linux-brain/drivers/net/ethernet/mellanox/mlx4/en_tx.c
Moshe Shemesh 717a140a36 net/mlx4_en: Handle TX error CQE
[ Upstream commit ba603d9d7b1215c72513d7c7aa02b6775fd4891b ]

In case error CQE was found while polling TX CQ, the QP is in error
state and all posted WQEs will generate error CQEs without any data
transmitted. Fix it by reopening the channels, via same method used for
TX timeout handling.

In addition add some more info on error CQE and WQE for debug.

Fixes: bd2f631d7c ("net/mlx4_en: Notify user when TX ring in error state")
Signed-off-by: Moshe Shemesh <moshe@mellanox.com>
Signed-off-by: Tariq Toukan <tariqt@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-21 13:27:04 +01:00

1220 lines
33 KiB
C

/*
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <asm/page.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/skbuff.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <linux/vmalloc.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/moduleparam.h>
#include <linux/indirect_call_wrapper.h>
#include "mlx4_en.h"
int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring, u32 size,
u16 stride, int node, int queue_index)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring;
int tmp;
int err;
ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
if (!ring) {
en_err(priv, "Failed allocating TX ring\n");
return -ENOMEM;
}
ring->size = size;
ring->size_mask = size - 1;
ring->sp_stride = stride;
ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS;
tmp = size * sizeof(struct mlx4_en_tx_info);
ring->tx_info = kvmalloc_node(tmp, GFP_KERNEL, node);
if (!ring->tx_info) {
err = -ENOMEM;
goto err_ring;
}
en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n",
ring->tx_info, tmp);
ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node);
if (!ring->bounce_buf) {
ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL);
if (!ring->bounce_buf) {
err = -ENOMEM;
goto err_info;
}
}
ring->buf_size = ALIGN(size * ring->sp_stride, MLX4_EN_PAGE_SIZE);
/* Allocate HW buffers on provided NUMA node */
set_dev_node(&mdev->dev->persist->pdev->dev, node);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size);
set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node);
if (err) {
en_err(priv, "Failed allocating hwq resources\n");
goto err_bounce;
}
ring->buf = ring->sp_wqres.buf.direct.buf;
en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n",
ring, ring->buf, ring->size, ring->buf_size,
(unsigned long long) ring->sp_wqres.buf.direct.map);
err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn,
MLX4_RESERVE_ETH_BF_QP,
MLX4_RES_USAGE_DRIVER);
if (err) {
en_err(priv, "failed reserving qp for TX ring\n");
goto err_hwq_res;
}
err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->sp_qp);
if (err) {
en_err(priv, "Failed allocating qp %d\n", ring->qpn);
goto err_reserve;
}
ring->sp_qp.event = mlx4_en_sqp_event;
err = mlx4_bf_alloc(mdev->dev, &ring->bf, node);
if (err) {
en_dbg(DRV, priv, "working without blueflame (%d)\n", err);
ring->bf.uar = &mdev->priv_uar;
ring->bf.uar->map = mdev->uar_map;
ring->bf_enabled = false;
ring->bf_alloced = false;
priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME;
} else {
ring->bf_alloced = true;
ring->bf_enabled = !!(priv->pflags &
MLX4_EN_PRIV_FLAGS_BLUEFLAME);
}
ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type;
ring->queue_index = queue_index;
if (queue_index < priv->num_tx_rings_p_up)
cpumask_set_cpu(cpumask_local_spread(queue_index,
priv->mdev->dev->numa_node),
&ring->sp_affinity_mask);
*pring = ring;
return 0;
err_reserve:
mlx4_qp_release_range(mdev->dev, ring->qpn, 1);
err_hwq_res:
mlx4_free_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size);
err_bounce:
kfree(ring->bounce_buf);
ring->bounce_buf = NULL;
err_info:
kvfree(ring->tx_info);
ring->tx_info = NULL;
err_ring:
kfree(ring);
*pring = NULL;
return err;
}
void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring **pring)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_ring *ring = *pring;
en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn);
if (ring->bf_alloced)
mlx4_bf_free(mdev->dev, &ring->bf);
mlx4_qp_remove(mdev->dev, &ring->sp_qp);
mlx4_qp_free(mdev->dev, &ring->sp_qp);
mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1);
