linux-brain/fs/crypto/keysetup.c
Eric Biggers 29c2d3e91e fscrypt: remove kernel-internal constants from UAPI header
commit 3ceb6543e9cf6ed87cc1fbc6f23ca2db903564cd upstream.

There isn't really any valid reason to use __FSCRYPT_MODE_MAX or
FSCRYPT_POLICY_FLAGS_VALID in a userspace program.  These constants are
only meant to be used by the kernel internally, and they are defined in
the UAPI header next to the mode numbers and flags only so that kernel
developers don't forget to update them when adding new modes or flags.

In https://lkml.kernel.org/r/20201005074133.1958633-2-satyat@google.com
there was an example of someone wanting to use __FSCRYPT_MODE_MAX in a
user program, and it was wrong because the program would have broken if
__FSCRYPT_MODE_MAX were ever increased.  So having this definition
available is harmful.  FSCRYPT_POLICY_FLAGS_VALID has the same problem.

So, remove these definitions from the UAPI header.  Replace
FSCRYPT_POLICY_FLAGS_VALID with just listing the valid flags explicitly
in the one kernel function that needs it.  Move __FSCRYPT_MODE_MAX to
fscrypt_private.h, remove the double underscores (which were only
present to discourage use by userspace), and add a BUILD_BUG_ON() and
comments to (hopefully) ensure it is kept in sync.

Keep the old name FS_POLICY_FLAGS_VALID, since it's been around for
longer and there's a greater chance that removing it would break source
compatibility with some program.  Indeed, mtd-utils is using it in
an #ifdef, and removing it would introduce compiler warnings (about
FS_POLICY_FLAGS_PAD_* being redefined) into the mtd-utils build.
However, reduce its value to 0x07 so that it only includes the flags
with old names (the ones present before Linux 5.4), and try to make it
clear that it's now "frozen" and no new flags should be added to it.

Fixes: 2336d0deb2 ("fscrypt: use FSCRYPT_ prefix for uapi constants")
Cc: <stable@vger.kernel.org> # v5.4+
Link: https://lore.kernel.org/r/20201024005132.495952-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-06 14:48:35 +01:00

