linux-brain/security/security.c
Eric W. Biederman ae7795bc61 signal: Distinguish between kernel_siginfo and siginfo
Linus recently observed that if we did not worry about the padding
member in struct siginfo it is only about 48 bytes, and 48 bytes is
much nicer than 128 bytes for allocating on the stack and copying
around in the kernel.

The obvious thing of only adding the padding when userspace is
including siginfo.h won't work as there are sigframe definitions in
the kernel that embed struct siginfo.

So split siginfo in two; kernel_siginfo and siginfo.  Keeping the
traditional name for the userspace definition.  While the version that
is used internally to the kernel and ultimately will not be padded to
128 bytes is called kernel_siginfo.

The definition of struct kernel_siginfo I have put in include/signal_types.h

A set of buildtime checks has been added to verify the two structures have
the same field offsets.

To make it easy to verify the change kernel_siginfo retains the same
size as siginfo.  The reduction in size comes in a following change.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-10-03 16:47:43 +02:00

1800 lines
45 KiB
C

/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
* Copyright (C) 2016 Mellanox Technologies
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/bpf.h>
#include <linux/capability.h>
#include <linux/dcache.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lsm_hooks.h>
#include <linux/integrity.h>
#include <linux/ima.h>
#include <linux/evm.h>
#include <linux/fsnotify.h>
#include <linux/mman.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/backing-dev.h>
#include <linux/string.h>
#include <net/flow.h>
#include <trace/events/initcall.h>
#define MAX_LSM_EVM_XATTR 2
/* Maximum number of letters for an LSM name string */
#define SECURITY_NAME_MAX 10
struct security_hook_heads security_hook_heads __lsm_ro_after_init;
static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
char *lsm_names;
/* Boot-time LSM user choice */
static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
CONFIG_DEFAULT_SECURITY;
static void __init do_security_initcalls(void)
{
int ret;
initcall_t call;
initcall_entry_t *ce;
ce = __security_initcall_start;
trace_initcall_level("security");
while (ce < __security_initcall_end) {
call = initcall_from_entry(ce);
trace_initcall_start(call);
ret = call();
trace_initcall_finish(call, ret);
ce++;
}
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
int i;
struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
i++)
INIT_HLIST_HEAD(&list[i]);
pr_info("Security Framework initialized\n");
/*
* Load minor LSMs, with the capability module always first.
*/
capability_add_hooks();
yama_add_hooks();
loadpin_add_hooks();
/*
* Load all the remaining security modules.
*/
do_security_initcalls();
return 0;
}
/* Save user chosen LSM */
static int __init choose_lsm(char *str)
{
strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
return 1;
}
__setup("security=", choose_lsm);
static bool match_last_lsm(const char *list, const char *lsm)
{
const char *last;
if (WARN_ON(!list || !lsm))
return false;
last = strrchr(list, ',');
if (last)
/* Pass the comma, strcmp() will check for '\0' */
last++;
else
last = list;
return !strcmp(last, lsm);
}
static int lsm_append(char *new, char **result)
{
char *cp;
if (*result == NULL) {
*result = kstrdup(new, GFP_KERNEL);
if (*result == NULL)
return -ENOMEM;
} else {
/* Check if it is the last registered name */
if (match_last_lsm(*result, new))
return 0;
cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
if (cp == NULL)
return -ENOMEM;
kfree(*result);
*result = cp;
}
return 0;
}
/**
* security_module_enable - Load given security module on boot ?
* @module: the name of the module
*
* Each LSM must pass this method before registering its own operations
* to avoid security registration races. This method may also be used
* to check if your LSM is currently loaded during kernel initialization.
*
* Returns:
*
* true if:
*
* - The passed LSM is the one chosen by user at boot time,
* - or the passed LSM is configured as the default and the user did not
* choose an alternate LSM at boot time.
*
* Otherwise, return false.
*/
int __init security_module_enable(const char *module)
{
return !strcmp(module, chosen_lsm);
}
/**
* security_add_hooks - Add a modules hooks to the hook lists.
* @hooks: the hooks to add
* @count: the number of hooks to add
* @lsm: the name of the security module
*
* Each LSM has to register its hooks with the infrastructure.