mlx4_free_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size);
kfree(ring->bounce_buf);
ring->bounce_buf = NULL;
kvfree(ring->tx_info);
ring->tx_info = NULL;
kfree(ring);
*pring = NULL;
}
int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int cq, int user_prio)
{
struct mlx4_en_dev *mdev = priv->mdev;
int err;
ring->sp_cqn = cq;
ring->prod = 0;
ring->cons = 0xffffffff;
ring->last_nr_txbb = 1;
memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info));
memset(ring->buf, 0, ring->buf_size);
ring->free_tx_desc = mlx4_en_free_tx_desc;
ring->sp_qp_state = MLX4_QP_STATE_RST;
ring->doorbell_qpn = cpu_to_be32(ring->sp_qp.qpn << 8);
ring->mr_key = cpu_to_be32(mdev->mr.key);
mlx4_en_fill_qp_context(priv, ring->size, ring->sp_stride, 1, 0, ring->qpn,
ring->sp_cqn, user_prio, &ring->sp_context);
if (ring->bf_alloced)
ring->sp_context.usr_page =
cpu_to_be32(mlx4_to_hw_uar_index(mdev->dev,
ring->bf.uar->index));
err = mlx4_qp_to_ready(mdev->dev, &ring->sp_wqres.mtt, &ring->sp_context,
&ring->sp_qp, &ring->sp_qp_state);
if (!cpumask_empty(&ring->sp_affinity_mask))
netif_set_xps_queue(priv->dev, &ring->sp_affinity_mask,
ring->queue_index);
return err;
}
void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
mlx4_qp_modify(mdev->dev, NULL, ring->sp_qp_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &ring->sp_qp);
}
static inline bool mlx4_en_is_tx_ring_full(struct mlx4_en_tx_ring *ring)
{
return ring->prod - ring->cons > ring->full_size;
}
static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring, int index,
u8 owner)
{
__be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT));
struct mlx4_en_tx_desc *tx_desc = ring->buf + (index << LOG_TXBB_SIZE);
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
void *end = ring->buf + ring->buf_size;
__be32 *ptr = (__be32 *)tx_desc;
int i;
/* Optimize the common case when there are no wraparounds */
if (likely((void *)tx_desc +
(tx_info->nr_txbb << LOG_TXBB_SIZE) <= end)) {
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb << LOG_TXBB_SIZE;
i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
}
} else {
/* Stamp the freed descriptor */
for (i = 0; i < tx_info->nr_txbb << LOG_TXBB_SIZE;
i += STAMP_STRIDE) {
*ptr = stamp;
ptr += STAMP_DWORDS;
if ((void *)ptr >= end) {
ptr = ring->buf;
stamp ^= cpu_to_be32(0x80000000);
}
}
}
}
INDIRECT_CALLABLE_DECLARE(u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u64 timestamp,
int napi_mode));
u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u64 timestamp,
int napi_mode)
{
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_tx_desc *tx_desc = ring->buf + (index << LOG_TXBB_SIZE);
struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset;
void *end = ring->buf + ring->buf_size;
struct sk_buff *skb = tx_info->skb;
int nr_maps = tx_info->nr_maps;
int i;
/* We do not touch skb here, so prefetch skb->users location
* to speedup consume_skb()
*/
prefetchw(&skb->users);
if (unlikely(timestamp)) {
struct skb_shared_hwtstamps hwts;
mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp);
skb_tstamp_tx(skb, &hwts);
}
if (!tx_info->inl) {
if (tx_info->linear)
dma_unmap_single(priv->ddev,
tx_info->map0_dma,
tx_info->map0_byte_count,
PCI_DMA_TODEVICE);
else
dma_unmap_page(priv->ddev,
tx_info->map0_dma,
tx_info->map0_byte_count,
PCI_DMA_TODEVICE);
/* Optimize the common case when there are no wraparounds */
if (likely((void *)tx_desc +
(tx_info->nr_txbb << LOG_TXBB_SIZE) <= end)) {
for (i = 1; i < nr_maps; i++) {
data++;
dma_unmap_page(priv->ddev,
(dma_addr_t)be64_to_cpu(data->addr),
be32_to_cpu(data->byte_count),
PCI_DMA_TODEVICE);
}
} else {
if ((void *)data >= end)
data = ring->buf + ((void *)data - end);
for (i = 1; i < nr_maps; i++) {
data++;
/* Check for wraparound before unmapping */
if ((void *) data >= end)
data = ring->buf;
dma_unmap_page(priv->ddev,
(dma_addr_t)be64_to_cpu(data->addr),
be32_to_cpu(data->byte_count),
PCI_DMA_TODEVICE);
}
}
}
napi_consume_skb(skb, napi_mode);
return tx_info->nr_txbb;
}
INDIRECT_CALLABLE_DECLARE(u32 mlx4_en_recycle_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u64 timestamp,
int napi_mode));
u32 mlx4_en_recycle_tx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
int index, u64 timestamp,
int napi_mode)
{
struct mlx4_en_tx_info *tx_info = &ring->tx_info[index];