603 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Key setup facility for FS encryption support.
*
* Copyright (C) 2015, Google, Inc.
*
* Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
* Heavily modified since then.
*/
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <linux/key.h>
#include "fscrypt_private.h"
static struct crypto_shash *essiv_hash_tfm;
static struct fscrypt_mode available_modes[] = {
[FSCRYPT_MODE_AES_256_XTS] = {
.friendly_name = "AES-256-XTS",
.cipher_str = "xts(aes)",
.keysize = 64,
.ivsize = 16,
},
[FSCRYPT_MODE_AES_256_CTS] = {
.friendly_name = "AES-256-CTS-CBC",
.cipher_str = "cts(cbc(aes))",
.keysize = 32,
.ivsize = 16,
},
[FSCRYPT_MODE_AES_128_CBC] = {
.friendly_name = "AES-128-CBC",
.cipher_str = "cbc(aes)",
.keysize = 16,
.ivsize = 16,
.needs_essiv = true,
},
[FSCRYPT_MODE_AES_128_CTS] = {
.friendly_name = "AES-128-CTS-CBC",
.cipher_str = "cts(cbc(aes))",
.keysize = 16,
.ivsize = 16,
},
[FSCRYPT_MODE_ADIANTUM] = {
.friendly_name = "Adiantum",
.cipher_str = "adiantum(xchacha12,aes)",
.keysize = 32,
.ivsize = 32,
},
};
static struct fscrypt_mode *
select_encryption_mode(const union fscrypt_policy *policy,
const struct inode *inode)
{
BUILD_BUG_ON(ARRAY_SIZE(available_modes) != FSCRYPT_MODE_MAX + 1);
if (S_ISREG(inode->i_mode))
return &available_modes[fscrypt_policy_contents_mode(policy)];
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
return &available_modes[fscrypt_policy_fnames_mode(policy)];
WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
inode->i_ino, (inode->i_mode & S_IFMT));
return ERR_PTR(-EINVAL);
}
/* Create a symmetric cipher object for the given encryption mode and key */
struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode,
const u8 *raw_key,
const struct inode *inode)
{
struct crypto_skcipher *tfm;
int err;
tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
fscrypt_warn(inode,
"Missing crypto API support for %s (API name: \"%s\")",
mode->friendly_name, mode->cipher_str);
return ERR_PTR(-ENOPKG);
}
fscrypt_err(inode, "Error allocating '%s' transform: %ld",
mode->cipher_str, PTR_ERR(tfm));
return tfm;
}
if (unlikely(!mode->logged_impl_name)) {
/*
* fscrypt performance can vary greatly depending on which
* crypto algorithm implementation is used. Help people debug
* performance problems by logging the ->cra_driver_name the
* first time a mode is used. Note that multiple threads can
* race here, but it doesn't really matter.
*/
mode->logged_impl_name = true;
pr_info("fscrypt: %s using implementation \"%s\"\n",
mode->friendly_name,
crypto_skcipher_alg(tfm)->base.cra_driver_name);
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
if (err)
goto err_free_tfm;
return tfm;
err_free_tfm:
crypto_free_skcipher(tfm);
return ERR_PTR(err);
}
static int derive_essiv_salt(const u8 *key, int keysize, u8 *salt)
{
struct crypto_shash *tfm = READ_ONCE(essiv_hash_tfm);
/* init hash transform on demand */
if (unlikely(!tfm)) {
struct crypto_shash *prev_tfm;
tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
fscrypt_warn(NULL,
"Missing crypto API support for SHA-256");
return -ENOPKG;
}
fscrypt_err(NULL,
"Error allocating SHA-256 transform: %ld",
PTR_ERR(tfm));
return PTR_ERR(tfm);
}
prev_tfm = cmpxchg(&essiv_hash_tfm, NULL, tfm);
if (prev_tfm) {
crypto_free_shash(tfm);
tfm = prev_tfm;
}
}
{
SHASH_DESC_ON_STACK(desc, tfm);
desc->tfm = tfm;
return crypto_shash_digest(desc, key, keysize, salt);
}
}
static int init_essiv_generator(struct fscrypt_info *ci, const u8 *raw_key,
int keysize)
{
int err;
struct crypto_cipher *essiv_tfm;
u8 salt[SHA256_DIGEST_SIZE];
if (WARN_ON(ci->ci_mode->ivsize != AES_BLOCK_SIZE))
return -EINVAL;
essiv_tfm = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(essiv_tfm))
return PTR_ERR(essiv_tfm);
ci->ci_essiv_tfm = essiv_tfm;
err = derive_essiv_salt(raw_key, keysize, salt);
if (err)
goto out;
/*
* Using SHA256 to derive the salt/key will result in AES-256 being
* used for IV generation. File contents encryption will still use the
* configured keysize (AES-128) nevertheless.
*/
err = crypto_cipher_setkey(essiv_tfm, salt, sizeof(salt));
if (err)
goto out;
out:
memzero_explicit(salt, sizeof(salt));
return err;
}
/* Given the per-file key, set up the file's crypto transform object(s) */
int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
