linux-brain/arch/arm/include/asm/hardware/iop3xx-adma.h
Thomas Gleixner a61127c213 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 335
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details you should have received a copy of the gnu general
  public license along with this program if not write to the free
  software foundation inc 51 franklin st fifth floor boston ma 02110
  1301 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 111 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190530000436.567572064@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:37:06 +02:00

920 lines
21 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright © 2006, Intel Corporation.
*/
#ifndef _ADMA_H
#define _ADMA_H
#include <linux/types.h>
#include <linux/io.h>
#include <mach/hardware.h>
#include <asm/hardware/iop_adma.h>
/* Memory copy units */
#define DMA_CCR(chan) (chan->mmr_base + 0x0)
#define DMA_CSR(chan) (chan->mmr_base + 0x4)
#define DMA_DAR(chan) (chan->mmr_base + 0xc)
#define DMA_NDAR(chan) (chan->mmr_base + 0x10)
#define DMA_PADR(chan) (chan->mmr_base + 0x14)
#define DMA_PUADR(chan) (chan->mmr_base + 0x18)
#define DMA_LADR(chan) (chan->mmr_base + 0x1c)
#define DMA_BCR(chan) (chan->mmr_base + 0x20)
#define DMA_DCR(chan) (chan->mmr_base + 0x24)
/* Application accelerator unit */
#define AAU_ACR(chan) (chan->mmr_base + 0x0)
#define AAU_ASR(chan) (chan->mmr_base + 0x4)
#define AAU_ADAR(chan) (chan->mmr_base + 0x8)
#define AAU_ANDAR(chan) (chan->mmr_base + 0xc)
#define AAU_SAR(src, chan) (chan->mmr_base + (0x10 + ((src) << 2)))
#define AAU_DAR(chan) (chan->mmr_base + 0x20)
#define AAU_ABCR(chan) (chan->mmr_base + 0x24)
#define AAU_ADCR(chan) (chan->mmr_base + 0x28)
#define AAU_SAR_EDCR(src_edc) (chan->mmr_base + (0x02c + ((src_edc-4) << 2)))
#define AAU_EDCR0_IDX 8
#define AAU_EDCR1_IDX 17
#define AAU_EDCR2_IDX 26
#define DMA0_ID 0
#define DMA1_ID 1
#define AAU_ID 2
struct iop3xx_aau_desc_ctrl {
unsigned int int_en:1;
unsigned int blk1_cmd_ctrl:3;
unsigned int blk2_cmd_ctrl:3;
unsigned int blk3_cmd_ctrl:3;
unsigned int blk4_cmd_ctrl:3;
unsigned int blk5_cmd_ctrl:3;
unsigned int blk6_cmd_ctrl:3;
unsigned int blk7_cmd_ctrl:3;
unsigned int blk8_cmd_ctrl:3;
unsigned int blk_ctrl:2;
unsigned int dual_xor_en:1;
unsigned int tx_complete:1;
unsigned int zero_result_err:1;
unsigned int zero_result_en:1;
unsigned int dest_write_en:1;
};
struct iop3xx_aau_e_desc_ctrl {
unsigned int reserved:1;
unsigned int blk1_cmd_ctrl:3;
unsigned int blk2_cmd_ctrl:3;
unsigned int blk3_cmd_ctrl:3;
unsigned int blk4_cmd_ctrl:3;
unsigned int blk5_cmd_ctrl:3;
unsigned int blk6_cmd_ctrl:3;
unsigned int blk7_cmd_ctrl:3;
unsigned int blk8_cmd_ctrl:3;
unsigned int reserved2:7;
};
struct iop3xx_dma_desc_ctrl {
unsigned int pci_transaction:4;
unsigned int int_en:1;
unsigned int dac_cycle_en:1;
unsigned int mem_to_mem_en:1;
unsigned int crc_data_tx_en:1;
unsigned int crc_gen_en:1;
unsigned int crc_seed_dis:1;
unsigned int reserved:21;
unsigned int crc_tx_complete:1;
};
struct iop3xx_desc_dma {
u32 next_desc;
union {
u32 pci_src_addr;
u32 pci_dest_addr;
u32 src_addr;
};
union {
u32 upper_pci_src_addr;
u32 upper_pci_dest_addr;
};
union {
u32 local_pci_src_addr;
u32 local_pci_dest_addr;
u32 dest_addr;
};
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_dma_desc_ctrl desc_ctrl_field;
};
u32 crc_addr;
};
