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
DDR4_SPD_RDIMM_ADDR_MAPPING_FROM_REGISTER_TO_DRAM) &
0x1;
} else {
spd_addr_mirror = read_spd(&dimm_config_table[0], 0,
DDR4_SPD_UDIMM_ADDR_MAPPING_FROM_EDGE) & 0x1;
}
debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
} else {
spd_mtb_dividend =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MEDIUM_TIMEBASE_DIVIDEND);
spd_mtb_divisor =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MEDIUM_TIMEBASE_DIVISOR);
spd_tck_min =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MINIMUM_CYCLE_TIME_TCKMIN);
spd_taa_min =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_CAS_LATENCY_TAAMIN);
spd_twr =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_WRITE_RECOVERY_TWRMIN);
spd_trcd =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_RAS_CAS_DELAY_TRCDMIN);
spd_trrd =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_ROW_ACTIVE_DELAY_TRRDMIN);
spd_trp =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_ROW_PRECHARGE_DELAY_TRPMIN);
spd_tras =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_ACTIVE_PRECHARGE_LSB_TRASMIN);
spd_tras |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf) << 8);
spd_trc =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_ACTIVE_REFRESH_LSB_TRCMIN);
spd_trc |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_UPPER_NIBBLES_TRAS_TRC) & 0xf0) << 4);
spd_trfc =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_REFRESH_RECOVERY_LSB_TRFCMIN);
spd_trfc |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_REFRESH_RECOVERY_MSB_TRFCMIN)) <<
8);
spd_twtr =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_INTERNAL_WRITE_READ_CMD_TWTRMIN);
spd_trtp =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_INTERNAL_READ_PRECHARGE_CMD_TRTPMIN);
spd_tfaw =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_MIN_FOUR_ACTIVE_WINDOW_TFAWMIN);
spd_tfaw |=
((0xff &
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_UPPER_NIBBLE_TFAW) & 0xf) << 8);
spd_addr_mirror =
0xff & read_spd(&dimm_config_table[0], 0,
DDR3_SPD_ADDRESS_MAPPING) & 0x1;
/* Only address mirror unbuffered dimms. */
spd_addr_mirror = spd_addr_mirror && !spd_rdimm;
ftb_dividend =
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) >> 4;
ftb_divisor =
read_spd(&dimm_config_table[0], 0,
DDR3_SPD_FINE_TIMEBASE_DIVIDEND_DIVISOR) & 0xf;
/* Make sure that it is not 0 */
ftb_divisor = (ftb_divisor == 0) ? 1 : ftb_divisor;
debug("spd_twr : %#06x\n", spd_twr);
debug("spd_trcd : %#06x\n", spd_trcd);
debug("spd_trrd : %#06x\n", spd_trrd);
debug("spd_trp : %#06x\n", spd_trp);
debug("spd_tras : %#06x\n", spd_tras);
debug("spd_trc : %#06x\n", spd_trc);
debug("spd_trfc : %#06x\n", spd_trfc);
debug("spd_twtr : %#06x\n", spd_twtr);
debug("spd_trtp : %#06x\n", spd_trtp);
debug("spd_tfaw : %#06x\n", spd_tfaw);
debug("spd_addr_mirror : %#06x\n", spd_addr_mirror);
mtb_psec = spd_mtb_dividend * 1000 / spd_mtb_divisor;
taamin = mtb_psec * spd_taa_min;
taamin += ftb_dividend *
(signed char)read_spd(&dimm_config_table[0],
0, DDR3_SPD_MIN_CAS_LATENCY_FINE_TAAMIN) /
ftb_divisor;
tckmin = mtb_psec * spd_tck_min;
tckmin += ftb_dividend *
(signed char)read_spd(&dimm_config_table[0],
0, DDR3_SPD_MINIMUM_CYCLE_TIME_FINE_TCKMIN) /
ftb_divisor;
twr = spd_twr * mtb_psec;
trcd = spd_trcd * mtb_psec;
trrd = spd_trrd * mtb_psec;
trp = spd_trp * mtb_psec;
tras = spd_tras * mtb_psec;
trc = spd_trc * mtb_psec;
trfc = spd_trfc * mtb_psec;
if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) && trfc < 260000) {
// default to this - because it works...
int new_trfc = 260000;
s = env_get("ddr_trfc");
if (s) {
new_trfc = simple_strtoul(s, NULL, 0);
printf("Parameter found in environment. ddr_trfc = %d\n",
new_trfc);
if (new_trfc < 160000 || new_trfc > 260000) {
// back to default if out of range
new_trfc = 260000;
}
}
debug("N%d.LMC%d: Adjusting tRFC from %d to %d, for CN78XX Pass 2.x\n",
node, if_num, trfc, new_trfc);
trfc = new_trfc;
}
twtr = spd_twtr * mtb_psec;
trtp = spd_trtp * mtb_psec;
tfaw = spd_tfaw * mtb_psec;
debug("Medium Timebase (MTB) : %6d ps\n",
mtb_psec);
debug("Minimum Cycle Time (tckmin) : %6d ps (%ld MT/s)\n",
tckmin, pretty_psecs_to_mts(tckmin));
debug("Minimum CAS Latency Time (taamin) : %6d ps\n",
taamin);
debug("Write Recovery Time (tWR) : %6d ps\n",
twr);
debug("Minimum RAS to CAS delay (tRCD) : %6d ps\n",
trcd);
debug("Minimum Row Active to Row Active delay (tRRD) : %6d ps\n",
trrd);
debug("Minimum Row Precharge Delay (tRP) : %6d ps\n",
trp);
debug("Minimum Active to Precharge (tRAS) : %6d ps\n",
tras);
debug("Minimum Active to Active/Refresh Delay (tRC) : %6d ps\n",
trc);
debug("Minimum Refresh Recovery Delay (tRFC) : %6d ps\n",
trfc);
debug("Internal write to read command delay (tWTR) : %6d ps\n",
twtr);
debug("Min Internal Rd to Precharge Cmd Delay (tRTP) : %6d ps\n",
trtp);
debug("Minimum Four Activate Window Delay (tFAW) : %6d ps\n",
tfaw);
}
/*
* When the cycle time is within 1 psec of the minimum accept it
* as a slight rounding error and adjust it to exactly the minimum
* cycle time. This avoids an unnecessary warning.