struct mlx4_en_rx_alloc frame = {
.page = tx_info->page,
.dma = tx_info->map0_dma,
};
if (!napi_mode || !mlx4_en_rx_recycle(ring->recycle_ring, &frame)) {
dma_unmap_page(priv->ddev, tx_info->map0_dma,
PAGE_SIZE, priv->dma_dir);
put_page(tx_info->page);
}
return tx_info->nr_txbb;
}
int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int cnt = 0;
/* Skip last polled descriptor */
ring->cons += ring->last_nr_txbb;
en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n",
ring->cons, ring->prod);
if ((u32) (ring->prod - ring->cons) > ring->size) {
if (netif_msg_tx_err(priv))
en_warn(priv, "Tx consumer passed producer!\n");
return 0;
}
while (ring->cons != ring->prod) {
ring->last_nr_txbb = ring->free_tx_desc(priv, ring,
ring->cons & ring->size_mask,
0, 0 /* Non-NAPI caller */);
ring->cons += ring->last_nr_txbb;
cnt++;
}
if (ring->tx_queue)
netdev_tx_reset_queue(ring->tx_queue);
if (cnt)
en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt);
return cnt;
}
static void mlx4_en_handle_err_cqe(struct mlx4_en_priv *priv, struct mlx4_err_cqe *err_cqe,
u16 cqe_index, struct mlx4_en_tx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_tx_info *tx_info;
struct mlx4_en_tx_desc *tx_desc;
u16 wqe_index;
int desc_size;
en_err(priv, "CQE error - cqn 0x%x, ci 0x%x, vendor syndrome: 0x%x syndrome: 0x%x\n",
ring->sp_cqn, cqe_index, err_cqe->vendor_err_syndrome, err_cqe->syndrome);
print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, err_cqe, sizeof(*err_cqe),
false);
wqe_index = be16_to_cpu(err_cqe->wqe_index) & ring->size_mask;
tx_info = &ring->tx_info[wqe_index];
desc_size = tx_info->nr_txbb << LOG_TXBB_SIZE;
en_err(priv, "Related WQE - qpn 0x%x, wqe index 0x%x, wqe size 0x%x\n", ring->qpn,
wqe_index, desc_size);
tx_desc = ring->buf + (wqe_index << LOG_TXBB_SIZE);
print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, tx_desc, desc_size, false);
if (test_and_set_bit(MLX4_EN_STATE_FLAG_RESTARTING, &priv->state))
return;
en_err(priv, "Scheduling port restart\n");
queue_work(mdev->workqueue, &priv->restart_task);
}
bool mlx4_en_process_tx_cq(struct net_device *dev,
struct mlx4_en_cq *cq, int napi_budget)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cq *mcq = &cq->mcq;
struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->type][cq->ring];
struct mlx4_cqe *cqe;
u16 index, ring_index, stamp_index;
u32 txbbs_skipped = 0;
u32 txbbs_stamp = 0;
u32 cons_index = mcq->cons_index;
int size = cq->size;
u32 size_mask = ring->size_mask;
struct mlx4_cqe *buf = cq->buf;
u32 packets = 0;
u32 bytes = 0;
int factor = priv->cqe_factor;
int done = 0;
int budget = priv->tx_work_limit;
u32 last_nr_txbb;
u32 ring_cons;
if (unlikely(!priv->port_up))
return true;
netdev_txq_bql_complete_prefetchw(ring->tx_queue);
index = cons_index & size_mask;
cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
last_nr_txbb = READ_ONCE(ring->last_nr_txbb);
ring_cons = READ_ONCE(ring->cons);
ring_index = ring_cons & size_mask;
stamp_index = ring_index;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cons_index & size) && (done < budget)) {
u16 new_index;
/*
* make sure we read the CQE after we read the
* ownership bit
*/
dma_rmb();
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR))
if (!test_and_set_bit(MLX4_EN_TX_RING_STATE_RECOVERING, &ring->state))
mlx4_en_handle_err_cqe(priv, (struct mlx4_err_cqe *)cqe, index,
ring);
/* Skip over last polled CQE */
new_index = be16_to_cpu(cqe->wqe_index) & size_mask;
do {
u64 timestamp = 0;
txbbs_skipped += last_nr_txbb;
ring_index = (ring_index + last_nr_txbb) & size_mask;
if (unlikely(ring->tx_info[ring_index].ts_requested))
timestamp = mlx4_en_get_cqe_ts(cqe);
/* free next descriptor */
last_nr_txbb = INDIRECT_CALL_2(ring->free_tx_desc,
mlx4_en_free_tx_desc,
mlx4_en_recycle_tx_desc,
priv, ring, ring_index,
timestamp, napi_budget);
mlx4_en_stamp_wqe(priv, ring, stamp_index,
!!((ring_cons + txbbs_stamp) &
ring->size));
stamp_index = ring_index;
txbbs_stamp = txbbs_skipped;
packets++;
bytes += ring->tx_info[ring_index].nr_bytes;
} while ((++done < budget) && (ring_index != new_index));
++cons_index;
index = cons_index & size_mask;
cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor;
}
/*
* To prevent CQ overflow we first update CQ consumer and only then
* the ring consumer.