struct iop3xx_desc_aau {
u32 next_desc;
u32 src[4];
u32 dest_addr;
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_aau_desc_ctrl desc_ctrl_field;
};
union {
u32 src_addr;
u32 e_desc_ctrl;
struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field;
} src_edc[31];
};
struct iop3xx_aau_gfmr {
unsigned int gfmr1:8;
unsigned int gfmr2:8;
unsigned int gfmr3:8;
unsigned int gfmr4:8;
};
struct iop3xx_desc_pq_xor {
u32 next_desc;
u32 src[3];
union {
u32 data_mult1;
struct iop3xx_aau_gfmr data_mult1_field;
};
u32 dest_addr;
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_aau_desc_ctrl desc_ctrl_field;
};
union {
u32 src_addr;
u32 e_desc_ctrl;
struct iop3xx_aau_e_desc_ctrl e_desc_ctrl_field;
u32 data_multiplier;
struct iop3xx_aau_gfmr data_mult_field;
u32 reserved;
} src_edc_gfmr[19];
};
struct iop3xx_desc_dual_xor {
u32 next_desc;
u32 src0_addr;
u32 src1_addr;
u32 h_src_addr;
u32 d_src_addr;
u32 h_dest_addr;
u32 byte_count;
union {
u32 desc_ctrl;
struct iop3xx_aau_desc_ctrl desc_ctrl_field;
};
u32 d_dest_addr;
};
union iop3xx_desc {
struct iop3xx_desc_aau *aau;
struct iop3xx_desc_dma *dma;
struct iop3xx_desc_pq_xor *pq_xor;
struct iop3xx_desc_dual_xor *dual_xor;
void *ptr;
};
/* No support for p+q operations */
static inline int
iop_chan_pq_slot_count(size_t len, int src_cnt, int *slots_per_op)
{
BUG();
return 0;
}
static inline void
iop_desc_init_pq(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
BUG();
}
static inline void
iop_desc_set_pq_addr(struct iop_adma_desc_slot *desc, dma_addr_t *addr)
{
BUG();
}
static inline void
iop_desc_set_pq_src_addr(struct iop_adma_desc_slot *desc, int src_idx,
dma_addr_t addr, unsigned char coef)
{
BUG();
}
static inline int
iop_chan_pq_zero_sum_slot_count(size_t len, int src_cnt, int *slots_per_op)
{
BUG();
return 0;
}
static inline void
iop_desc_init_pq_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
BUG();
}
static inline void
iop_desc_set_pq_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len)
{
BUG();
}
#define iop_desc_set_pq_zero_sum_src_addr iop_desc_set_pq_src_addr
static inline void
iop_desc_set_pq_zero_sum_addr(struct iop_adma_desc_slot *desc, int pq_idx,
dma_addr_t *src)
{
BUG();
}
static inline int iop_adma_get_max_xor(void)
{
return 32;
}
static inline int iop_adma_get_max_pq(void)
{
BUG();
return 0;
}
static inline u32 iop_chan_get_current_descriptor(struct iop_adma_chan *chan)
{
int id = chan->device->id;
switch (id) {
case DMA0_ID:
case DMA1_ID:
return __raw_readl(DMA_DAR(chan));
case AAU_ID:
return __raw_readl(AAU_ADAR(chan));
default:
BUG();
}
return 0;
}
static inline void iop_chan_set_next_descriptor(struct iop_adma_chan *chan,
u32 next_desc_addr)
{
int id = chan->device->id;
switch (id) {
case DMA0_ID:
case DMA1_ID:
__raw_writel(next_desc_addr, DMA_NDAR(chan));
break;
case AAU_ID:
__raw_writel(next_desc_addr, AAU_ANDAR(chan));
break;
}
}
#define IOP_ADMA_STATUS_BUSY (1 << 10)
#define IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT (1024)
#define IOP_ADMA_XOR_MAX_BYTE_COUNT (16 * 1024 * 1024)
#define IOP_ADMA_MAX_BYTE_COUNT (16 * 1024 * 1024)
static inline int iop_chan_is_busy(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
return (status & IOP_ADMA_STATUS_BUSY) ? 1 : 0;
}
static inline int iop_desc_is_aligned(struct iop_adma_desc_slot *desc,
int num_slots)
{
/* num_slots will only ever be 1, 2, 4, or 8 */