*/
void __init security_add_hooks(struct security_hook_list *hooks, int count,
char *lsm)
{
int i;
for (i = 0; i < count; i++) {
hooks[i].lsm = lsm;
hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
}
if (lsm_append(lsm, &lsm_names) < 0)
panic("%s - Cannot get early memory.\n", __func__);
}
int call_lsm_notifier(enum lsm_event event, void *data)
{
return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
}
EXPORT_SYMBOL(call_lsm_notifier);
int register_lsm_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
}
EXPORT_SYMBOL(register_lsm_notifier);
int unregister_lsm_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
}
EXPORT_SYMBOL(unregister_lsm_notifier);
/*
* Hook list operation macros.
*
* call_void_hook:
* This is a hook that does not return a value.
*
* call_int_hook:
* This is a hook that returns a value.
*/
#define call_void_hook(FUNC, ...) \
do { \
struct security_hook_list *P; \
\
hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
P->hook.FUNC(__VA_ARGS__); \
} while (0)
#define call_int_hook(FUNC, IRC, ...) ({ \
int RC = IRC; \
do { \
struct security_hook_list *P; \
\
hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
RC = P->hook.FUNC(__VA_ARGS__); \
if (RC != 0) \
break; \
} \
} while (0); \
RC; \
})
/* Security operations */
int security_binder_set_context_mgr(struct task_struct *mgr)
{
return call_int_hook(binder_set_context_mgr, 0, mgr);
}
int security_binder_transaction(struct task_struct *from,
struct task_struct *to)
{
return call_int_hook(binder_transaction, 0, from, to);
}
int security_binder_transfer_binder(struct task_struct *from,
struct task_struct *to)
{
return call_int_hook(binder_transfer_binder, 0, from, to);
}
int security_binder_transfer_file(struct task_struct *from,
struct task_struct *to, struct file *file)
{
return call_int_hook(binder_transfer_file, 0, from, to, file);
}
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
return call_int_hook(ptrace_access_check, 0, child, mode);
}
int security_ptrace_traceme(struct task_struct *parent)
{
return call_int_hook(ptrace_traceme, 0, parent);
}
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return call_int_hook(capget, 0, target,
effective, inheritable, permitted);
}
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return call_int_hook(capset, 0, new, old,
effective, inheritable, permitted);
}
int security_capable(const struct cred *cred, struct user_namespace *ns,
int cap)
{
return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
}
int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
int cap)
{
return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
}
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
{
return call_int_hook(quotactl, 0, cmds, type, id, sb);
}
int security_quota_on(struct dentry *dentry)
{
return call_int_hook(quota_on, 0, dentry);
}
int security_syslog(int type)
{
return call_int_hook(syslog, 0, type);
}
int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
{
return call_int_hook(settime, 0, ts, tz);
}
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
struct security_hook_list *hp;
int cap_sys_admin = 1;
int rc;
/*
* The module will respond with a positive value if
* it thinks the __vm_enough_memory() call should be
* made with the cap_sys_admin set. If all of the modules
* agree that it should be set it will. If any module
* thinks it should not be set it won't.
*/
hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
rc = hp->hook.vm_enough_memory(mm, pages);
if (rc <= 0) {
cap_sys_admin = 0;
break;
}
}
return __vm_enough_memory(mm, pages, cap_sys_admin);
}
int security_bprm_set_creds(struct linux_binprm *bprm)
{
return call_int_hook(bprm_set_creds, 0, bprm);
}
int security_bprm_check(struct linux_binprm *bprm)
{
int ret;
ret = call_int_hook(bprm_check_security, 0, bprm);
if (ret)
return ret;
return ima_bprm_check(bprm);
}
void security_bprm_committing_creds(struct linux_binprm *bprm)
{
call_void_hook(bprm_committing_creds, bprm);
}
void security_bprm_committed_creds(struct linux_binprm *bprm)
{
call_void_hook(bprm_committed_creds, bprm);
}
int security_sb_alloc(struct super_block *sb)
{
return call_int_hook(sb_alloc_security, 0, sb);
}
void security_sb_free(struct super_block *sb)
{
call_void_hook(sb_free_security, sb);
}
int security_sb_copy_data(char *orig, char *copy)
{
return call_int_hook(sb_copy_data, 0, orig, copy);
}
EXPORT_SYMBOL(security_sb_copy_data);
int security_sb_remount(struct super_block *sb, void *data)
{
return call_int_hook(sb_remount, 0, sb, data);
}
int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
return call_int_hook(sb_kern_mount, 0, sb, flags, data);
}
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
{
return call_int_hook(sb_show_options, 0, m, sb);
}
int security_sb_statfs(struct dentry *dentry)
{
return call_int_hook(sb_statfs, 0, dentry);
}
int security_sb_mount(const char *dev_name, const struct path *path,
const char *type, unsigned long flags, void *data)
{
return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
}
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return call_int_hook(sb_umount, 0, mnt, flags);
}
int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
{
return call_int_hook(sb_pivotroot, 0, old_path, new_path);
}
int security_sb_set_mnt_opts(struct super_block *sb,
struct security_mnt_opts *opts,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
return call_int_hook(sb_set_mnt_opts,
opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
opts, kern_flags, set_kern_flags);
}
EXPORT_SYMBOL(security_sb_set_mnt_opts);
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
kern_flags, set_kern_flags);
}
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
{