*/
if (abs(tclk_psecs - tckmin) < 2)
tclk_psecs = tckmin;
if (tclk_psecs < (u64)tckmin) {
printf("WARNING!!!!: DDR Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin: %ld)!!!!\n",
tclk_psecs, (ulong)tckmin);
}
debug("DDR Clock Rate (tCLK) : %6ld ps\n",
tclk_psecs);
debug("Core Clock Rate (eCLK) : %6ld ps\n",
eclk_psecs);
s = env_get("ddr_use_ecc");
if (s) {
use_ecc = !!simple_strtoul(s, NULL, 0);
printf("Parameter found in environment. ddr_use_ecc = %d\n",
use_ecc);
}
use_ecc = use_ecc && spd_ecc;
if_bytemask = if_64b ? (use_ecc ? 0x1ff : 0xff)
: (use_ecc ? 0x01f : 0x0f);
debug("DRAM Interface width: %d bits %s bytemask 0x%03x\n",
if_64b ? 64 : 32, use_ecc ? "+ECC" : "", if_bytemask);
debug("\n------ Board Custom Configuration Settings ------\n");
debug("%-45s : %d\n", "MIN_RTT_NOM_IDX ", c_cfg->min_rtt_nom_idx);
debug("%-45s : %d\n", "MAX_RTT_NOM_IDX ", c_cfg->max_rtt_nom_idx);
debug("%-45s : %d\n", "MIN_RODT_CTL ", c_cfg->min_rodt_ctl);
debug("%-45s : %d\n", "MAX_RODT_CTL ", c_cfg->max_rodt_ctl);
debug("%-45s : %d\n", "MIN_CAS_LATENCY ", c_cfg->min_cas_latency);
debug("%-45s : %d\n", "OFFSET_EN ", c_cfg->offset_en);
debug("%-45s : %d\n", "OFFSET_UDIMM ", c_cfg->offset_udimm);
debug("%-45s : %d\n", "OFFSET_RDIMM ", c_cfg->offset_rdimm);
debug("%-45s : %d\n", "DDR_RTT_NOM_AUTO ", c_cfg->ddr_rtt_nom_auto);
debug("%-45s : %d\n", "DDR_RODT_CTL_AUTO ", c_cfg->ddr_rodt_ctl_auto);
if (spd_rdimm)
debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
c_cfg->rlevel_comp_offset_rdimm);
else
debug("%-45s : %d\n", "RLEVEL_COMP_OFFSET",
c_cfg->rlevel_comp_offset_udimm);
debug("%-45s : %d\n", "RLEVEL_COMPUTE ", c_cfg->rlevel_compute);
debug("%-45s : %d\n", "DDR2T_UDIMM ", c_cfg->ddr2t_udimm);
debug("%-45s : %d\n", "DDR2T_RDIMM ", c_cfg->ddr2t_rdimm);
debug("%-45s : %d\n", "FPRCH2 ", c_cfg->fprch2);
debug("%-45s : %d\n", "PTUNE_OFFSET ", c_cfg->ptune_offset);
debug("%-45s : %d\n", "NTUNE_OFFSET ", c_cfg->ntune_offset);
debug("-------------------------------------------------\n");
cl = divide_roundup(taamin, tclk_psecs);
debug("Desired CAS Latency : %6d\n", cl);
min_cas_latency = c_cfg->min_cas_latency;
s = lookup_env(priv, "ddr_min_cas_latency");
if (s)
min_cas_latency = simple_strtoul(s, NULL, 0);
debug("CAS Latencies supported in DIMM :");
base_cl = (ddr_type == DDR4_DRAM) ? 7 : 4;
for (i = 0; i < 32; ++i) {
if ((spd_cas_latency >> i) & 1) {
debug(" %d", i + base_cl);
max_cas_latency = i + base_cl;
if (min_cas_latency == 0)
min_cas_latency = i + base_cl;
}
}
debug("\n");
/*
* Use relaxed timing when running slower than the minimum
* supported speed. Adjust timing to match the smallest supported
* CAS Latency.
*/
if (min_cas_latency > cl) {
ulong adjusted_tclk = taamin / min_cas_latency;
cl = min_cas_latency;
debug("Slow clock speed. Adjusting timing: tClk = %ld, Adjusted tClk = %ld\n",
tclk_psecs, adjusted_tclk);
tclk_psecs = adjusted_tclk;
}
s = env_get("ddr_cas_latency");
if (s) {
override_cas_latency = simple_strtoul(s, NULL, 0);
printf("Parameter found in environment. ddr_cas_latency = %d\n",
override_cas_latency);
}
/* Make sure that the selected cas latency is legal */
for (i = (cl - base_cl); i < 32; ++i) {
if ((spd_cas_latency >> i) & 1) {
cl = i + base_cl;
break;
}
}
if (max_cas_latency < cl)
cl = max_cas_latency;
if (override_cas_latency != 0)
cl = override_cas_latency;
debug("CAS Latency : %6d\n", cl);
if ((cl * tckmin) > 20000) {
debug("(CLactual * tckmin) = %d exceeds 20 ns\n",
(cl * tckmin));
}
if (tclk_psecs < (ulong)tckmin) {
printf("WARNING!!!!!!: DDR3 Clock Rate (tCLK: %ld) exceeds DIMM specifications (tckmin:%ld)!!!!!!!!\n",
tclk_psecs, (ulong)tckmin);
}
if (num_banks != 4 && num_banks != 8 && num_banks != 16) {
printf("Unsupported number of banks %d. Must be 4 or 8.\n",
num_banks);
++fatal_error;
}
if (num_ranks != 1 && num_ranks != 2 && num_ranks != 4) {
printf("Unsupported number of ranks: %d\n", num_ranks);
++fatal_error;
}
if (octeon_is_cpuid(OCTEON_CN78XX) ||
octeon_is_cpuid(OCTEON_CN73XX) ||
octeon_is_cpuid(OCTEON_CNF75XX)) {
if (dram_width != 8 && dram_width != 16 && dram_width != 4) {
printf("Unsupported SDRAM Width, %d. Must be 4, 8 or 16.\n",
dram_width);
++fatal_error;
}
} else if (dram_width != 8 && dram_width != 16) {
printf("Unsupported SDRAM Width, %d. Must be 8 or 16.\n",
dram_width);
++fatal_error;
}
/*
** Bail out here if things are not copasetic.
*/
if (fatal_error)
return (-1);
/*
* 4.8.4 LMC RESET Initialization
*
* The purpose of this step is to assert/deassert the RESET# pin at the
* DDR3/DDR4 parts.
*
* This LMC RESET step is done for all enabled LMCs.
*/
perform_lmc_reset(priv, node, if_num);
// Make sure scrambling is disabled during init...
ctrl.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(if_num));
ctrl.s.scramble_ena = 0;
lmc_wr(priv, CVMX_LMCX_CONTROL(if_num), ctrl.u64);
lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG0(if_num), 0);
lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG1(if_num), 0);
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS1_X))
lmc_wr(priv, CVMX_LMCX_SCRAMBLE_CFG2(if_num), 0);
odt_idx = min(dimm_count - 1, 3);
switch (num_ranks) {
case 1:
odt_config = odt_1rank_config;
break;
case 2:
odt_config = odt_2rank_config;
break;
case 4:
odt_config = odt_4rank_config;
break;
default:
odt_config = disable_odt_config;
printf("Unsupported number of ranks: %d\n", num_ranks);
++fatal_error;
}
/*
* 4.8.5 Early LMC Initialization
*
* All of DDR PLL, LMC CK, and LMC DRESET initializations must be
* completed prior to starting this LMC initialization sequence.
*
* Perform the following five substeps for early LMC initialization:
*
* 1. Software must ensure there are no pending DRAM transactions.
*
* 2. Write LMC(0)_CONFIG, LMC(0)_CONTROL, LMC(0)_TIMING_PARAMS0,
* LMC(0)_TIMING_PARAMS1, LMC(0)_MODEREG_PARAMS0,
* LMC(0)_MODEREG_PARAMS1, LMC(0)_DUAL_MEMCFG, LMC(0)_NXM,
* LMC(0)_WODT_MASK, LMC(0)_RODT_MASK, LMC(0)_COMP_CTL2,
* LMC(0)_PHY_CTL, LMC(0)_DIMM0/1_PARAMS, and LMC(0)_DIMM_CTL with
* appropriate values. All sections in this chapter can be used to
* derive proper register settings.