return (desc->idx & (num_slots - 1)) ? 0 : 1;
}
/* to do: support large (i.e. > hw max) buffer sizes */
static inline int iop_chan_memcpy_slot_count(size_t len, int *slots_per_op)
{
*slots_per_op = 1;
return 1;
}
/* to do: support large (i.e. > hw max) buffer sizes */
static inline int iop_chan_memset_slot_count(size_t len, int *slots_per_op)
{
*slots_per_op = 1;
return 1;
}
static inline int iop3xx_aau_xor_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
static const char slot_count_table[] = {
1, 1, 1, 1, /* 01 - 04 */
2, 2, 2, 2, /* 05 - 08 */
4, 4, 4, 4, /* 09 - 12 */
4, 4, 4, 4, /* 13 - 16 */
8, 8, 8, 8, /* 17 - 20 */
8, 8, 8, 8, /* 21 - 24 */
8, 8, 8, 8, /* 25 - 28 */
8, 8, 8, 8, /* 29 - 32 */
};
*slots_per_op = slot_count_table[src_cnt - 1];
return *slots_per_op;
}
static inline int
iop_chan_interrupt_slot_count(int *slots_per_op, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return iop_chan_memcpy_slot_count(0, slots_per_op);
case AAU_ID:
return iop3xx_aau_xor_slot_count(0, 2, slots_per_op);
default:
BUG();
}
return 0;
}
static inline int iop_chan_xor_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op);
if (len <= IOP_ADMA_XOR_MAX_BYTE_COUNT)
return slot_cnt;
len -= IOP_ADMA_XOR_MAX_BYTE_COUNT;
while (len > IOP_ADMA_XOR_MAX_BYTE_COUNT) {
len -= IOP_ADMA_XOR_MAX_BYTE_COUNT;
slot_cnt += *slots_per_op;
}
slot_cnt += *slots_per_op;
return slot_cnt;
}
/* zero sum on iop3xx is limited to 1k at a time so it requires multiple
* descriptors
*/
static inline int iop_chan_zero_sum_slot_count(size_t len, int src_cnt,
int *slots_per_op)
{
int slot_cnt = iop3xx_aau_xor_slot_count(len, src_cnt, slots_per_op);
if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT)
return slot_cnt;
len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
slot_cnt += *slots_per_op;
}
slot_cnt += *slots_per_op;
return slot_cnt;
}
static inline u32 iop_desc_get_byte_count(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return hw_desc.dma->byte_count;
case AAU_ID:
return hw_desc.aau->byte_count;
default:
BUG();
}
return 0;
}
/* translate the src_idx to a descriptor word index */
static inline int __desc_idx(int src_idx)
{
static const int desc_idx_table[] = { 0, 0, 0, 0,
0, 1, 2, 3,
5, 6, 7, 8,
9, 10, 11, 12,
14, 15, 16, 17,
18, 19, 20, 21,
23, 24, 25, 26,
27, 28, 29, 30,
};
return desc_idx_table[src_idx];
}
static inline u32 iop_desc_get_src_addr(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan,
int src_idx)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return hw_desc.dma->src_addr;
case AAU_ID:
break;
default:
BUG();
}
if (src_idx < 4)
return hw_desc.aau->src[src_idx];
else
return hw_desc.aau->src_edc[__desc_idx(src_idx)].src_addr;
}
static inline void iop3xx_aau_desc_set_src_addr(struct iop3xx_desc_aau *hw_desc,
int src_idx, dma_addr_t addr)
{
if (src_idx < 4)
hw_desc->src[src_idx] = addr;
else
hw_desc->src_edc[__desc_idx(src_idx)].src_addr = addr;
}
static inline void
iop_desc_init_memcpy(struct iop_adma_desc_slot *desc, unsigned long flags)
{
struct iop3xx_desc_dma *hw_desc = desc->hw_desc;
union {
u32 value;
struct iop3xx_dma_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
u_desc_ctrl.field.mem_to_mem_en = 1;
u_desc_ctrl.field.pci_transaction = 0xe; /* memory read block */
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
hw_desc->upper_pci_src_addr = 0;