return call_int_hook(sb_parse_opts_str, 0, options, opts);
}
EXPORT_SYMBOL(security_sb_parse_opts_str);
int security_inode_alloc(struct inode *inode)
{
inode->i_security = NULL;
return call_int_hook(inode_alloc_security, 0, inode);
}
void security_inode_free(struct inode *inode)
{
integrity_inode_free(inode);
call_void_hook(inode_free_security, inode);
}
int security_dentry_init_security(struct dentry *dentry, int mode,
const struct qstr *name, void **ctx,
u32 *ctxlen)
{
return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
name, ctx, ctxlen);
}
EXPORT_SYMBOL(security_dentry_init_security);
int security_dentry_create_files_as(struct dentry *dentry, int mode,
struct qstr *name,
const struct cred *old, struct cred *new)
{
return call_int_hook(dentry_create_files_as, 0, dentry, mode,
name, old, new);
}
EXPORT_SYMBOL(security_dentry_create_files_as);
int security_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr,
const initxattrs initxattrs, void *fs_data)
{
struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
struct xattr *lsm_xattr, *evm_xattr, *xattr;
int ret;
if (unlikely(IS_PRIVATE(inode)))
return 0;
if (!initxattrs)
return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
dir, qstr, NULL, NULL, NULL);
memset(new_xattrs, 0, sizeof(new_xattrs));
lsm_xattr = new_xattrs;
ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
&lsm_xattr->name,
&lsm_xattr->value,
&lsm_xattr->value_len);
if (ret)
goto out;
evm_xattr = lsm_xattr + 1;
ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
if (ret)
goto out;
ret = initxattrs(inode, new_xattrs, fs_data);
out:
for (xattr = new_xattrs; xattr->value != NULL; xattr++)
kfree(xattr->value);
return (ret == -EOPNOTSUPP) ? 0 : ret;
}
EXPORT_SYMBOL(security_inode_init_security);
int security_old_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr, const char **name,
void **value, size_t *len)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
qstr, name, value, len);
}
EXPORT_SYMBOL(security_old_inode_init_security);
#ifdef CONFIG_SECURITY_PATH
int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
unsigned int dev)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
}
EXPORT_SYMBOL(security_path_mknod);
int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_mkdir, 0, dir, dentry, mode);
}
EXPORT_SYMBOL(security_path_mkdir);
int security_path_rmdir(const struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_rmdir, 0, dir, dentry);
}
int security_path_unlink(const struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_unlink, 0, dir, dentry);
}
EXPORT_SYMBOL(security_path_unlink);
int security_path_symlink(const struct path *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_symlink, 0, dir, dentry, old_name);
}
int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
return 0;
return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
}
int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
const struct path *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
(d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
return 0;
if (flags & RENAME_EXCHANGE) {
int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
old_dir, old_dentry);
if (err)
return err;
}
return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
new_dentry);
}
EXPORT_SYMBOL(security_path_rename);
int security_path_truncate(const struct path *path)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_truncate, 0, path);
}
int security_path_chmod(const struct path *path, umode_t mode)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_chmod, 0, path, mode);
}
int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_chown, 0, path, uid, gid);
}
int security_path_chroot(const struct path *path)
{
return call_int_hook(path_chroot, 0, path);
}
#endif
int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_create, 0, dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_create);
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
return 0;
return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
}
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_unlink, 0, dir, dentry);
}
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
}
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_mkdir);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_rmdir, 0, dir, dentry);
}
int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
}
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
(d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
return 0;
if (flags & RENAME_EXCHANGE) {
int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
old_dir, old_dentry);
if (err)
return err;
}
return call_int_hook(inode_rename, 0, old_dir, old_dentry,
new_dir, new_dentry);
}
int security_inode_readlink(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_readlink, 0, dentry);
}
int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
bool rcu)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
}
int security_inode_permission(struct inode *inode, int mask)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_permission, 0, inode, mask);
}
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
{
int ret;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
ret = call_int_hook(inode_setattr, 0, dentry, attr);
if (ret)
return ret;
return evm_inode_setattr(dentry, attr);
}
EXPORT_SYMBOL_GPL(security_inode_setattr);
int security_inode_getattr(const struct path *path)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(inode_getattr, 0, path);
}
int security_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
int ret;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
/*
* SELinux and Smack integrate the cap call,
* so assume that all LSMs supplying this call do so.