*/
/* LMC(0)_CONFIG */
lmc_config(priv);
/* LMC(0)_CONTROL */
lmc_control(priv);
/* LMC(0)_TIMING_PARAMS0 */
lmc_timing_params0(priv);
/* LMC(0)_TIMING_PARAMS1 */
lmc_timing_params1(priv);
/* LMC(0)_TIMING_PARAMS2 */
lmc_timing_params2(priv);
/* LMC(0)_MODEREG_PARAMS0 */
lmc_modereg_params0(priv);
/* LMC(0)_MODEREG_PARAMS1 */
lmc_modereg_params1(priv);
/* LMC(0)_MODEREG_PARAMS2 */
lmc_modereg_params2(priv);
/* LMC(0)_MODEREG_PARAMS3 */
lmc_modereg_params3(priv);
/* LMC(0)_NXM */
lmc_nxm(priv);
/* LMC(0)_WODT_MASK */
lmc_wodt_mask(priv);
/* LMC(0)_RODT_MASK */
lmc_rodt_mask(priv);
/* LMC(0)_COMP_CTL2 */
lmc_comp_ctl2(priv);
/* LMC(0)_PHY_CTL */
lmc_phy_ctl(priv);
/* LMC(0)_EXT_CONFIG */
lmc_ext_config(priv);
/* LMC(0)_EXT_CONFIG2 */
lmc_ext_config2(priv);
/* LMC(0)_DIMM0/1_PARAMS */
lmc_dimm01_params(priv);
ret = lmc_rank_init(priv);
if (ret < 0)
return 0; /* 0 indicates problem */
lmc_config_2(priv);
lmc_write_leveling(priv);
lmc_read_leveling(priv);
lmc_workaround(priv);
ret = lmc_sw_write_leveling(priv);
if (ret < 0)
return 0; /* 0 indicates problem */
// this sometimes causes stack overflow crashes..
// display only for DDR4 RDIMMs.
if (ddr_type == DDR4_DRAM && spd_rdimm) {
int i;
for (i = 0; i < 3; i += 2) // just pages 0 and 2 for now..
display_mpr_page(priv, rank_mask, if_num, i);
}
lmc_dll(priv);
lmc_workaround_2(priv);
lmc_final(priv);
lmc_scrambling(priv);
return mem_size_mbytes;
}
///// HW-assist byte DLL offset tuning //////
static int cvmx_dram_get_num_lmc(struct ddr_priv *priv)
{
union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
if (octeon_is_cpuid(OCTEON_CN70XX))
return 1;
if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX)) {
// sample LMC1
lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(1));
if (lmcx_dll_ctl2.cn78xx.intf_en)
return 2;
else
return 1;
}
// for CN78XX, LMCs are always active in pairs, and always LMC0/1
// so, we sample LMC2 to see if 2 and 3 are active
lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(2));
if (lmcx_dll_ctl2.cn78xx.intf_en)
return 4;
else
return 2;
}
// got to do these here, even though already defined in BDK
// all DDR3, and DDR4 x16 today, use only 3 bank bits;
// DDR4 x4 and x8 always have 4 bank bits
// NOTE: this will change in the future, when DDR4 x16 devices can
// come with 16 banks!! FIXME!!
static int cvmx_dram_get_num_bank_bits(struct ddr_priv *priv, int lmc)
{
union cvmx_lmcx_dll_ctl2 lmcx_dll_ctl2;
union cvmx_lmcx_config lmcx_config;
union cvmx_lmcx_ddr_pll_ctl lmcx_ddr_pll_ctl;
int bank_width;
// can always read this
lmcx_dll_ctl2.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
if (lmcx_dll_ctl2.cn78xx.dreset) // check LMCn
return 0;
lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_DLL_CTL2(lmc));
lmcx_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(lmc));
bank_width = ((lmcx_ddr_pll_ctl.s.ddr4_mode != 0) &&
(lmcx_config.s.bg2_enable)) ? 4 : 3;
return bank_width;
}
#define EXTRACT(v, lsb, width) (((v) >> (lsb)) & ((1ull << (width)) - 1))
#define ADDRESS_HOLE 0x10000000ULL
static void cvmx_dram_address_extract_info(struct ddr_priv *priv, u64 address,
int *node, int *lmc, int *dimm,
int *prank, int *lrank, int *bank,
int *row, int *col)
{
int bank_lsb, xbits;
union cvmx_l2c_ctl l2c_ctl;
union cvmx_lmcx_config lmcx_config;
union cvmx_lmcx_control lmcx_control;
union cvmx_lmcx_ext_config ext_config;
int bitno = (octeon_is_cpuid(OCTEON_CN7XXX)) ? 20 : 18;
int bank_width;
int dimm_lsb;
int dimm_width;
int prank_lsb, lrank_lsb;
int prank_width, lrank_width;
int row_lsb;
int row_width;
int col_hi_lsb;
int col_hi_width;
int col_hi;
if (octeon_is_cpuid(OCTEON_CN73XX) || octeon_is_cpuid(OCTEON_CNF75XX))
bitno = 18;
*node = EXTRACT(address, 40, 2); /* Address bits [41:40] */
address &= (1ULL << 40) - 1; // lop off any node bits or above
if (address >= ADDRESS_HOLE) // adjust down if at HOLE or above
address -= ADDRESS_HOLE;
/* Determine the LMC controllers */
l2c_ctl.u64 = l2c_rd(priv, CVMX_L2C_CTL);
/* xbits depends on number of LMCs */
xbits = cvmx_dram_get_num_lmc(priv) >> 1; // 4->2, 2->1, 1->0
bank_lsb = 7 + xbits;
/* LMC number is probably aliased */
if (l2c_ctl.s.disidxalias) {
*lmc = EXTRACT(address, 7, xbits);
} else {
*lmc = EXTRACT(address, 7, xbits) ^
EXTRACT(address, bitno, xbits) ^
EXTRACT(address, 12, xbits);
}
/* Figure out the bank field width */
lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(*lmc));
ext_config.u64 = lmc_rd(priv, CVMX_LMCX_EXT_CONFIG(*lmc));
bank_width = cvmx_dram_get_num_bank_bits(priv, *lmc);
/* Extract additional info from the LMC_CONFIG CSR */
dimm_lsb = 28 + lmcx_config.s.pbank_lsb + xbits;
dimm_width = 40 - dimm_lsb;
prank_lsb = dimm_lsb - lmcx_config.s.rank_ena;
prank_width = dimm_lsb - prank_lsb;
lrank_lsb = prank_lsb - ext_config.s.dimm0_cid;
lrank_width = prank_lsb - lrank_lsb;
row_lsb = 14 + lmcx_config.s.row_lsb + xbits;
row_width = lrank_lsb - row_lsb;
col_hi_lsb = bank_lsb + bank_width;
col_hi_width = row_lsb - col_hi_lsb;
/* Extract the parts of the address */
*dimm = EXTRACT(address, dimm_lsb, dimm_width);
*prank = EXTRACT(address, prank_lsb, prank_width);
*lrank = EXTRACT(address, lrank_lsb, lrank_width);
*row = EXTRACT(address, row_lsb, row_width);
/* bank calculation may be aliased... */
lmcx_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(*lmc));
if (lmcx_control.s.xor_bank) {
*bank = EXTRACT(address, bank_lsb, bank_width) ^
EXTRACT(address, 12 + xbits, bank_width);
} else {
*bank = EXTRACT(address, bank_lsb, bank_width);
}
/* LMC number already extracted */
col_hi = EXTRACT(address, col_hi_lsb, col_hi_width);
*col = EXTRACT(address, 3, 4) | (col_hi << 4);
/* Bus byte is address bits [2:0]. Unused here */
}
// end of added workarounds
// NOTE: "mode" argument:
// DBTRAIN_TEST: for testing using GP patterns, includes ECC
// DBTRAIN_DBI: for DBI deskew training behavior (uses GP patterns)
// DBTRAIN_LFSR: for testing using LFSR patterns, includes ECC
// NOTE: trust the caller to specify the correct/supported mode
//
static int test_dram_byte_hw(struct ddr_priv *priv, int if_num, u64 p,
int mode, u64 *xor_data)
{
u64 p1;
u64 k;
int errors = 0;
u64 mpr_data0, mpr_data1;
u64 bad_bits[2] = { 0, 0 };
int node_address, lmc, dimm;
int prank, lrank;
int bank, row, col;
int save_or_dis;
int byte;
int ba_loop, ba_bits;
union cvmx_lmcx_rlevel_ctl rlevel_ctl;
union cvmx_lmcx_dbtrain_ctl dbtrain_ctl;
union cvmx_lmcx_phy_ctl phy_ctl;
int biter_errs;
// FIXME: K iterations set to 4 for now.