hw_desc->crc_addr = 0;
}
static inline void
iop_desc_init_memset(struct iop_adma_desc_slot *desc, unsigned long flags)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
u_desc_ctrl.field.blk1_cmd_ctrl = 0x2; /* memory block fill */
u_desc_ctrl.field.dest_write_en = 1;
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
}
static inline u32
iop3xx_desc_init_xor(struct iop3xx_desc_aau *hw_desc, int src_cnt,
unsigned long flags)
{
int i, shift;
u32 edcr;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
switch (src_cnt) {
case 25 ... 32:
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
edcr = 0;
shift = 1;
for (i = 24; i < src_cnt; i++) {
edcr |= (1 << shift);
shift += 3;
}
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = edcr;
src_cnt = 24;
/* fall through */
case 17 ... 24:
if (!u_desc_ctrl.field.blk_ctrl) {
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
}
edcr = 0;
shift = 1;
for (i = 16; i < src_cnt; i++) {
edcr |= (1 << shift);
shift += 3;
}
hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = edcr;
src_cnt = 16;
/* fall through */
case 9 ... 16:
if (!u_desc_ctrl.field.blk_ctrl)
u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */
edcr = 0;
shift = 1;
for (i = 8; i < src_cnt; i++) {
edcr |= (1 << shift);
shift += 3;
}
hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = edcr;
src_cnt = 8;
/* fall through */
case 2 ... 8:
shift = 1;
for (i = 0; i < src_cnt; i++) {
u_desc_ctrl.value |= (1 << shift);
shift += 3;
}
if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4)
u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */
}
u_desc_ctrl.field.dest_write_en = 1;
u_desc_ctrl.field.blk1_cmd_ctrl = 0x7; /* direct fill */
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
return u_desc_ctrl.value;
}
static inline void
iop_desc_init_xor(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
iop3xx_desc_init_xor(desc->hw_desc, src_cnt, flags);
}
/* return the number of operations */
static inline int
iop_desc_init_zero_sum(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
struct iop3xx_desc_aau *hw_desc, *prev_hw_desc, *iter;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
int i, j;
hw_desc = desc->hw_desc;
for (i = 0, j = 0; (slot_cnt -= slots_per_op) >= 0;
i += slots_per_op, j++) {
iter = iop_hw_desc_slot_idx(hw_desc, i);
u_desc_ctrl.value = iop3xx_desc_init_xor(iter, src_cnt, flags);
u_desc_ctrl.field.dest_write_en = 0;
u_desc_ctrl.field.zero_result_en = 1;
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
iter->desc_ctrl = u_desc_ctrl.value;
/* for the subsequent descriptors preserve the store queue
* and chain them together
*/
if (i) {
prev_hw_desc =
iop_hw_desc_slot_idx(hw_desc, i - slots_per_op);
prev_hw_desc->next_desc =
(u32) (desc->async_tx.phys + (i << 5));
}
}
return j;
}
static inline void
iop_desc_init_null_xor(struct iop_adma_desc_slot *desc, int src_cnt,
unsigned long flags)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
union {
u32 value;
struct iop3xx_aau_desc_ctrl field;
} u_desc_ctrl;
u_desc_ctrl.value = 0;
switch (src_cnt) {
case 25 ... 32:
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
/* fall through */
case 17 ... 24:
if (!u_desc_ctrl.field.blk_ctrl) {
hw_desc->src_edc[AAU_EDCR2_IDX].e_desc_ctrl = 0;
u_desc_ctrl.field.blk_ctrl = 0x3; /* use EDCR[2:0] */
}
hw_desc->src_edc[AAU_EDCR1_IDX].e_desc_ctrl = 0;