*/
ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
flags);
if (ret == 1)
ret = cap_inode_setxattr(dentry, name, value, size, flags);
if (ret)
return ret;
ret = ima_inode_setxattr(dentry, name, value, size);
if (ret)
return ret;
return evm_inode_setxattr(dentry, name, value, size);
}
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
evm_inode_post_setxattr(dentry, name, value, size);
}
int security_inode_getxattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_getxattr, 0, dentry, name);
}
int security_inode_listxattr(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_listxattr, 0, dentry);
}
int security_inode_removexattr(struct dentry *dentry, const char *name)
{
int ret;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
/*
* SELinux and Smack integrate the cap call,
* so assume that all LSMs supplying this call do so.
*/
ret = call_int_hook(inode_removexattr, 1, dentry, name);
if (ret == 1)
ret = cap_inode_removexattr(dentry, name);
if (ret)
return ret;
ret = ima_inode_removexattr(dentry, name);
if (ret)
return ret;
return evm_inode_removexattr(dentry, name);
}
int security_inode_need_killpriv(struct dentry *dentry)
{
return call_int_hook(inode_need_killpriv, 0, dentry);
}
int security_inode_killpriv(struct dentry *dentry)
{
return call_int_hook(inode_killpriv, 0, dentry);
}
int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
{
struct security_hook_list *hp;
int rc;
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
/*
* Only one module will provide an attribute with a given name.
*/
hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
if (rc != -EOPNOTSUPP)
return rc;
}
return -EOPNOTSUPP;
}
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
struct security_hook_list *hp;
int rc;
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
/*
* Only one module will provide an attribute with a given name.
*/
hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
rc = hp->hook.inode_setsecurity(inode, name, value, size,
flags);
if (rc != -EOPNOTSUPP)
return rc;
}
return -EOPNOTSUPP;
}
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
}
EXPORT_SYMBOL(security_inode_listsecurity);
void security_inode_getsecid(struct inode *inode, u32 *secid)
{
call_void_hook(inode_getsecid, inode, secid);
}
int security_inode_copy_up(struct dentry *src, struct cred **new)
{
return call_int_hook(inode_copy_up, 0, src, new);
}
EXPORT_SYMBOL(security_inode_copy_up);
int security_inode_copy_up_xattr(const char *name)
{
return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
}
EXPORT_SYMBOL(security_inode_copy_up_xattr);
int security_file_permission(struct file *file, int mask)
{
int ret;
ret = call_int_hook(file_permission, 0, file, mask);
if (ret)
return ret;
return fsnotify_perm(file, mask);
}
int security_file_alloc(struct file *file)
{
return call_int_hook(file_alloc_security, 0, file);
}
void security_file_free(struct file *file)
{
call_void_hook(file_free_security, file);
}
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return call_int_hook(file_ioctl, 0, file, cmd, arg);
}
static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
{
/*
* Does we have PROT_READ and does the application expect
* it to imply PROT_EXEC? If not, nothing to talk about...
*/
if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
return prot;
if (!(current->personality & READ_IMPLIES_EXEC))
return prot;
/*
* if that's an anonymous mapping, let it.