// FIXME: decrement to increase interations.
// FIXME: must be no less than 22 to stay above an LMC hash field.
int kshift = 27;
const char *s;
int node = 0;
// allow override default setting for kshift
s = env_get("ddr_tune_set_kshift");
if (s) {
int temp = simple_strtoul(s, NULL, 0);
if (temp < 22 || temp > 28) {
debug("N%d.LMC%d: ILLEGAL override of kshift to %d, using default %d\n",
node, if_num, temp, kshift);
} else {
debug("N%d.LMC%d: overriding kshift (%d) to %d\n",
node, if_num, kshift, temp);
kshift = temp;
}
}
/*
* 1) Make sure that RLEVEL_CTL[OR_DIS] = 0.
*/
rlevel_ctl.u64 = lmc_rd(priv, CVMX_LMCX_RLEVEL_CTL(if_num));
save_or_dis = rlevel_ctl.s.or_dis;
/* or_dis must be disabled for this sequence */
rlevel_ctl.s.or_dis = 0;
lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
/*
* NOTE: this step done in the calling routine(s)...
* 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
* of choice.
* a. GENERAL_PURPOSE0[DATA<63:0>] sets the initial lower
* (rising edge) 64 bits of data.
* b. GENERAL_PURPOSE1[DATA<63:0>] sets the initial upper
* (falling edge) 64 bits of data.
* c. GENERAL_PURPOSE2[DATA<15:0>] sets the initial lower
* (rising edge <7:0>) and upper (falling edge <15:8>) ECC data.
*/
// final address must include LMC and node
p |= (if_num << 7); /* Map address into proper interface */
p |= (u64)node << CVMX_NODE_MEM_SHIFT; // map to node
/*
* Add base offset to both test regions to not clobber u-boot stuff
* when running from L2 for NAND boot.
*/
p += 0x20000000; // offset to 512MB, ie above THE HOLE!!!
p |= 1ull << 63; // needed for OCTEON
errors = 0;
cvmx_dram_address_extract_info(priv, p, &node_address, &lmc, &dimm,
&prank, &lrank, &bank, &row, &col);
debug("%s: START at A:0x%012llx, N%d L%d D%d/%d R%d B%1x Row:%05x Col:%05x\n",
__func__, p, node_address, lmc, dimm, prank, lrank, bank,
row, col);
// only check once per call, and ignore if no match...
if ((int)node != node_address) {
printf("ERROR: Node address mismatch\n");
return 0;
}
if (lmc != if_num) {
printf("ERROR: LMC address mismatch\n");
return 0;
}
/*
* 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically clears this as
* its a one-shot operation). This is to get into the habit of
* resetting PHYs SILO to the original 0 location.
*/
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.phy_reset = 1;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
/*
* Walk through a range of addresses avoiding bits that alias
* interfaces on the CN88XX.
*/
// FIXME: want to try to keep the K increment from affecting the
// LMC via hash, so keep it above bit 21 we also want to keep k
// less than the base offset of bit 29 (512MB)
for (k = 0; k < (1UL << 29); k += (1UL << kshift)) {
// FIXME: the sequence will interate over 1/2 cacheline
// FIXME: for each unit specified in "read_cmd_count",
// FIXME: so, we setup each sequence to do the max cachelines
// it can
p1 = p + k;
cvmx_dram_address_extract_info(priv, p1, &node_address, &lmc,
&dimm, &prank, &lrank, &bank,
&row, &col);
/*
* 2) Setup the fields of the CSR DBTRAIN_CTL as follows:
* a. COL, ROW, BA, BG, PRANK points to the starting point
* of the address.
* You can just set them to all 0.
* b. RW_TRAIN set this to 1.
* c. TCCD_L set this to 0.
* d. READ_CMD_COUNT instruct the sequence to the how many
* writes/reads.
* It is 5 bits field, so set to 31 of maximum # of r/w.
*/
dbtrain_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DBTRAIN_CTL(if_num));
dbtrain_ctl.s.column_a = col;
dbtrain_ctl.s.row_a = row;
dbtrain_ctl.s.bg = (bank >> 2) & 3;
dbtrain_ctl.s.prank = (dimm * 2) + prank; // FIXME?
dbtrain_ctl.s.lrank = lrank; // FIXME?
dbtrain_ctl.s.activate = (mode == DBTRAIN_DBI);
dbtrain_ctl.s.write_ena = 1;
dbtrain_ctl.s.read_cmd_count = 31; // max count pass 1.x
if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X) ||
octeon_is_cpuid(OCTEON_CNF75XX)) {
// max count on chips that support it
dbtrain_ctl.s.cmd_count_ext = 3;
} else {
// max count pass 1.x
dbtrain_ctl.s.cmd_count_ext = 0;
}
dbtrain_ctl.s.rw_train = 1;
dbtrain_ctl.s.tccd_sel = (mode == DBTRAIN_DBI);
// LFSR should only be on when chip supports it...
dbtrain_ctl.s.lfsr_pattern_sel = (mode == DBTRAIN_LFSR) ? 1 : 0;
biter_errs = 0;
// for each address, iterate over the 4 "banks" in the BA
for (ba_loop = 0, ba_bits = bank & 3;
ba_loop < 4; ba_loop++, ba_bits = (ba_bits + 1) & 3) {
dbtrain_ctl.s.ba = ba_bits;
lmc_wr(priv, CVMX_LMCX_DBTRAIN_CTL(if_num),
dbtrain_ctl.u64);
/*
* We will use the RW_TRAINING sequence (14) for
* this task.
*
* 4) Kick off the sequence (SEQ_CTL[SEQ_SEL] = 14,
* SEQ_CTL[INIT_START] = 1).
* 5) Poll on SEQ_CTL[SEQ_COMPLETE] for completion.
*/
oct3_ddr3_seq(priv, prank, if_num, 14);
/*
* 6) Read MPR_DATA0 and MPR_DATA1 for results.
* a. MPR_DATA0[MPR_DATA<63:0>] comparison results
* for DQ63:DQ0. (1 means MATCH, 0 means FAIL).
* b. MPR_DATA1[MPR_DATA<7:0>] comparison results
* for ECC bit7:0.
*/
mpr_data0 = lmc_rd(priv, CVMX_LMCX_MPR_DATA0(if_num));
mpr_data1 = lmc_rd(priv, CVMX_LMCX_MPR_DATA1(if_num));
/*
* 7) Set PHY_CTL[PHY_RESET] = 1 (LMC automatically
* clears this as its a one-shot operation).
* This is to get into the habit of resetting PHYs
* SILO to the original 0 location.