*/
mcq->cons_index = cons_index;
mlx4_cq_set_ci(mcq);
wmb();
/* we want to dirty this cache line once */
WRITE_ONCE(ring->last_nr_txbb, last_nr_txbb);
WRITE_ONCE(ring->cons, ring_cons + txbbs_skipped);
if (cq->type == TX_XDP)
return done < budget;
netdev_tx_completed_queue(ring->tx_queue, packets, bytes);
/* Wakeup Tx queue if this stopped, and ring is not full.
*/
if (netif_tx_queue_stopped(ring->tx_queue) &&
!mlx4_en_is_tx_ring_full(ring)) {
netif_tx_wake_queue(ring->tx_queue);
ring->wake_queue++;
}
return done < budget;
}
void mlx4_en_tx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
if (likely(priv->port_up))
napi_schedule_irqoff(&cq->napi);
else
mlx4_en_arm_cq(priv, cq);
}
/* TX CQ polling - called by NAPI */
int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget)
{
struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
struct net_device *dev = cq->dev;
struct mlx4_en_priv *priv = netdev_priv(dev);
bool clean_complete;
clean_complete = mlx4_en_process_tx_cq(dev, cq, budget);
if (!clean_complete)
return budget;
napi_complete(napi);
mlx4_en_arm_cq(priv, cq);
return 0;
}
static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring,
u32 index,
unsigned int desc_size)
{
u32 copy = (ring->size - index) << LOG_TXBB_SIZE;
int i;
for (i = desc_size - copy - 4; i >= 0; i -= 4) {
if ((i & (TXBB_SIZE - 1)) == 0)
wmb();
*((u32 *) (ring->buf + i)) =
*((u32 *) (ring->bounce_buf + copy + i));
}
for (i = copy - 4; i >= 4 ; i -= 4) {
if ((i & (TXBB_SIZE - 1)) == 0)
wmb();
*((u32 *)(ring->buf + (index << LOG_TXBB_SIZE) + i)) =
*((u32 *) (ring->bounce_buf + i));
}
/* Return real descriptor location */
return ring->buf + (index << LOG_TXBB_SIZE);
}
/* Decide if skb can be inlined in tx descriptor to avoid dma mapping
*
* It seems strange we do not simply use skb_copy_bits().