*/
if (!file)
return prot | PROT_EXEC;
/*
* ditto if it's not on noexec mount, except that on !MMU we need
* NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
*/
if (!path_noexec(&file->f_path)) {
#ifndef CONFIG_MMU
if (file->f_op->mmap_capabilities) {
unsigned caps = file->f_op->mmap_capabilities(file);
if (!(caps & NOMMU_MAP_EXEC))
return prot;
}
#endif
return prot | PROT_EXEC;
}
/* anything on noexec mount won't get PROT_EXEC */
return prot;
}
int security_mmap_file(struct file *file, unsigned long prot,
unsigned long flags)
{
int ret;
ret = call_int_hook(mmap_file, 0, file, prot,
mmap_prot(file, prot), flags);
if (ret)
return ret;
return ima_file_mmap(file, prot);
}
int security_mmap_addr(unsigned long addr)
{
return call_int_hook(mmap_addr, 0, addr);
}
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot)
{
return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
}
int security_file_lock(struct file *file, unsigned int cmd)
{
return call_int_hook(file_lock, 0, file, cmd);
}
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
return call_int_hook(file_fcntl, 0, file, cmd, arg);
}
void security_file_set_fowner(struct file *file)
{
call_void_hook(file_set_fowner, file);
}
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
}
int security_file_receive(struct file *file)
{
return call_int_hook(file_receive, 0, file);
}
int security_file_open(struct file *file)
{
int ret;
ret = call_int_hook(file_open, 0, file);
if (ret)
return ret;
return fsnotify_perm(file, MAY_OPEN);
}
int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
{
return call_int_hook(task_alloc, 0, task, clone_flags);
}
void security_task_free(struct task_struct *task)
{
call_void_hook(task_free, task);
}
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
return call_int_hook(cred_alloc_blank, 0, cred, gfp);
}
void security_cred_free(struct cred *cred)
{
call_void_hook(cred_free, cred);
}
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
{
return call_int_hook(cred_prepare, 0, new, old, gfp);
}
void security_transfer_creds(struct cred *new, const struct cred *old)
{
call_void_hook(cred_transfer, new, old);
}
void security_cred_getsecid(const struct cred *c, u32 *secid)
{
*secid = 0;
call_void_hook(cred_getsecid, c, secid);
}
EXPORT_SYMBOL(security_cred_getsecid);
int security_kernel_act_as(struct cred *new, u32 secid)
{
return call_int_hook(kernel_act_as, 0, new, secid);
}
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
{
return call_int_hook(kernel_create_files_as, 0, new, inode);
}
int security_kernel_module_request(char *kmod_name)
{
int ret;
ret = call_int_hook(kernel_module_request, 0, kmod_name);
if (ret)
return ret;
return integrity_kernel_module_request(kmod_name);
}
int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
{
int ret;
ret = call_int_hook(kernel_read_file, 0, file, id);
if (ret)
return ret;
return ima_read_file(file, id);
}
EXPORT_SYMBOL_GPL(security_kernel_read_file);
int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
enum kernel_read_file_id id)
{
int ret;
ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
if (ret)
return ret;
return ima_post_read_file(file, buf, size, id);
}
EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
int security_kernel_load_data(enum kernel_load_data_id id)
{
int ret;
ret = call_int_hook(kernel_load_data, 0, id);
if (ret)
return ret;
return ima_load_data(id);
}
EXPORT_SYMBOL_GPL(security_kernel_load_data);
int security_task_fix_setuid(struct cred *new, const struct cred *old,
int flags)
{
return call_int_hook(task_fix_setuid, 0, new, old, flags);
}
int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return call_int_hook(task_setpgid, 0, p, pgid);
}
int security_task_getpgid(struct task_struct *p)
{
return call_int_hook(task_getpgid, 0, p);
}
int security_task_getsid(struct task_struct *p)
{
return call_int_hook(task_getsid, 0, p);
}
void security_task_getsecid(struct task_struct *p, u32 *secid)
{
*secid = 0;
call_void_hook(task_getsecid, p, secid);
}
EXPORT_SYMBOL(security_task_getsecid);
int security_task_setnice(struct task_struct *p, int nice)
{
return call_int_hook(task_setnice, 0, p, nice);
}
int security_task_setioprio(struct task_struct *p, int ioprio)
{
return call_int_hook(task_setioprio, 0, p, ioprio);
}
int security_task_getioprio(struct task_struct *p)
{
return call_int_hook(task_getioprio, 0, p);
}
int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
unsigned int flags)
{
return call_int_hook(task_prlimit, 0, cred, tcred, flags);
}
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim)
{
return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
}
int security_task_setscheduler(struct task_struct *p)
{
return call_int_hook(task_setscheduler, 0, p);
}
int security_task_getscheduler(struct task_struct *p)