*/
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(if_num));
phy_ctl.s.phy_reset = 1;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(if_num), phy_ctl.u64);
// bypass any error checking or updating when DBI mode
if (mode == DBTRAIN_DBI)
continue;
// data bytes
if (~mpr_data0) {
for (byte = 0; byte < 8; byte++) {
if ((~mpr_data0 >> (8 * byte)) & 0xffUL)
biter_errs |= (1 << byte);
}
// accumulate bad bits
bad_bits[0] |= ~mpr_data0;
}
// include ECC byte errors
if (~mpr_data1 & 0xffUL) {
biter_errs |= (1 << 8);
bad_bits[1] |= ~mpr_data1 & 0xffUL;
}
}
errors |= biter_errs;
} /* end for (k=...) */
rlevel_ctl.s.or_dis = save_or_dis;
lmc_wr(priv, CVMX_LMCX_RLEVEL_CTL(if_num), rlevel_ctl.u64);
// send the bad bits back...
if (mode != DBTRAIN_DBI && xor_data) {
xor_data[0] = bad_bits[0];
xor_data[1] = bad_bits[1];
}
return errors;
}
// setup default for byte test pattern array
// take these from the HRM section 6.9.13
static const u64 byte_pattern_0[] = {
0xFFAAFFFFFF55FFFFULL, // GP0
0x55555555AAAAAAAAULL, // GP1
0xAA55AAAAULL, // GP2
};
static const u64 byte_pattern_1[] = {
0xFBF7EFDFBF7FFEFDULL, // GP0
0x0F1E3C78F0E1C387ULL, // GP1
0xF0E1BF7FULL, // GP2
};
// this is from Andrew via LFSR with PRBS=0xFFFFAAAA
static const u64 byte_pattern_2[] = {
0xEE55AADDEE55AADDULL, // GP0
0x55AADDEE55AADDEEULL, // GP1
0x55EEULL, // GP2
};
// this is from Mike via LFSR with PRBS=0x4A519909
static const u64 byte_pattern_3[] = {
0x0088CCEE0088CCEEULL, // GP0
0xBB552211BB552211ULL, // GP1
0xBB00ULL, // GP2
};
static const u64 *byte_patterns[4] = {
byte_pattern_0, byte_pattern_1, byte_pattern_2, byte_pattern_3
};
static const u32 lfsr_patterns[4] = {
0xFFFFAAAAUL, 0x06000000UL, 0xAAAAFFFFUL, 0x4A519909UL
};
#define NUM_BYTE_PATTERNS 4
#define DEFAULT_BYTE_BURSTS 32 // compromise between time and rigor
static void setup_hw_pattern(struct ddr_priv *priv, int lmc,
const u64 *pattern_p)
{
/*
* 3) Setup GENERAL_PURPOSE[0-2] registers with the data pattern
* of choice.
* a. GENERAL_PURPOSE0[DATA<63:0>] – sets the initial lower
* (rising edge) 64 bits of data.
* b. GENERAL_PURPOSE1[DATA<63:0>] – sets the initial upper
* (falling edge) 64 bits of data.
* c. GENERAL_PURPOSE2[DATA<15:0>] – sets the initial lower
* (rising edge <7:0>) and upper
* (falling edge <15:8>) ECC data.
*/
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), pattern_p[0]);
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), pattern_p[1]);
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), pattern_p[2]);
}
static void setup_lfsr_pattern(struct ddr_priv *priv, int lmc, u32 data)
{
union cvmx_lmcx_char_ctl char_ctl;
u32 prbs;
const char *s;
s = env_get("ddr_lfsr_prbs");
if (s)
prbs = simple_strtoul(s, NULL, 0);
else
prbs = data;
/*
* 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
* here data comes from the LFSR generating a PRBS pattern
* CHAR_CTL.EN = 0
* CHAR_CTL.SEL = 0; // for PRBS
* CHAR_CTL.DR = 1;
* CHAR_CTL.PRBS = setup for whatever type of PRBS to send
* CHAR_CTL.SKEW_ON = 1;
*/
char_ctl.u64 = lmc_rd(priv, CVMX_LMCX_CHAR_CTL(lmc));
char_ctl.s.en = 0;
char_ctl.s.sel = 0;
char_ctl.s.dr = 1;
char_ctl.s.prbs = prbs;
char_ctl.s.skew_on = 1;
lmc_wr(priv, CVMX_LMCX_CHAR_CTL(lmc), char_ctl.u64);
}
static int choose_best_hw_patterns(int lmc, int mode)
{
int new_mode = mode;
const char *s;
switch (mode) {
case DBTRAIN_TEST: // always choose LFSR if chip supports it
if (octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
int lfsr_enable = 1;
s = env_get("ddr_allow_lfsr");
if (s) {
// override?
lfsr_enable = !!strtoul(s, NULL, 0);
}
if (lfsr_enable)
new_mode = DBTRAIN_LFSR;
}
break;
case DBTRAIN_DBI: // possibly can allow LFSR use?
break;
case DBTRAIN_LFSR: // forced already
if (!octeon_is_cpuid(OCTEON_CN78XX_PASS2_X)) {
debug("ERROR: illegal HW assist mode %d\n", mode);
new_mode = DBTRAIN_TEST;
}
break;
default:
debug("ERROR: unknown HW assist mode %d\n", mode);
}
if (new_mode != mode)
debug("%s: changing mode %d to %d\n", __func__, mode, new_mode);
return new_mode;
}
int run_best_hw_patterns(struct ddr_priv *priv, int lmc, u64 phys_addr,
int mode, u64 *xor_data)
{
int pattern;
const u64 *pattern_p;
int errs, errors = 0;
// FIXME? always choose LFSR if chip supports it???
mode = choose_best_hw_patterns(lmc, mode);
for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
if (mode == DBTRAIN_LFSR) {
setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
} else {
pattern_p = byte_patterns[pattern];
setup_hw_pattern(priv, lmc, pattern_p);
}
errs = test_dram_byte_hw(priv, lmc, phys_addr, mode, xor_data);
debug("%s: PATTERN %d at A:0x%012llx errors 0x%x\n",
__func__, pattern, phys_addr, errs);
errors |= errs;
}
return errors;
}
static void hw_assist_test_dll_offset(struct ddr_priv *priv,
int dll_offset_mode, int lmc,
int bytelane,
int if_64b,
u64 dram_tune_rank_offset,
int dram_tune_byte_bursts)
{
int byte_offset, new_best_offset[9];
int rank_delay_start[4][9];
int rank_delay_count[4][9];
int rank_delay_best_start[4][9];
int rank_delay_best_count[4][9];
int errors[4], off_errors, tot_errors;
int rank_mask, rankx, active_ranks;
int pattern;
const u64 *pattern_p;
int byte;
char *mode_str = (dll_offset_mode == 2) ? "Read" : "Write";
int pat_best_offset[9];
u64 phys_addr;
int pat_beg, pat_end;
int rank_beg, rank_end;
int byte_lo, byte_hi;
union cvmx_lmcx_config lmcx_config;
u64 hw_rank_offset;
int num_lmcs = cvmx_dram_get_num_lmc(priv);
// FIXME? always choose LFSR if chip supports it???
int mode = choose_best_hw_patterns(lmc, DBTRAIN_TEST);
int node = 0;
if (bytelane == 0x0A) { // all bytelanes
byte_lo = 0;
byte_hi = 8;
} else { // just 1
byte_lo = bytelane;
byte_hi = bytelane;
}
lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
rank_mask = lmcx_config.s.init_status;
// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
hw_rank_offset =
1ull << (28 + lmcx_config.s.pbank_lsb - lmcx_config.s.rank_ena +
(num_lmcs / 2));
debug("N%d: %s: starting LMC%d with rank offset 0x%016llx\n",
node, __func__, lmc, (unsigned long long)hw_rank_offset);
// start of pattern loop
// we do the set of tests for each pattern supplied...
memset(new_best_offset, 0, sizeof(new_best_offset));
for (pattern = 0; pattern < NUM_BYTE_PATTERNS; pattern++) {
memset(pat_best_offset, 0, sizeof(pat_best_offset));
if (mode == DBTRAIN_TEST) {
pattern_p = byte_patterns[pattern];
setup_hw_pattern(priv, lmc, pattern_p);
} else {
setup_lfsr_pattern(priv, lmc, lfsr_patterns[pattern]);
}
// now loop through all legal values for the DLL byte offset...
