linux-brain/kernel/livepatch/patch.c
Petr Mladek d697bad588 livepatch: Remove Nop structures when unused
Replaced patches are removed from the stack when the transition is
finished. It means that Nop structures will never be needed again
and can be removed. Why should we care?

  + Nop structures give the impression that the function is patched
    even though the ftrace handler has no effect.

  + Ftrace handlers do not come for free. They cause slowdown that might
    be visible in some workloads. The ftrace-related slowdown might
    actually be the reason why the function is no longer patched in
    the new cumulative patch. One would expect that cumulative patch
    would help solve these problems as well.

  + Cumulative patches are supposed to replace any earlier version of
    the patch. The amount of NOPs depends on which version was replaced.
    This multiplies the amount of scenarios that might happen.

    One might say that NOPs are innocent. But there are even optimized
    NOP instructions for different processors, for example, see
    arch/x86/kernel/alternative.c. And klp_ftrace_handler() is much
    more complicated.

  + It sounds natural to clean up a mess that is no longer needed.
    It could only be worse if we do not do it.

This patch allows to unpatch and free the dynamic structures independently
when the transition finishes.

The free part is a bit tricky because kobject free callbacks are called
asynchronously. We could not wait for them easily. Fortunately, we do
not have to. Any further access can be avoided by removing them from
the dynamic lists.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00