* This would allow to inline all skbs iff skb->len <= inline_thold
*
* Note that caller already checked skb was not a gso packet
*/
static bool is_inline(int inline_thold, const struct sk_buff *skb,
const struct skb_shared_info *shinfo,
void **pfrag)
{
void *ptr;
if (skb->len > inline_thold || !inline_thold)
return false;
if (shinfo->nr_frags == 1) {
ptr = skb_frag_address_safe(&shinfo->frags[0]);
if (unlikely(!ptr))
return false;
*pfrag = ptr;
return true;
}
if (shinfo->nr_frags)
return false;
return true;
}
static int inline_size(const struct sk_buff *skb)
{
if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg)
<= MLX4_INLINE_ALIGN)
return ALIGN(skb->len + CTRL_SIZE +
sizeof(struct mlx4_wqe_inline_seg), 16);
else
return ALIGN(skb->len + CTRL_SIZE + 2 *
sizeof(struct mlx4_wqe_inline_seg), 16);
}
static int get_real_size(const struct sk_buff *skb,
const struct skb_shared_info *shinfo,
struct net_device *dev,
int *lso_header_size,
bool *inline_ok,
void **pfrag)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int real_size;
if (shinfo->gso_size) {
*inline_ok = false;
if (skb->encapsulation)
*lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb);
else
*lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb);
real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE +
ALIGN(*lso_header_size + 4, DS_SIZE);
if (unlikely(*lso_header_size != skb_headlen(skb))) {
/* We add a segment for the skb linear buffer only if
* it contains data */
if (*lso_header_size < skb_headlen(skb))
real_size += DS_SIZE;
else {
if (netif_msg_tx_err(priv))
en_warn(priv, "Non-linear headers\n");
return 0;
}
}
} else {
*lso_header_size = 0;
*inline_ok = is_inline(priv->prof->inline_thold, skb,
shinfo, pfrag);
if (*inline_ok)
real_size = inline_size(skb);
else
real_size = CTRL_SIZE +
(shinfo->nr_frags + 1) * DS_SIZE;
}
return real_size;
}
static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc,
const struct sk_buff *skb,
const struct skb_shared_info *shinfo,
void *fragptr)
{
struct mlx4_wqe_inline_seg *inl = &tx_desc->inl;
int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof(*inl);
unsigned int hlen = skb_headlen(skb);
if (skb->len <= spc) {
if (likely(skb->len >= MIN_PKT_LEN)) {
inl->byte_count = cpu_to_be32(1 << 31 | skb->len);
} else {
inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN);
memset(((void *)(inl + 1)) + skb->len, 0,
MIN_PKT_LEN - skb->len);
}
skb_copy_from_linear_data(skb, inl + 1, hlen);
if (shinfo->nr_frags)
memcpy(((void *)(inl + 1)) + hlen, fragptr,
skb_frag_size(&shinfo->frags[0]));
} else {
inl->byte_count = cpu_to_be32(1 << 31 | spc);
if (hlen <= spc) {
skb_copy_from_linear_data(skb, inl + 1, hlen);
if (hlen < spc) {
memcpy(((void *)(inl + 1)) + hlen,
fragptr, spc - hlen);
fragptr += spc - hlen;
}
inl = (void *) (inl + 1) + spc;
memcpy(((void *)(inl + 1)), fragptr, skb->len - spc);
} else {
skb_copy_from_linear_data(skb, inl + 1, spc);
inl = (void *) (inl + 1) + spc;
skb_copy_from_linear_data_offset(skb, spc, inl + 1,
hlen - spc);
if (shinfo->nr_frags)
memcpy(((void *)(inl + 1)) + hlen - spc,
fragptr,
skb_frag_size(&shinfo->frags[0]));
}
dma_wmb();
inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc));
}
}
u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
u16 rings_p_up = priv->num_tx_rings_p_up;
if (netdev_get_num_tc(dev))
return netdev_pick_tx(dev, skb, NULL);
return netdev_pick_tx(dev, skb, NULL) % rings_p_up;
}
static void mlx4_bf_copy(void __iomem *dst, const void *src,
unsigned int bytecnt)
{
__iowrite64_copy(dst, src, bytecnt / 8);
}
void mlx4_en_xmit_doorbell(struct mlx4_en_tx_ring *ring)
{
wmb();
/* Since there is no iowrite*_native() that writes the
* value as is, without byteswapping - using the one
* the doesn't do byteswapping in the relevant arch
* endianness.