#define BYTE_OFFSET_INCR 3 // FIXME: make this tunable?
tot_errors = 0;
memset(rank_delay_count, 0, sizeof(rank_delay_count));
memset(rank_delay_start, 0, sizeof(rank_delay_start));
memset(rank_delay_best_count, 0, sizeof(rank_delay_best_count));
memset(rank_delay_best_start, 0, sizeof(rank_delay_best_start));
for (byte_offset = -63; byte_offset < 64;
byte_offset += BYTE_OFFSET_INCR) {
// do the setup on the active LMC
// set the bytelanes DLL offsets
change_dll_offset_enable(priv, lmc, 0);
// FIXME? bytelane?
load_dll_offset(priv, lmc, dll_offset_mode,
byte_offset, bytelane);
change_dll_offset_enable(priv, lmc, 1);
//bdk_watchdog_poke();
// run the test on each rank
// only 1 call per rank should be enough, let the
// bursts, loops, etc, control the load...
// errors for this byte_offset, all ranks
off_errors = 0;
active_ranks = 0;
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
phys_addr = hw_rank_offset * active_ranks;
// FIXME: now done by test_dram_byte_hw()
//phys_addr |= (lmc << 7);
//phys_addr |= (u64)node << CVMX_NODE_MEM_SHIFT;
active_ranks++;
// NOTE: return is a now a bitmask of the
// erroring bytelanes.
errors[rankx] =
test_dram_byte_hw(priv, lmc, phys_addr,
mode, NULL);
// process any errors in the bytelane(s) that
// are being tested
for (byte = byte_lo; byte <= byte_hi; byte++) {
// check errors
// yes, an error in the byte lane in
// this rank
if (errors[rankx] & (1 << byte)) {
off_errors |= (1 << byte);
debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: Address 0x%012llx errors\n",
node, lmc, rankx, byte,
mode_str, byte_offset,
phys_addr);
// had started run
if (rank_delay_count
[rankx][byte] > 0) {
debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: stopping a run here\n",
node, lmc, rankx,
byte, mode_str,
byte_offset);
// stop now
rank_delay_count
[rankx][byte] =
0;
}
// FIXME: else had not started
// run - nothing else to do?
} else {
// no error in the byte lane
// first success, set run start
if (rank_delay_count[rankx]
[byte] == 0) {
debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: starting a run here\n",
node, lmc, rankx,
byte, mode_str,
byte_offset);
rank_delay_start[rankx]
[byte] =
byte_offset;
}
// bump run length
rank_delay_count[rankx][byte]
+= BYTE_OFFSET_INCR;
// is this now the biggest
// window?
if (rank_delay_count[rankx]
[byte] >
rank_delay_best_count[rankx]
[byte]) {
rank_delay_best_count
[rankx][byte] =
rank_delay_count
[rankx][byte];
rank_delay_best_start
[rankx][byte] =
rank_delay_start
[rankx][byte];
debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test %3d: updating best to %d/%d\n",
node, lmc, rankx,
byte, mode_str,
byte_offset,
rank_delay_best_start
[rankx][byte],
rank_delay_best_count
[rankx][byte]);
}
}
}
} /* for (rankx = 0; rankx < 4; rankx++) */
tot_errors |= off_errors;
}
// set the bytelanes DLL offsets all back to 0
change_dll_offset_enable(priv, lmc, 0);
load_dll_offset(priv, lmc, dll_offset_mode, 0, bytelane);
change_dll_offset_enable(priv, lmc, 1);
// now choose the best byte_offsets for this pattern
// according to the best windows of the tested ranks
// calculate offset by constructing an average window
// from the rank windows
for (byte = byte_lo; byte <= byte_hi; byte++) {
pat_beg = -999;
pat_end = 999;
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
rank_beg = rank_delay_best_start[rankx][byte];
pat_beg = max(pat_beg, rank_beg);
rank_end = rank_beg +
rank_delay_best_count[rankx][byte] -
BYTE_OFFSET_INCR;
pat_end = min(pat_end, rank_end);
debug("N%d.LMC%d.R%d: Bytelane %d DLL %s Offset Test: Rank Window %3d:%3d\n",
node, lmc, rankx, byte, mode_str,
rank_beg, rank_end);
} /* for (rankx = 0; rankx < 4; rankx++) */
pat_best_offset[byte] = (pat_end + pat_beg) / 2;
// sum the pattern averages
new_best_offset[byte] += pat_best_offset[byte];
}
// now print them on 1 line, descending order...
debug("N%d.LMC%d: HW DLL %s Offset Pattern %d :",
node, lmc, mode_str, pattern);
for (byte = byte_hi; byte >= byte_lo; --byte)
debug(" %4d", pat_best_offset[byte]);
debug("\n");
}
// end of pattern loop
debug("N%d.LMC%d: HW DLL %s Offset Average : ", node, lmc, mode_str);
// print in decending byte index order
for (byte = byte_hi; byte >= byte_lo; --byte) {
// create the new average NINT
new_best_offset[byte] = divide_nint(new_best_offset[byte],
NUM_BYTE_PATTERNS);
// print the best offsets from all patterns
// print just the offset of all the bytes
if (bytelane == 0x0A)
debug("%4d ", new_best_offset[byte]);
else // print the bytelanes also
debug("(byte %d) %4d ", byte, new_best_offset[byte]);
// done with testing, load up the best offsets we found...
// disable offsets while we load...
change_dll_offset_enable(priv, lmc, 0);
load_dll_offset(priv, lmc, dll_offset_mode,
new_best_offset[byte], byte);
// re-enable the offsets now that we are done loading
change_dll_offset_enable(priv, lmc, 1);
}
debug("\n");
}
/*
* Automatically adjust the DLL offset for the selected bytelane using
* hardware-assist
*/
static int perform_HW_dll_offset_tuning(struct ddr_priv *priv,
int dll_offset_mode, int bytelane)
{
int if_64b;
int save_ecc_ena[4];
union cvmx_lmcx_config lmc_config;
int lmc, num_lmcs = cvmx_dram_get_num_lmc(priv);
const char *s;
int loops = 1, loop;
int by;
u64 dram_tune_rank_offset;
int dram_tune_byte_bursts = DEFAULT_BYTE_BURSTS;
int node = 0;
// see if we want to do the tuning more than once per LMC...
s = env_get("ddr_tune_ecc_loops");
if (s)
loops = strtoul(s, NULL, 0);
// allow override of the test repeats (bursts)
s = env_get("ddr_tune_byte_bursts");
if (s)
dram_tune_byte_bursts = strtoul(s, NULL, 10);
// print current working values
debug("N%d: H/W Tuning for bytelane %d will use %d loops, %d bursts, and %d patterns.\n",
node, bytelane, loops, dram_tune_byte_bursts, NUM_BYTE_PATTERNS);
// FIXME? get flag from LMC0 only
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0));
if_64b = !lmc_config.s.mode32b;
// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
dram_tune_rank_offset =
1ull << (28 + lmc_config.s.pbank_lsb - lmc_config.s.rank_ena +
(num_lmcs / 2));
// do once for each active LMC
for (lmc = 0; lmc < num_lmcs; lmc++) {
debug("N%d: H/W Tuning: starting LMC%d bytelane %d tune.\n",
node, lmc, bytelane);
/* Enable ECC for the HW tests */
// NOTE: we do enable ECC, but the HW tests used will not
// generate "visible" errors
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
save_ecc_ena[lmc] = lmc_config.s.ecc_ena;
lmc_config.s.ecc_ena = 1;
lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
// testing is done on a single LMC at a time
// FIXME: for now, loop here to show what happens multiple times
for (loop = 0; loop < loops; loop++) {
/* Perform DLL offset tuning */
hw_assist_test_dll_offset(priv, 2 /* 2=read */, lmc,
bytelane,
if_64b, dram_tune_rank_offset,
dram_tune_byte_bursts);
}
// perform cleanup on active LMC
debug("N%d: H/W Tuning: finishing LMC%d bytelane %d tune.\n",
node, lmc, bytelane);
/* Restore ECC for DRAM tests */
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
lmc_config.s.ecc_ena = save_ecc_ena[lmc];
lmc_wr(priv, CVMX_LMCX_CONFIG(lmc), lmc_config.u64);
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
// finally, see if there are any read offset overrides
// after tuning
for (by = 0; by < 9; by++) {
s = lookup_env(priv, "ddr%d_tune_byte%d", lmc, by);
if (s) {
int dllro = strtoul(s, NULL, 10);
change_dll_offset_enable(priv, lmc, 0);
load_dll_offset(priv, lmc, 2, dllro, by);
change_dll_offset_enable(priv, lmc, 1);
}
}
} /* for (lmc = 0; lmc < num_lmcs; lmc++) */
// finish up...
