linux-brain/net/netfilter/nf_conntrack_broadcast.c
xiao ruizhu 3c00fb0bf0 netfilter: nf_conntrack_sip: fix expectation clash
When conntracks change during a dialog, SDP messages may be sent from
different conntracks to establish expects with identical tuples. In this
case expects conflict may be detected for the 2nd SDP message and end up
with a process failure.

The fixing here is to reuse an existing expect who has the same tuple for a
different conntrack if any.

Here are two scenarios for the case.

1)
         SERVER                   CPE

           |      INVITE SDP       |
      5060 |<----------------------|5060
           |      100 Trying       |
      5060 |---------------------->|5060
           |      183 SDP          |
      5060 |---------------------->|5060    ===> Conntrack 1
           |       PRACK           |
     50601 |<----------------------|5060
           |    200 OK (PRACK)     |
     50601 |---------------------->|5060
           |    200 OK (INVITE)    |
      5060 |---------------------->|5060
           |        ACK            |
     50601 |<----------------------|5060
           |                       |
           |<--- RTP stream ------>|
           |                       |
           |    INVITE SDP (t38)   |
     50601 |---------------------->|5060    ===> Conntrack 2

With a certain configuration in the CPE, SIP messages "183 with SDP" and
"re-INVITE with SDP t38" will go through the sip helper to create
expects for RTP and RTCP.

It is okay to create RTP and RTCP expects for "183", whose master
connection source port is 5060, and destination port is 5060.

In the "183" message, port in Contact header changes to 50601 (from the
original 5060). So the following requests e.g. PRACK and ACK are sent to
port 50601. It is a different conntrack (let call Conntrack 2) from the
original INVITE (let call Conntrack 1) due to the port difference.

In this example, after the call is established, there is RTP stream but no
RTCP stream for Conntrack 1, so the RTP expect created upon "183" is
cleared, and RTCP expect created for Conntrack 1 retains.

When "re-INVITE with SDP t38" arrives to create RTP&RTCP expects, current
ALG implementation will call nf_ct_expect_related() for RTP and RTCP. The
expects tuples are identical to those for Conntrack 1. RTP expect for
Conntrack 2 succeeds in creation as the one for Conntrack 1 has been
removed. RTCP expect for Conntrack 2 fails in creation because it has
idential tuples and 'conflict' with the one retained for Conntrack 1. And
then result in a failure in processing of the re-INVITE.

2)

    SERVER A                 CPE

       |      REGISTER     |
  5060 |<------------------| 5060  ==> CT1
       |       200         |
  5060 |------------------>| 5060
       |                   |
       |   INVITE SDP(1)   |
  5060 |<------------------| 5060
       | 300(multi choice) |
  5060 |------------------>| 5060                    SERVER B
       |       ACK         |
  5060 |<------------------| 5060
                                  |    INVITE SDP(2)    |
                             5060 |-------------------->| 5060  ==> CT2
                                  |       100           |
                             5060 |<--------------------| 5060
                                  | 200(contact changes)|
                             5060 |<--------------------| 5060
                                  |       ACK           |
                             5060 |-------------------->| 50601 ==> CT3
                                  |                     |
                                  |<--- RTP stream ---->|
                                  |                     |
                                  |       BYE           |
                             5060 |<--------------------| 50601
                                  |       200           |
                             5060 |-------------------->| 50601
       |   INVITE SDP(3)   |
  5060 |<------------------| 5060  ==> CT1

CPE sends an INVITE request(1) to Server A, and creates a RTP&RTCP expect
pair for this Conntrack 1 (CT1). Server A responds 300 to redirect to
Server B. The RTP&RTCP expect pairs created on CT1 are removed upon 300
response.

CPE sends the INVITE request(2) to Server B, and creates an expect pair
for the new conntrack (due to destination address difference), let call
CT2. Server B changes the port to 50601 in 200 OK response, and the
following requests ACK and BYE from CPE are sent to 50601. The call is
established. There is RTP stream and no RTCP stream. So RTP expect is
removed and RTCP expect for CT2 retains.

As BYE request is sent from port 50601, it is another conntrack, let call
CT3, different from CT2 due to the port difference. So the BYE request will
not remove the RTCP expect for CT2.

Then another outgoing call is made, with the same RTP port being used (not
definitely but possibly). CPE firstly sends the INVITE request(3) to Server
A, and tries to create a RTP&RTCP expect pairs for this CT1. In current ALG
implementation, the RTCP expect for CT1 fails in creation because it
'conflicts' with the residual one for CT2. As a result the INVITE request
fails to send.

Signed-off-by: xiao ruizhu <katrina.xiaorz@gmail.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-07-16 13:16:59 +02:00

81 lines
1.9 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* broadcast connection tracking helper
*
* (c) 2005 Patrick McHardy <kaber@trash.net>
*/
#include <linux/module.h>
#include <linux/ip.h>
#include <net/route.h>
#include <linux/inetdevice.h>
#include <linux/skbuff.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_expect.h>
int nf_conntrack_broadcast_help(struct sk_buff *skb,
struct nf_conn *ct,
enum ip_conntrack_info ctinfo,
unsigned int timeout)
{
struct nf_conntrack_expect *exp;
struct iphdr *iph = ip_hdr(skb);
struct rtable *rt = skb_rtable(skb);
struct in_device *in_dev;
struct nf_conn_help *help = nfct_help(ct);
__be32 mask = 0;
/* we're only interested in locally generated packets */
if (skb->sk == NULL || !net_eq(nf_ct_net(ct), sock_net(skb->sk)))
goto out;
if (rt == NULL || !(rt->rt_flags & RTCF_BROADCAST))
goto out;
if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
goto out;
in_dev = __in_dev_get_rcu(rt->dst.dev);
if (in_dev != NULL) {
const struct in_ifaddr *ifa;
in_dev_for_each_ifa_rcu(ifa, in_dev) {
if (ifa->ifa_flags & IFA_F_SECONDARY)
continue;
if (ifa->ifa_broadcast == iph->daddr) {
mask = ifa->ifa_mask;
break;
}
}
}
if (mask == 0)
goto out;
exp = nf_ct_expect_alloc(ct);
if (exp == NULL)
goto out;
exp->tuple = ct->tuplehash[IP_CT_DIR_REPLY].tuple;
exp->tuple.src.u.udp.port = help->helper->tuple.src.u.udp.port;
exp->mask.src.u3.ip = mask;
exp->mask.src.u.udp.port = htons(0xFFFF);
exp->expectfn = NULL;
exp->flags = NF_CT_EXPECT_PERMANENT;
exp->class = NF_CT_EXPECT_CLASS_DEFAULT;
exp->helper = NULL;
nf_ct_expect_related(exp, 0);
nf_ct_expect_put(exp);
nf_ct_refresh(ct, skb, timeout * HZ);
out:
return NF_ACCEPT;
}
EXPORT_SYMBOL_GPL(nf_conntrack_broadcast_help);
MODULE_LICENSE("GPL");