{
return call_int_hook(task_getscheduler, 0, p);
}
int security_task_movememory(struct task_struct *p)
{
return call_int_hook(task_movememory, 0, p);
}
int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
int sig, const struct cred *cred)
{
return call_int_hook(task_kill, 0, p, info, sig, cred);
}
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
int thisrc;
int rc = -ENOSYS;
struct security_hook_list *hp;
hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
if (thisrc != -ENOSYS) {
rc = thisrc;
if (thisrc != 0)
break;
}
}
return rc;
}
void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
call_void_hook(task_to_inode, p, inode);
}
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
return call_int_hook(ipc_permission, 0, ipcp, flag);
}
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
*secid = 0;
call_void_hook(ipc_getsecid, ipcp, secid);
}
int security_msg_msg_alloc(struct msg_msg *msg)
{
return call_int_hook(msg_msg_alloc_security, 0, msg);
}
void security_msg_msg_free(struct msg_msg *msg)
{
call_void_hook(msg_msg_free_security, msg);
}
int security_msg_queue_alloc(struct kern_ipc_perm *msq)
{
return call_int_hook(msg_queue_alloc_security, 0, msq);
}
void security_msg_queue_free(struct kern_ipc_perm *msq)
{
call_void_hook(msg_queue_free_security, msq);
}
int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
{
return call_int_hook(msg_queue_associate, 0, msq, msqflg);
}
int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
{
return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
}
int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
struct msg_msg *msg, int msqflg)
{
return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
}
int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode)
{
return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
}
int security_shm_alloc(struct kern_ipc_perm *shp)
{
return call_int_hook(shm_alloc_security, 0, shp);
}
void security_shm_free(struct kern_ipc_perm *shp)
{
call_void_hook(shm_free_security, shp);
}
int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
{
return call_int_hook(shm_associate, 0, shp, shmflg);
}
int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
{
return call_int_hook(shm_shmctl, 0, shp, cmd);
}
int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
{
return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
}
int security_sem_alloc(struct kern_ipc_perm *sma)
{
return call_int_hook(sem_alloc_security, 0, sma);
}
void security_sem_free(struct kern_ipc_perm *sma)
{
call_void_hook(sem_free_security, sma);
}
int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
{
return call_int_hook(sem_associate, 0, sma, semflg);
}
int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
{
return call_int_hook(sem_semctl, 0, sma, cmd);
}
int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
unsigned nsops, int alter)
{
return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
}
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (unlikely(inode && IS_PRIVATE(inode)))
return;
call_void_hook(d_instantiate, dentry, inode);
}
EXPORT_SYMBOL(security_d_instantiate);
int security_getprocattr(struct task_struct *p, char *name, char **value)
{
return call_int_hook(getprocattr, -EINVAL, p, name, value);
}
int security_setprocattr(const char *name, void *value, size_t size)
{
return call_int_hook(setprocattr, -EINVAL, name, value, size);
}
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return call_int_hook(netlink_send, 0, sk, skb);
}
int security_ismaclabel(const char *name)
{
return call_int_hook(ismaclabel, 0, name);
}
EXPORT_SYMBOL(security_ismaclabel);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
seclen);
}
EXPORT_SYMBOL(security_secid_to_secctx);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
{
*secid = 0;
return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
}
EXPORT_SYMBOL(security_secctx_to_secid);
void security_release_secctx(char *secdata, u32 seclen)
{
call_void_hook(release_secctx, secdata, seclen);
}
EXPORT_SYMBOL(security_release_secctx);
void security_inode_invalidate_secctx(struct inode *inode)
{
call_void_hook(inode_invalidate_secctx, inode);
}
EXPORT_SYMBOL(security_inode_invalidate_secctx);
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_notifysecctx);
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_setsecctx);
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_getsecctx);
#ifdef CONFIG_SECURITY_NETWORK
int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
{
return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
}
EXPORT_SYMBOL(security_unix_stream_connect);
int security_unix_may_send(struct socket *sock, struct socket *other)
{
return call_int_hook(unix_may_send, 0, sock, other);
}
EXPORT_SYMBOL(security_unix_may_send);