return 0;
} /* perform_HW_dll_offset_tuning */
// this routine simply makes the calls to the tuning routine and returns
// any errors
static int cvmx_tune_node(struct ddr_priv *priv)
{
int errs, tot_errs;
int do_dllwo = 0; // default to NO
const char *str;
int node = 0;
// Automatically tune the data and ECC byte DLL read offsets
debug("N%d: Starting DLL Read Offset Tuning for LMCs\n", node);
errs = perform_HW_dll_offset_tuning(priv, 2, 0x0A /* all bytelanes */);
debug("N%d: Finished DLL Read Offset Tuning for LMCs, %d errors\n",
node, errs);
tot_errs = errs;
// disabled by default for now, does not seem to be needed?
// Automatically tune the data and ECC byte DLL write offsets
// allow override of default setting
str = env_get("ddr_tune_write_offsets");
if (str)
do_dllwo = !!strtoul(str, NULL, 0);
if (do_dllwo) {
debug("N%d: Starting DLL Write Offset Tuning for LMCs\n", node);
errs =
perform_HW_dll_offset_tuning(priv, 1,
0x0A /* all bytelanes */);
debug("N%d: Finished DLL Write Offset Tuning for LMCs, %d errors\n",
node, errs);
tot_errs += errs;
}
return tot_errs;
}
// this routine makes the calls to the tuning routines when criteria are met
// intended to be called for automated tuning, to apply filtering...
#define IS_DDR4 1
#define IS_DDR3 0
#define IS_RDIMM 1
#define IS_UDIMM 0
#define IS_1SLOT 1
#define IS_2SLOT 0
// FIXME: DDR3 is not tuned
static const u32 ddr_speed_filter[2][2][2] = {
[IS_DDR4] = {
[IS_RDIMM] = {
[IS_1SLOT] = 940,
[IS_2SLOT] = 800},
[IS_UDIMM] = {
[IS_1SLOT] = 1050,
[IS_2SLOT] = 940},
},
[IS_DDR3] = {
[IS_RDIMM] = {
[IS_1SLOT] = 0, // disabled
[IS_2SLOT] = 0 // disabled
},
[IS_UDIMM] = {
[IS_1SLOT] = 0, // disabled
[IS_2SLOT] = 0 // disabled
}
}
};
void cvmx_maybe_tune_node(struct ddr_priv *priv, u32 ddr_speed)
{
const char *s;
union cvmx_lmcx_config lmc_config;
union cvmx_lmcx_control lmc_control;
union cvmx_lmcx_ddr_pll_ctl lmc_ddr_pll_ctl;
int is_ddr4;
int is_rdimm;
int is_1slot;
int do_tune = 0;
u32 ddr_min_speed;
int node = 0;
// scale it down from Hz to MHz
ddr_speed = divide_nint(ddr_speed, 1000000);
// FIXME: allow an override here so that all configs can be tuned
// or none
// If the envvar is defined, always either force it or avoid it
// accordingly
s = env_get("ddr_tune_all_configs");
if (s) {
do_tune = !!strtoul(s, NULL, 0);
printf("N%d: DRAM auto-tuning %s.\n", node,
(do_tune) ? "forced" : "disabled");
if (do_tune)
cvmx_tune_node(priv);
return;
}
// filter the tuning calls here...
// determine if we should/can run automatically for this configuration
//
// FIXME: tune only when the configuration indicates it will help:
// DDR type, RDIMM or UDIMM, 1-slot or 2-slot, and speed
//
lmc_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(0)); // sample LMC0
lmc_control.u64 = lmc_rd(priv, CVMX_LMCX_CONTROL(0)); // sample LMC0
// sample LMC0
lmc_ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
is_ddr4 = (lmc_ddr_pll_ctl.s.ddr4_mode != 0);
is_rdimm = (lmc_control.s.rdimm_ena != 0);
// HACK, should do better
is_1slot = (lmc_config.s.init_status < 4);
ddr_min_speed = ddr_speed_filter[is_ddr4][is_rdimm][is_1slot];
do_tune = ((ddr_min_speed != 0) && (ddr_speed > ddr_min_speed));
debug("N%d: DDR%d %cDIMM %d-slot at %d MHz %s eligible for auto-tuning.\n",
node, (is_ddr4) ? 4 : 3, (is_rdimm) ? 'R' : 'U',
(is_1slot) ? 1 : 2, ddr_speed, (do_tune) ? "is" : "is not");
// call the tuning routine, filtering is done...
if (do_tune)
cvmx_tune_node(priv);
}
/*
* first pattern example:
* GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
* GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
* GENERAL_PURPOSE0.DATA == 16'h0000;
*/
static const u64 dbi_pattern[3] = {
0x00ff00ff00ff00ffULL, 0x00ff00ff00ff00ffULL, 0x0000ULL };
// Perform switchover to DBI
static void cvmx_dbi_switchover_interface(struct ddr_priv *priv, int lmc)
{
union cvmx_lmcx_modereg_params0 modereg_params0;
union cvmx_lmcx_modereg_params3 modereg_params3;
union cvmx_lmcx_phy_ctl phy_ctl;
union cvmx_lmcx_config lmcx_config;
union cvmx_lmcx_ddr_pll_ctl ddr_pll_ctl;
int rank_mask, rankx, active_ranks;
u64 phys_addr, rank_offset;
int num_lmcs, errors;
int dbi_settings[9], byte, unlocked, retries;
int ecc_ena;
int rank_max = 1; // FIXME: make this 4 to try all the ranks
int node = 0;
ddr_pll_ctl.u64 = lmc_rd(priv, CVMX_LMCX_DDR_PLL_CTL(0));
lmcx_config.u64 = lmc_rd(priv, CVMX_LMCX_CONFIG(lmc));
rank_mask = lmcx_config.s.init_status;
ecc_ena = lmcx_config.s.ecc_ena;
// FIXME: must filter out any non-supported configs
// ie, no DDR3, no x4 devices
if (ddr_pll_ctl.s.ddr4_mode == 0 || lmcx_config.s.mode_x4dev == 1) {
debug("N%d.LMC%d: DBI switchover: inappropriate device; EXITING...\n",
node, lmc);
return;
}
// this should be correct for 1 or 2 ranks, 1 or 2 DIMMs
num_lmcs = cvmx_dram_get_num_lmc(priv);
rank_offset = 1ull << (28 + lmcx_config.s.pbank_lsb -
lmcx_config.s.rank_ena + (num_lmcs / 2));
debug("N%d.LMC%d: DBI switchover: rank mask 0x%x, rank size 0x%016llx.\n",
node, lmc, rank_mask, (unsigned long long)rank_offset);
/*
* 1. conduct the current init sequence as usual all the way
* after software write leveling.
*/
read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
" INIT");
/*
* 2. set DBI related CSRs as below and issue MR write.