*/
#if defined(__LITTLE_ENDIAN)
iowrite32(
#else
iowrite32be(
#endif
(__force u32)ring->doorbell_qpn,
ring->bf.uar->map + MLX4_SEND_DOORBELL);
}
static void mlx4_en_tx_write_desc(struct mlx4_en_tx_ring *ring,
struct mlx4_en_tx_desc *tx_desc,
union mlx4_wqe_qpn_vlan qpn_vlan,
int desc_size, int bf_index,
__be32 op_own, bool bf_ok,
bool send_doorbell)
{
tx_desc->ctrl.qpn_vlan = qpn_vlan;
if (bf_ok) {
op_own |= htonl((bf_index & 0xffff) << 8);
/* Ensure new descriptor hits memory
* before setting ownership of this descriptor to HW
*/
dma_wmb();
tx_desc->ctrl.owner_opcode = op_own;
wmb();
mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl,
desc_size);
wmb();
ring->bf.offset ^= ring->bf.buf_size;
} else {
/* Ensure new descriptor hits memory
* before setting ownership of this descriptor to HW
*/
dma_wmb();
tx_desc->ctrl.owner_opcode = op_own;
if (send_doorbell)
mlx4_en_xmit_doorbell(ring);
else
ring->xmit_more++;
}
}
static bool mlx4_en_build_dma_wqe(struct mlx4_en_priv *priv,
struct skb_shared_info *shinfo,
struct mlx4_wqe_data_seg *data,
struct sk_buff *skb,
int lso_header_size,
__be32 mr_key,
struct mlx4_en_tx_info *tx_info)
{
struct device *ddev = priv->ddev;
dma_addr_t dma = 0;
u32 byte_count = 0;
int i_frag;
/* Map fragments if any */
for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) {
const skb_frag_t *frag = &shinfo->frags[i_frag];
byte_count = skb_frag_size(frag);
dma = skb_frag_dma_map(ddev, frag,
0, byte_count,
DMA_TO_DEVICE);
if (dma_mapping_error(ddev, dma))
goto tx_drop_unmap;
data->addr = cpu_to_be64(dma);
data->lkey = mr_key;
dma_wmb();
data->byte_count = cpu_to_be32(byte_count);
--data;
}
/* Map linear part if needed */
if (tx_info->linear) {
byte_count = skb_headlen(skb) - lso_header_size;
dma = dma_map_single(ddev, skb->data +
lso_header_size, byte_count,
PCI_DMA_TODEVICE);
if (dma_mapping_error(ddev, dma))
goto tx_drop_unmap;
data->addr = cpu_to_be64(dma);
data->lkey = mr_key;
dma_wmb();
data->byte_count = cpu_to_be32(byte_count);
}
/* tx completion can avoid cache line miss for common cases */
tx_info->map0_dma = dma;
tx_info->map0_byte_count = byte_count;
return true;
tx_drop_unmap:
en_err(priv, "DMA mapping error\n");
while (++i_frag < shinfo->nr_frags) {
++data;
dma_unmap_page(ddev, (dma_addr_t)be64_to_cpu(data->addr),
be32_to_cpu(data->byte_count),
PCI_DMA_TODEVICE);
}
return false;
}
netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
struct mlx4_en_priv *priv = netdev_priv(dev);
union mlx4_wqe_qpn_vlan qpn_vlan = {};
struct mlx4_en_tx_ring *ring;
struct mlx4_en_tx_desc *tx_desc;
struct mlx4_wqe_data_seg *data;
struct mlx4_en_tx_info *tx_info;
int tx_ind;
int nr_txbb;
int desc_size;
int real_size;
u32 index, bf_index;
__be32 op_own;
int lso_header_size;
void *fragptr = NULL;
bool bounce = false;
bool send_doorbell;
bool stop_queue;
bool inline_ok;
u8 data_offset;
u32 ring_cons;
bool bf_ok;
tx_ind = skb_get_queue_mapping(skb);
ring = priv->tx_ring[TX][tx_ind];
if (unlikely(!priv->port_up))
goto tx_drop;
/* fetch ring->cons far ahead before needing it to avoid stall */
ring_cons = READ_ONCE(ring->cons);
real_size = get_real_size(skb, shinfo, dev, &lso_header_size,
&inline_ok, &fragptr);
if (unlikely(!real_size))
goto tx_drop_count;
/* Align descriptor to TXBB size */
desc_size = ALIGN(real_size, TXBB_SIZE);
nr_txbb = desc_size >> LOG_TXBB_SIZE;
if (unlikely(nr_txbb > MAX_DESC_TXBBS)) {
if (netif_msg_tx_err(priv))
en_warn(priv, "Oversized header or SG list\n");
goto tx_drop_count;
}
bf_ok = ring->bf_enabled;
if (skb_vlan_tag_present(skb)) {
u16 vlan_proto;
qpn_vlan.vlan_tag = cpu_to_be16(skb_vlan_tag_get(skb));
vlan_proto = be16_to_cpu(skb->vlan_proto);
if (vlan_proto == ETH_P_8021AD)
qpn_vlan.ins_vlan = MLX4_WQE_CTRL_INS_SVLAN;
else if (vlan_proto == ETH_P_8021Q)
qpn_vlan.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN;
else
qpn_vlan.ins_vlan = 0;
bf_ok = false;
}
netdev_txq_bql_enqueue_prefetchw(ring->tx_queue);
/* Track current inflight packets for performance analysis */
AVG_PERF_COUNTER(priv->pstats.inflight_avg,
(u32)(ring->prod - ring_cons - 1));
/* Packet is good - grab an index and transmit it */
index = ring->prod & ring->size_mask;
bf_index = ring->prod;
/* See if we have enough space for whole descriptor TXBB for setting