int security_socket_create(int family, int type, int protocol, int kern)
{
return call_int_hook(socket_create, 0, family, type, protocol, kern);
}
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
return call_int_hook(socket_post_create, 0, sock, family, type,
protocol, kern);
}
int security_socket_socketpair(struct socket *socka, struct socket *sockb)
{
return call_int_hook(socket_socketpair, 0, socka, sockb);
}
EXPORT_SYMBOL(security_socket_socketpair);
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
{
return call_int_hook(socket_bind, 0, sock, address, addrlen);
}
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
{
return call_int_hook(socket_connect, 0, sock, address, addrlen);
}
int security_socket_listen(struct socket *sock, int backlog)
{
return call_int_hook(socket_listen, 0, sock, backlog);
}
int security_socket_accept(struct socket *sock, struct socket *newsock)
{
return call_int_hook(socket_accept, 0, sock, newsock);
}
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
{
return call_int_hook(socket_sendmsg, 0, sock, msg, size);
}
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
}
int security_socket_getsockname(struct socket *sock)
{
return call_int_hook(socket_getsockname, 0, sock);
}
int security_socket_getpeername(struct socket *sock)
{
return call_int_hook(socket_getpeername, 0, sock);
}
int security_socket_getsockopt(struct socket *sock, int level, int optname)
{
return call_int_hook(socket_getsockopt, 0, sock, level, optname);
}
int security_socket_setsockopt(struct socket *sock, int level, int optname)
{
return call_int_hook(socket_setsockopt, 0, sock, level, optname);
}
int security_socket_shutdown(struct socket *sock, int how)
{
return call_int_hook(socket_shutdown, 0, sock, how);
}
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
}
EXPORT_SYMBOL(security_sock_rcv_skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
optval, optlen, len);
}
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
skb, secid);
}
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return call_int_hook(sk_alloc_security, 0, sk, family, priority);
}
void security_sk_free(struct sock *sk)
{
call_void_hook(sk_free_security, sk);
}
void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
call_void_hook(sk_clone_security, sk, newsk);
}
EXPORT_SYMBOL(security_sk_clone);
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
}
EXPORT_SYMBOL(security_sk_classify_flow);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
call_void_hook(req_classify_flow, req, fl);
}
EXPORT_SYMBOL(security_req_classify_flow);
void security_sock_graft(struct sock *sk, struct socket *parent)
{
call_void_hook(sock_graft, sk, parent);
}
EXPORT_SYMBOL(security_sock_graft);
int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return call_int_hook(inet_conn_request, 0, sk, skb, req);
}
EXPORT_SYMBOL(security_inet_conn_request);
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
call_void_hook(inet_csk_clone, newsk, req);
}
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
call_void_hook(inet_conn_established, sk, skb);
}
EXPORT_SYMBOL(security_inet_conn_established);
int security_secmark_relabel_packet(u32 secid)
{
return call_int_hook(secmark_relabel_packet, 0, secid);
}
EXPORT_SYMBOL(security_secmark_relabel_packet);
void security_secmark_refcount_inc(void)
{
call_void_hook(secmark_refcount_inc);
}
EXPORT_SYMBOL(security_secmark_refcount_inc);
void security_secmark_refcount_dec(void)
{
call_void_hook(secmark_refcount_dec);
}
EXPORT_SYMBOL(security_secmark_refcount_dec);
int security_tun_dev_alloc_security(void **security)
{
return call_int_hook(tun_dev_alloc_security, 0, security);
}
EXPORT_SYMBOL(security_tun_dev_alloc_security);
void security_tun_dev_free_security(void *security)
{
call_void_hook(tun_dev_free_security, security);
}
EXPORT_SYMBOL(security_tun_dev_free_security);
int security_tun_dev_create(void)
{
return call_int_hook(tun_dev_create, 0);
}
EXPORT_SYMBOL(security_tun_dev_create);
int security_tun_dev_attach_queue(void *security)
{
return call_int_hook(tun_dev_attach_queue, 0, security);
}
EXPORT_SYMBOL(security_tun_dev_attach_queue);
int security_tun_dev_attach(struct sock *sk, void *security)
{
return call_int_hook(tun_dev_attach, 0, sk, security);
}
EXPORT_SYMBOL(security_tun_dev_attach);
int security_tun_dev_open(void *security)
{
return call_int_hook(tun_dev_open, 0, security);
}
EXPORT_SYMBOL(security_tun_dev_open);
int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
{
return call_int_hook(sctp_assoc_request, 0, ep, skb);
}
EXPORT_SYMBOL(security_sctp_assoc_request);
int security_sctp_bind_connect(struct sock *sk, int optname,
struct sockaddr *address, int addrlen)
{
return call_int_hook(sctp_bind_connect, 0, sk, optname,