* MODEREG_PARAMS3.WR_DBI=1
* MODEREG_PARAMS3.RD_DBI=1
* PHY_CTL.DBI_MODE_ENA=1
*/
modereg_params0.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc));
modereg_params3.u64 = lmc_rd(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc));
modereg_params3.s.wr_dbi = 1;
modereg_params3.s.rd_dbi = 1;
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS3(lmc), modereg_params3.u64);
phy_ctl.u64 = lmc_rd(priv, CVMX_LMCX_PHY_CTL(lmc));
phy_ctl.s.dbi_mode_ena = 1;
lmc_wr(priv, CVMX_LMCX_PHY_CTL(lmc), phy_ctl.u64);
/*
* there are two options for data to send. Lets start with (1)
* and could move to (2) in the future:
*
* 1) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 0 (or for older chips where
* this does not exist) set data directly in these reigsters.
* this will yield a clk/2 pattern:
* GENERAL_PURPOSE0.DATA == 64'h00ff00ff00ff00ff;
* GENERAL_PURPOSE1.DATA == 64'h00ff00ff00ff00ff;
* GENERAL_PURPOSE0.DATA == 16'h0000;
* 2) DBTRAIN_CTL[LFSR_PATTERN_SEL] = 1
* here data comes from the LFSR generating a PRBS pattern
* CHAR_CTL.EN = 0
* CHAR_CTL.SEL = 0; // for PRBS
* CHAR_CTL.DR = 1;
* CHAR_CTL.PRBS = setup for whatever type of PRBS to send
* CHAR_CTL.SKEW_ON = 1;
*/
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE0(lmc), dbi_pattern[0]);
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE1(lmc), dbi_pattern[1]);
lmc_wr(priv, CVMX_LMCX_GENERAL_PURPOSE2(lmc), dbi_pattern[2]);
/*
* 3. adjust cas_latency (only necessary if RD_DBI is set).
* here is my code for doing this:
*
* if (csr_model.MODEREG_PARAMS3.RD_DBI.value == 1) begin
* case (csr_model.MODEREG_PARAMS0.CL.value)
* 0,1,2,3,4: csr_model.MODEREG_PARAMS0.CL.value += 2;
* // CL 9-13 -> 11-15
* 5: begin
* // CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
* if((csr_model.MODEREG_PARAMS0.CWL.value==1 ||
* csr_model.MODEREG_PARAMS0.CWL.value==3))
* csr_model.MODEREG_PARAMS0.CL.value = 7; // 14->16
* else
* csr_model.MODEREG_PARAMS0.CL.value = 13; // 14->17
* end
* 6: csr_model.MODEREG_PARAMS0.CL.value = 8; // 15->18
* 7: csr_model.MODEREG_PARAMS0.CL.value = 14; // 16->19
* 8: csr_model.MODEREG_PARAMS0.CL.value = 15; // 18->21
* default:
* `cn_fatal(("Error mem_cfg (%s) CL (%d) with RD_DBI=1,
* I am not sure what to do.",
* mem_cfg, csr_model.MODEREG_PARAMS3.RD_DBI.value))
* endcase
* end
*/
if (modereg_params3.s.rd_dbi == 1) {
int old_cl, new_cl, old_cwl;
old_cl = modereg_params0.s.cl;
old_cwl = modereg_params0.s.cwl;
switch (old_cl) {
case 0:
case 1:
case 2:
case 3:
case 4:
new_cl = old_cl + 2;
break; // 9-13->11-15
// CL=14, CWL=10,12 gets +2, CLW=11,14 gets +3
case 5:
new_cl = ((old_cwl == 1) || (old_cwl == 3)) ? 7 : 13;
break;
case 6:
new_cl = 8;
break; // 15->18
case 7:
new_cl = 14;
break; // 16->19
case 8:
new_cl = 15;
break; // 18->21
default:
printf("ERROR: Bad CL value (%d) for DBI switchover.\n",
old_cl);
// FIXME: need to error exit here...
old_cl = -1;
new_cl = -1;
break;
}
debug("N%d.LMC%d: DBI switchover: CL ADJ: old_cl 0x%x, old_cwl 0x%x, new_cl 0x%x.\n",
node, lmc, old_cl, old_cwl, new_cl);
modereg_params0.s.cl = new_cl;
lmc_wr(priv, CVMX_LMCX_MODEREG_PARAMS0(lmc),
modereg_params0.u64);
}
/*
* 4. issue MRW to MR0 (CL) and MR5 (DBI), using LMC sequence
* SEQ_CTL[SEQ_SEL] = MRW.
*/
// Use the default values, from the CSRs fields
// also, do B-sides for RDIMMs...
for (rankx = 0; rankx < 4; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
// for RDIMMs, B-side writes should get done automatically
// when the A-side is written
ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
0 /*MRreg */, 0 /*A-side */); /* MR0 */
ddr4_mrw(priv, lmc, rankx, -1 /* use_default */,
5 /*MRreg */, 0 /*A-side */); /* MR5 */
}
/*
* 5. conduct DBI bit deskew training via the General Purpose
* R/W sequence (dbtrain). may need to run this over and over to get
* a lock (I need up to 5 in simulation):
* SEQ_CTL[SEQ_SEL] = RW_TRAINING (15)
* DBTRAIN_CTL.CMD_COUNT_EXT = all 1's
* DBTRAIN_CTL.READ_CMD_COUNT = all 1's
* DBTRAIN_CTL.TCCD_SEL = set according to MODEREG_PARAMS3[TCCD_L]
* DBTRAIN_CTL.RW_TRAIN = 1
* DBTRAIN_CTL.READ_DQ_COUNT = dont care
* DBTRAIN_CTL.WRITE_ENA = 1;
* DBTRAIN_CTL.ACTIVATE = 1;
* DBTRAIN_CTL LRANK, PRANK, ROW_A, BG, BA, COLUMN_A = set to a
* valid address
*/
// NOW - do the training
debug("N%d.LMC%d: DBI switchover: TRAINING begins...\n", node, lmc);
active_ranks = 0;
for (rankx = 0; rankx < rank_max; rankx++) {
if (!(rank_mask & (1 << rankx)))
continue;
phys_addr = rank_offset * active_ranks;
// FIXME: now done by test_dram_byte_hw()
active_ranks++;
retries = 0;
restart_training:
// NOTE: return is a bitmask of the erroring bytelanes -
// we only print it
errors =
test_dram_byte_hw(priv, lmc, phys_addr, DBTRAIN_DBI, NULL);
debug("N%d.LMC%d: DBI switchover: TEST: rank %d, phys_addr 0x%llx, errors 0x%x.\n",
node, lmc, rankx, (unsigned long long)phys_addr, errors);
// NEXT - check for locking
unlocked = 0;
read_dac_dbi_settings(priv, lmc, /*DBI*/ 0, dbi_settings);
for (byte = 0; byte < (8 + ecc_ena); byte++)
unlocked += (dbi_settings[byte] & 1) ^ 1;
// FIXME: print out the DBI settings array after each rank?
if (rank_max > 1) // only when doing more than 1 rank
display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena,
dbi_settings, " RANK");
if (unlocked > 0) {
debug("N%d.LMC%d: DBI switchover: LOCK: %d still unlocked.\n",
node, lmc, unlocked);
retries++;
if (retries < 10) {
goto restart_training;
} else {
debug("N%d.LMC%d: DBI switchover: LOCK: %d retries exhausted.\n",
node, lmc, retries);
}
}
} /* for (rankx = 0; rankx < 4; rankx++) */
// print out the final DBI settings array
display_dac_dbi_settings(lmc, /*DBI*/ 0, ecc_ena, dbi_settings,
"FINAL");
}
void cvmx_dbi_switchover(struct ddr_priv *priv)
{
int lmc;
int num_lmcs = cvmx_dram_get_num_lmc(priv);
for (lmc = 0; lmc < num_lmcs; lmc++)
cvmx_dbi_switchover_interface(priv, lmc);
}