/* fall through */
case 9 ... 16:
if (!u_desc_ctrl.field.blk_ctrl)
u_desc_ctrl.field.blk_ctrl = 0x2; /* use EDCR0 */
hw_desc->src_edc[AAU_EDCR0_IDX].e_desc_ctrl = 0;
/* fall through */
case 1 ... 8:
if (!u_desc_ctrl.field.blk_ctrl && src_cnt > 4)
u_desc_ctrl.field.blk_ctrl = 0x1; /* use mini-desc */
}
u_desc_ctrl.field.dest_write_en = 0;
u_desc_ctrl.field.int_en = flags & DMA_PREP_INTERRUPT;
hw_desc->desc_ctrl = u_desc_ctrl.value;
}
static inline void iop_desc_set_byte_count(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan,
u32 byte_count)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
hw_desc.dma->byte_count = byte_count;
break;
case AAU_ID:
hw_desc.aau->byte_count = byte_count;
break;
default:
BUG();
}
}
static inline void
iop_desc_init_interrupt(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
iop_desc_init_memcpy(desc, 1);
hw_desc.dma->byte_count = 0;
hw_desc.dma->dest_addr = 0;
hw_desc.dma->src_addr = 0;
break;
case AAU_ID:
iop_desc_init_null_xor(desc, 2, 1);
hw_desc.aau->byte_count = 0;
hw_desc.aau->dest_addr = 0;
hw_desc.aau->src[0] = 0;
hw_desc.aau->src[1] = 0;
break;
default:
BUG();
}
}
static inline void
iop_desc_set_zero_sum_byte_count(struct iop_adma_desc_slot *desc, u32 len)
{
int slots_per_op = desc->slots_per_op;
struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
int i = 0;
if (len <= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
hw_desc->byte_count = len;
} else {
do {
iter = iop_hw_desc_slot_idx(hw_desc, i);
iter->byte_count = IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
len -= IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT;
i += slots_per_op;
} while (len > IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT);
iter = iop_hw_desc_slot_idx(hw_desc, i);
iter->byte_count = len;
}
}
static inline void iop_desc_set_dest_addr(struct iop_adma_desc_slot *desc,
struct iop_adma_chan *chan,
dma_addr_t addr)
{
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
hw_desc.dma->dest_addr = addr;
break;
case AAU_ID:
hw_desc.aau->dest_addr = addr;
break;
default:
BUG();
}
}
static inline void iop_desc_set_memcpy_src_addr(struct iop_adma_desc_slot *desc,
dma_addr_t addr)
{
struct iop3xx_desc_dma *hw_desc = desc->hw_desc;
hw_desc->src_addr = addr;
}
static inline void
iop_desc_set_zero_sum_src_addr(struct iop_adma_desc_slot *desc, int src_idx,
dma_addr_t addr)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
int i;
for (i = 0; (slot_cnt -= slots_per_op) >= 0;
i += slots_per_op, addr += IOP_ADMA_ZERO_SUM_MAX_BYTE_COUNT) {
iter = iop_hw_desc_slot_idx(hw_desc, i);
iop3xx_aau_desc_set_src_addr(iter, src_idx, addr);
}
}
static inline void iop_desc_set_xor_src_addr(struct iop_adma_desc_slot *desc,
int src_idx, dma_addr_t addr)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc, *iter;
int slot_cnt = desc->slot_cnt, slots_per_op = desc->slots_per_op;
int i;
for (i = 0; (slot_cnt -= slots_per_op) >= 0;
i += slots_per_op, addr += IOP_ADMA_XOR_MAX_BYTE_COUNT) {
iter = iop_hw_desc_slot_idx(hw_desc, i);
iop3xx_aau_desc_set_src_addr(iter, src_idx, addr);
}
}
static inline void iop_desc_set_next_desc(struct iop_adma_desc_slot *desc,
u32 next_desc_addr)
{
/* hw_desc->next_desc is the same location for all channels */
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
iop_paranoia(hw_desc.dma->next_desc);