address, addrlen);
}
EXPORT_SYMBOL(security_sctp_bind_connect);
void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
struct sock *newsk)
{
call_void_hook(sctp_sk_clone, ep, sk, newsk);
}
EXPORT_SYMBOL(security_sctp_sk_clone);
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_INFINIBAND
int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
{
return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
}
EXPORT_SYMBOL(security_ib_pkey_access);
int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
{
return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
}
EXPORT_SYMBOL(security_ib_endport_manage_subnet);
int security_ib_alloc_security(void **sec)
{
return call_int_hook(ib_alloc_security, 0, sec);
}
EXPORT_SYMBOL(security_ib_alloc_security);
void security_ib_free_security(void *sec)
{
call_void_hook(ib_free_security, sec);
}
EXPORT_SYMBOL(security_ib_free_security);
#endif /* CONFIG_SECURITY_INFINIBAND */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
struct xfrm_user_sec_ctx *sec_ctx,
gfp_t gfp)
{
return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
}
EXPORT_SYMBOL(security_xfrm_policy_alloc);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
struct xfrm_sec_ctx **new_ctxp)
{
return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
}
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
call_void_hook(xfrm_policy_free_security, ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_free);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
return call_int_hook(xfrm_policy_delete_security, 0, ctx);
}
int security_xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx)
{
return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
}
EXPORT_SYMBOL(security_xfrm_state_alloc);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
}
int security_xfrm_state_delete(struct xfrm_state *x)
{
return call_int_hook(xfrm_state_delete_security, 0, x);
}
EXPORT_SYMBOL(security_xfrm_state_delete);
void security_xfrm_state_free(struct xfrm_state *x)
{
call_void_hook(xfrm_state_free_security, x);
}
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
{
return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
}
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp,
const struct flowi *fl)
{
struct security_hook_list *hp;
int rc = 1;
/*
* Since this function is expected to return 0 or 1, the judgment
* becomes difficult if multiple LSMs supply this call. Fortunately,
* we can use the first LSM's judgment because currently only SELinux
* supplies this call.
*
* For speed optimization, we explicitly break the loop rather than
* using the macro
*/
hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
list) {
rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
break;
}
return rc;
}
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
}
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
0);
BUG_ON(rc);
}
EXPORT_SYMBOL(security_skb_classify_flow);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
int security_key_alloc(struct key *key, const struct cred *cred,
unsigned long flags)
{
return call_int_hook(key_alloc, 0, key, cred, flags);
}
void security_key_free(struct key *key)
{
call_void_hook(key_free, key);
}
int security_key_permission(key_ref_t key_ref,
const struct cred *cred, unsigned perm)
{
return call_int_hook(key_permission, 0, key_ref, cred, perm);
}
int security_key_getsecurity(struct key *key, char **_buffer)
{
*_buffer = NULL;
return call_int_hook(key_getsecurity, 0, key, _buffer);
}
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
{
return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
}
int security_audit_rule_known(struct audit_krule *krule)
{
return call_int_hook(audit_rule_known, 0, krule);
}
void security_audit_rule_free(void *lsmrule)
{
call_void_hook(audit_rule_free, lsmrule);
}
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
struct audit_context *actx)
{
return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
actx);
}
#endif /* CONFIG_AUDIT */
#ifdef CONFIG_BPF_SYSCALL
int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
{
return call_int_hook(bpf, 0, cmd, attr, size);
}
int security_bpf_map(struct bpf_map *map, fmode_t fmode)
{
return call_int_hook(bpf_map, 0, map, fmode);
}
int security_bpf_prog(struct bpf_prog *prog)
{
return call_int_hook(bpf_prog, 0, prog);
}
int security_bpf_map_alloc(struct bpf_map *map)
{
return call_int_hook(bpf_map_alloc_security, 0, map);
}
int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
{
return call_int_hook(bpf_prog_alloc_security, 0, aux);
}
void security_bpf_map_free(struct bpf_map *map)
{
call_void_hook(bpf_map_free_security, map);
}
void security_bpf_prog_free(struct bpf_prog_aux *aux)
{
call_void_hook(bpf_prog_free_security, aux);
}
#endif /* CONFIG_BPF_SYSCALL */