309 lines
7.0 KiB
C

/*
* patch.c - livepatch patching functions
*
* Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
* Copyright (C) 2014 SUSE
* Copyright (C) 2015 Josh Poimboeuf <jpoimboe@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/livepatch.h>
#include <linux/list.h>
#include <linux/ftrace.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <linux/bug.h>
#include <linux/printk.h>
#include "core.h"
#include "patch.h"
#include "transition.h"
static LIST_HEAD(klp_ops);
struct klp_ops *klp_find_ops(void *old_func)
{
struct klp_ops *ops;
struct klp_func *func;
list_for_each_entry(ops, &klp_ops, node) {
func = list_first_entry(&ops->func_stack, struct klp_func,
stack_node);
if (func->old_func == old_func)
return ops;
}
return NULL;
}
static void notrace klp_ftrace_handler(unsigned long ip,
unsigned long parent_ip,
struct ftrace_ops *fops,
struct pt_regs *regs)
{
struct klp_ops *ops;
struct klp_func *func;
int patch_state;
ops = container_of(fops, struct klp_ops, fops);
/*
* A variant of synchronize_rcu() is used to allow patching functions
* where RCU is not watching, see klp_synchronize_transition().
*/
preempt_disable_notrace();
func = list_first_or_null_rcu(&ops->func_stack, struct klp_func,
stack_node);
/*
* func should never be NULL because preemption should be disabled here
* and unregister_ftrace_function() does the equivalent of a
* synchronize_rcu() before the func_stack removal.
*/
if (WARN_ON_ONCE(!func))
goto unlock;
/*
* In the enable path, enforce the order of the ops->func_stack and
* func->transition reads. The corresponding write barrier is in
* __klp_enable_patch().
*
* (Note that this barrier technically isn't needed in the disable
* path. In the rare case where klp_update_patch_state() runs before
* this handler, its TIF_PATCH_PENDING read and this func->transition
* read need to be ordered. But klp_update_patch_state() already
* enforces that.)
*/
smp_rmb();
if (unlikely(func->transition)) {
/*
* Enforce the order of the func->transition and
* current->patch_state reads. Otherwise we could read an
* out-of-date task state and pick the wrong function. The
* corresponding write barrier is in klp_init_transition().
*/
smp_rmb();
patch_state = current->patch_state;
WARN_ON_ONCE(patch_state == KLP_UNDEFINED);
if (patch_state == KLP_UNPATCHED) {
/*
* Use the previously patched version of the function.
* If no previous patches exist, continue with the
* original function.
*/
func = list_entry_rcu(func->stack_node.next,
struct klp_func, stack_node);
if (&func->stack_node == &ops->func_stack)
goto unlock;
}
}
/*
* NOPs are used to replace existing patches with original code.
* Do nothing! Setting pc would cause an infinite loop.
*/
if (func->nop)
goto unlock;
klp_arch_set_pc(regs, (unsigned long)func->new_func);
unlock:
preempt_enable_notrace();
}
/*
* Convert a function address into the appropriate ftrace location.
*
* Usually this is just the address of the function, but on some architectures
* it's more complicated so allow them to provide a custom behaviour.
*/
#ifndef klp_get_ftrace_location
static unsigned long klp_get_ftrace_location(unsigned long faddr)
{
return faddr;
}
#endif
static void klp_unpatch_func(struct klp_func *func)
{
struct klp_ops *ops;
if (WARN_ON(!func->patched))
return;
if (WARN_ON(!func->old_func))
return;
ops = klp_find_ops(func->old_func);
if (WARN_ON(!ops))
return;
if (list_is_singular(&ops->func_stack)) {
unsigned long ftrace_loc;
ftrace_loc =
klp_get_ftrace_location((unsigned long)func->old_func);
if (WARN_ON(!ftrace_loc))
return;
WARN_ON(unregister_ftrace_function(&ops->fops));
WARN_ON(ftrace_set_filter_ip(&ops->fops, ftrace_loc, 1, 0));
list_del_rcu(&func->stack_node);
list_del(&ops->node);
kfree(ops);
} else {
list_del_rcu(&func->stack_node);
}
func->patched = false;
}
static int klp_patch_func(struct klp_func *func)
{
struct klp_ops *ops;
int ret;
if (WARN_ON(!func->old_func))
return -EINVAL;
if (WARN_ON(func->patched))
return -EINVAL;
ops = klp_find_ops(func->old_func);
if (!ops) {
unsigned long ftrace_loc;
ftrace_loc =
klp_get_ftrace_location((unsigned long)func->old_func);
if (!ftrace_loc) {
pr_err("failed to find location for function '%s'\n",
func->old_name);
return -EINVAL;
}
ops = kzalloc(sizeof(*ops), GFP_KERNEL);
if (!ops)
return -ENOMEM;
ops->fops.func = klp_ftrace_handler;
ops->fops.flags = FTRACE_OPS_FL_SAVE_REGS |
FTRACE_OPS_FL_DYNAMIC |
FTRACE_OPS_FL_IPMODIFY;
list_add(&ops->node, &klp_ops);
INIT_LIST_HEAD(&ops->func_stack);
list_add_rcu(&func->stack_node, &ops->func_stack);
ret = ftrace_set_filter_ip(&ops->fops, ftrace_loc, 0, 0);
if (ret) {
pr_err("failed to set ftrace filter for function '%s' (%d)\n",
func->old_name, ret);
goto err;
}
ret = register_ftrace_function(&ops->fops);
if (ret) {
pr_err("failed to register ftrace handler for function '%s' (%d)\n",
func->old_name, ret);
ftrace_set_filter_ip(&ops->fops, ftrace_loc, 1, 0);
goto err;
}
} else {
list_add_rcu(&func->stack_node, &ops->func_stack);
}
func->patched = true;
return 0;
err:
list_del_rcu(&func->stack_node);
list_del(&ops->node);
kfree(ops);
return ret;
}
static void __klp_unpatch_object(struct klp_object *obj, bool nops_only)
{
struct klp_func *func;
klp_for_each_func(obj, func) {
if (nops_only && !func->nop)
continue;
if (func->patched)
klp_unpatch_func(func);
}
if (obj->dynamic || !nops_only)
obj->patched = false;
}
void klp_unpatch_object(struct klp_object *obj)
{
__klp_unpatch_object(obj, false);
}
int klp_patch_object(struct klp_object *obj)
{
struct klp_func *func;
int ret;
if (WARN_ON(obj->patched))
return -EINVAL;
klp_for_each_func(obj, func) {
ret = klp_patch_func(func);
if (ret) {
klp_unpatch_object(obj);
return ret;
}
}
obj->patched = true;
return 0;
}
static void __klp_unpatch_objects(struct klp_patch *patch, bool nops_only)
{
struct klp_object *obj;
klp_for_each_object(patch, obj)
if (obj->patched)
__klp_unpatch_object(obj, nops_only);
}
void klp_unpatch_objects(struct klp_patch *patch)
{
__klp_unpatch_objects(patch, false);
}
void klp_unpatch_objects_dynamic(struct klp_patch *patch)
{
__klp_unpatch_objects(patch, true);
}