* SW ownership on next descriptor; if not, use a bounce buffer. */
if (likely(index + nr_txbb <= ring->size))
tx_desc = ring->buf + (index << LOG_TXBB_SIZE);
else {
tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf;
bounce = true;
bf_ok = false;
}
/* Save skb in tx_info ring */
tx_info = &ring->tx_info[index];
tx_info->skb = skb;
tx_info->nr_txbb = nr_txbb;
if (!lso_header_size) {
data = &tx_desc->data;
data_offset = offsetof(struct mlx4_en_tx_desc, data);
} else {
int lso_align = ALIGN(lso_header_size + 4, DS_SIZE);
data = (void *)&tx_desc->lso + lso_align;
data_offset = offsetof(struct mlx4_en_tx_desc, lso) + lso_align;
}
/* valid only for none inline segments */
tx_info->data_offset = data_offset;
tx_info->inl = inline_ok;
tx_info->linear = lso_header_size < skb_headlen(skb) && !inline_ok;
tx_info->nr_maps = shinfo->nr_frags + tx_info->linear;
data += tx_info->nr_maps - 1;
if (!tx_info->inl)
if (!mlx4_en_build_dma_wqe(priv, shinfo, data, skb,
lso_header_size, ring->mr_key,
tx_info))
goto tx_drop_count;
/*
* For timestamping add flag to skb_shinfo and
* set flag for further reference
*/
tx_info->ts_requested = 0;
if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON &&
shinfo->tx_flags & SKBTX_HW_TSTAMP)) {
shinfo->tx_flags |= SKBTX_IN_PROGRESS;
tx_info->ts_requested = 1;
}
/* Prepare ctrl segement apart opcode+ownership, which depends on
* whether LSO is used */
tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
if (!skb->encapsulation)
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM);
else
tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM);
ring->tx_csum++;
}
if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) {
struct ethhdr *ethh;
/* Copy dst mac address to wqe. This allows loopback in eSwitch,
* so that VFs and PF can communicate with each other
*/
ethh = (struct ethhdr *)skb->data;
tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest);
tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2));
}
/* Handle LSO (TSO) packets */
if (lso_header_size) {
int i;
/* Mark opcode as LSO */
op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) |
((ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
/* Fill in the LSO prefix */
tx_desc->lso.mss_hdr_size = cpu_to_be32(
shinfo->gso_size << 16 | lso_header_size);
/* Copy headers;
* note that we already verified that it is linear */
memcpy(tx_desc->lso.header, skb->data, lso_header_size);
ring->tso_packets++;
i = shinfo->gso_segs;
tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size;
ring->packets += i;
} else {
/* Normal (Non LSO) packet */
op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
((ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN);
ring->packets++;
}
ring->bytes += tx_info->nr_bytes;
AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len);
if (tx_info->inl)
build_inline_wqe(tx_desc, skb, shinfo, fragptr);
if (skb->encapsulation) {
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} ip;
u8 proto;
ip.hdr = skb_inner_network_header(skb);
proto = (ip.v4->version == 4) ? ip.v4->protocol :
ip.v6->nexthdr;
if (proto == IPPROTO_TCP || proto == IPPROTO_UDP)
op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP);
else
op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP);
}
ring->prod += nr_txbb;
/* If we used a bounce buffer then copy descriptor back into place */
if (unlikely(bounce))
tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size);
skb_tx_timestamp(skb);
/* Check available TXBBs And 2K spare for prefetch */
stop_queue = mlx4_en_is_tx_ring_full(ring);
if (unlikely(stop_queue)) {
netif_tx_stop_queue(ring->tx_queue);
ring->queue_stopped++;
}
send_doorbell = __netdev_tx_sent_queue(ring->tx_queue,
tx_info->nr_bytes,
netdev_xmit_more());
real_size = (real_size / 16) & 0x3f;
bf_ok &= desc_size <= MAX_BF && send_doorbell;
if (bf_ok)
qpn_vlan.bf_qpn = ring->doorbell_qpn | cpu_to_be32(real_size);
else
qpn_vlan.fence_size = real_size;
mlx4_en_tx_write_desc(ring, tx_desc, qpn_vlan, desc_size, bf_index,
op_own, bf_ok, send_doorbell);
if (unlikely(stop_queue)) {
/* If queue was emptied after the if (stop_queue) , and before
* the netif_tx_stop_queue() - need to wake the queue,
* or else it will remain stopped forever.