hw_desc.dma->next_desc = next_desc_addr;
}
static inline u32 iop_desc_get_next_desc(struct iop_adma_desc_slot *desc)
{
/* hw_desc->next_desc is the same location for all channels */
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
return hw_desc.dma->next_desc;
}
static inline void iop_desc_clear_next_desc(struct iop_adma_desc_slot *desc)
{
/* hw_desc->next_desc is the same location for all channels */
union iop3xx_desc hw_desc = { .ptr = desc->hw_desc, };
hw_desc.dma->next_desc = 0;
}
static inline void iop_desc_set_block_fill_val(struct iop_adma_desc_slot *desc,
u32 val)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
hw_desc->src[0] = val;
}
static inline enum sum_check_flags
iop_desc_get_zero_result(struct iop_adma_desc_slot *desc)
{
struct iop3xx_desc_aau *hw_desc = desc->hw_desc;
struct iop3xx_aau_desc_ctrl desc_ctrl = hw_desc->desc_ctrl_field;
iop_paranoia(!(desc_ctrl.tx_complete && desc_ctrl.zero_result_en));
return desc_ctrl.zero_result_err << SUM_CHECK_P;
}
static inline void iop_chan_append(struct iop_adma_chan *chan)
{
u32 dma_chan_ctrl;
dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
dma_chan_ctrl |= 0x2;
__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}
static inline u32 iop_chan_get_status(struct iop_adma_chan *chan)
{
return __raw_readl(DMA_CSR(chan));
}
static inline void iop_chan_disable(struct iop_adma_chan *chan)
{
u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
dma_chan_ctrl &= ~1;
__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}
static inline void iop_chan_enable(struct iop_adma_chan *chan)
{
u32 dma_chan_ctrl = __raw_readl(DMA_CCR(chan));
dma_chan_ctrl |= 1;
__raw_writel(dma_chan_ctrl, DMA_CCR(chan));
}
static inline void iop_adma_device_clear_eot_status(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
status &= (1 << 9);
__raw_writel(status, DMA_CSR(chan));
}
static inline void iop_adma_device_clear_eoc_status(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
status &= (1 << 8);
__raw_writel(status, DMA_CSR(chan));
}
static inline void iop_adma_device_clear_err_status(struct iop_adma_chan *chan)
{
u32 status = __raw_readl(DMA_CSR(chan));
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
status &= (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1);
break;
case AAU_ID:
status &= (1 << 5);
break;
default:
BUG();
}
__raw_writel(status, DMA_CSR(chan));
}
static inline int
iop_is_err_int_parity(unsigned long status, struct iop_adma_chan *chan)
{
return 0;
}
static inline int
iop_is_err_mcu_abort(unsigned long status, struct iop_adma_chan *chan)
{
return 0;
}
static inline int
iop_is_err_int_tabort(unsigned long status, struct iop_adma_chan *chan)
{
return 0;
}
static inline int
iop_is_err_int_mabort(unsigned long status, struct iop_adma_chan *chan)
{
return test_bit(5, &status);
}
static inline int
iop_is_err_pci_tabort(unsigned long status, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return test_bit(2, &status);
default:
return 0;
}
}
static inline int
iop_is_err_pci_mabort(unsigned long status, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return test_bit(3, &status);
default:
return 0;
}
}
static inline int
iop_is_err_split_tx(unsigned long status, struct iop_adma_chan *chan)
{
switch (chan->device->id) {
case DMA0_ID:
case DMA1_ID:
return test_bit(1, &status);
default:
return 0;
}
}
#endif /* _ADMA_H */