* Need a memory barrier to make sure ring->cons was not
* updated before queue was stopped.
*/
smp_rmb();
ring_cons = READ_ONCE(ring->cons);
if (unlikely(!mlx4_en_is_tx_ring_full(ring))) {
netif_tx_wake_queue(ring->tx_queue);
ring->wake_queue++;
}
}
return NETDEV_TX_OK;
tx_drop_count:
ring->tx_dropped++;
tx_drop:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
#define MLX4_EN_XDP_TX_NRTXBB 1
#define MLX4_EN_XDP_TX_REAL_SZ (((CTRL_SIZE + MLX4_EN_XDP_TX_NRTXBB * DS_SIZE) \
/ 16) & 0x3f)
void mlx4_en_init_tx_xdp_ring_descs(struct mlx4_en_priv *priv,
struct mlx4_en_tx_ring *ring)
{
int i;
for (i = 0; i < ring->size; i++) {
struct mlx4_en_tx_info *tx_info = &ring->tx_info[i];
struct mlx4_en_tx_desc *tx_desc = ring->buf +
(i << LOG_TXBB_SIZE);
tx_info->map0_byte_count = PAGE_SIZE;
tx_info->nr_txbb = MLX4_EN_XDP_TX_NRTXBB;
tx_info->data_offset = offsetof(struct mlx4_en_tx_desc, data);
tx_info->ts_requested = 0;
tx_info->nr_maps = 1;
tx_info->linear = 1;
tx_info->inl = 0;
tx_desc->data.lkey = ring->mr_key;
tx_desc->ctrl.qpn_vlan.fence_size = MLX4_EN_XDP_TX_REAL_SZ;
tx_desc->ctrl.srcrb_flags = priv->ctrl_flags;
}
}
netdev_tx_t mlx4_en_xmit_frame(struct mlx4_en_rx_ring *rx_ring,
struct mlx4_en_rx_alloc *frame,
struct mlx4_en_priv *priv, unsigned int length,
int tx_ind, bool *doorbell_pending)
{
struct mlx4_en_tx_desc *tx_desc;
struct mlx4_en_tx_info *tx_info;
struct mlx4_wqe_data_seg *data;
struct mlx4_en_tx_ring *ring;
dma_addr_t dma;
__be32 op_own;
int index;
if (unlikely(!priv->port_up))
goto tx_drop;
ring = priv->tx_ring[TX_XDP][tx_ind];
if (unlikely(mlx4_en_is_tx_ring_full(ring)))
goto tx_drop_count;
index = ring->prod & ring->size_mask;
tx_info = &ring->tx_info[index];
/* Track current inflight packets for performance analysis */
AVG_PERF_COUNTER(priv->pstats.inflight_avg,
(u32)(ring->prod - READ_ONCE(ring->cons) - 1));
tx_desc = ring->buf + (index << LOG_TXBB_SIZE);
data = &tx_desc->data;
dma = frame->dma;
tx_info->page = frame->page;
frame->page = NULL;
tx_info->map0_dma = dma;
tx_info->nr_bytes = max_t(unsigned int, length, ETH_ZLEN);
dma_sync_single_range_for_device(priv->ddev, dma, frame->page_offset,
length, PCI_DMA_TODEVICE);
data->addr = cpu_to_be64(dma + frame->page_offset);
dma_wmb();
data->byte_count = cpu_to_be32(length);
/* tx completion can avoid cache line miss for common cases */
op_own = cpu_to_be32(MLX4_OPCODE_SEND) |
((ring->prod & ring->size) ?
cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0);
rx_ring->xdp_tx++;
AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, length);
ring->prod += MLX4_EN_XDP_TX_NRTXBB;
/* Ensure new descriptor hits memory
* before setting ownership of this descriptor to HW
*/
dma_wmb();
tx_desc->ctrl.owner_opcode = op_own;
ring->xmit_more++;
*doorbell_pending = true;
return NETDEV_TX_OK;
tx_drop_count:
rx_ring->xdp_tx_full++;
*doorbell_pending = true;
tx_drop:
return NETDEV_TX_BUSY;
}