{
struct fscrypt_mode *mode = ci->ci_mode;
struct crypto_skcipher *ctfm;
int err;
ctfm = fscrypt_allocate_skcipher(mode, derived_key, ci->ci_inode);
if (IS_ERR(ctfm))
return PTR_ERR(ctfm);
ci->ci_ctfm = ctfm;
if (mode->needs_essiv) {
err = init_essiv_generator(ci, derived_key, mode->keysize);
if (err) {
fscrypt_warn(ci->ci_inode,
"Error initializing ESSIV generator: %d",
err);
return err;
}
}
return 0;
}
static int setup_per_mode_key(struct fscrypt_info *ci,
struct fscrypt_master_key *mk)
{
struct fscrypt_mode *mode = ci->ci_mode;
u8 mode_num = mode - available_modes;
struct crypto_skcipher *tfm, *prev_tfm;
u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
int err;
if (WARN_ON(mode_num >= ARRAY_SIZE(mk->mk_mode_keys)))
return -EINVAL;
/* pairs with cmpxchg() below */
tfm = READ_ONCE(mk->mk_mode_keys[mode_num]);
if (likely(tfm != NULL))
goto done;
BUILD_BUG_ON(sizeof(mode_num) != 1);
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
HKDF_CONTEXT_PER_MODE_KEY,
&mode_num, sizeof(mode_num),
mode_key, mode->keysize);
if (err)
return err;
tfm = fscrypt_allocate_skcipher(mode, mode_key, ci->ci_inode);
memzero_explicit(mode_key, mode->keysize);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
/* pairs with READ_ONCE() above */
prev_tfm = cmpxchg(&mk->mk_mode_keys[mode_num], NULL, tfm);
if (prev_tfm != NULL) {
crypto_free_skcipher(tfm);
tfm = prev_tfm;
}
done:
ci->ci_ctfm = tfm;
return 0;
}
static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
struct fscrypt_master_key *mk)
{
u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
int err;
if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
/*
* DIRECT_KEY: instead of deriving per-file keys, the per-file
* nonce will be included in all the IVs. But unlike v1
* policies, for v2 policies in this case we don't encrypt with
* the master key directly but rather derive a per-mode key.
* This ensures that the master key is consistently used only
* for HKDF, avoiding key reuse issues.
*/
if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
fscrypt_warn(ci->ci_inode,
"Direct key flag not allowed with %s",
ci->ci_mode->friendly_name);
return -EINVAL;
}
return setup_per_mode_key(ci, mk);
}
err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
HKDF_CONTEXT_PER_FILE_KEY,
ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
derived_key, ci->ci_mode->keysize);
if (err)
return err;
err = fscrypt_set_derived_key(ci, derived_key);
memzero_explicit(derived_key, ci->ci_mode->keysize);
return err;
}
/*
* Find the master key, then set up the inode's actual encryption key.
*
* If the master key is found in the filesystem-level keyring, then the
* corresponding 'struct key' is returned in *master_key_ret with
* ->mk_secret_sem read-locked. This is needed to ensure that only one task
* links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
* to create an fscrypt_info for the same inode), and to synchronize the master
* key being removed with a new inode starting to use it.
*/
static int setup_file_encryption_key(struct fscrypt_info *ci,
struct key **master_key_ret)
{
struct key *key;
struct fscrypt_master_key *mk = NULL;
struct fscrypt_key_specifier mk_spec;
int err;
switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1:
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
memcpy(mk_spec.u.descriptor,
ci->ci_policy.v1.master_key_descriptor,
FSCRYPT_KEY_DESCRIPTOR_SIZE);
break;
case FSCRYPT_POLICY_V2:
mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
memcpy(mk_spec.u.identifier,
ci->ci_policy.v2.master_key_identifier,
FSCRYPT_KEY_IDENTIFIER_SIZE);
break;
default:
WARN_ON(1);
return -EINVAL;
}
key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
if (IS_ERR(key)) {
if (key != ERR_PTR(-ENOKEY) ||
ci->ci_policy.version != FSCRYPT_POLICY_V1)
return PTR_ERR(key);
/*
* As a legacy fallback for v1 policies, search for the key in
* the current task's subscribed keyrings too. Don't move this
* to before the search of ->s_master_keys, since users
* shouldn't be able to override filesystem-level keys.
*/
return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
}
mk = key->payload.data[0];
down_read(&mk->mk_secret_sem);
/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
if (!is_master_key_secret_present(&mk->mk_secret)) {
err = -ENOKEY;
goto out_release_key;
}
/*
* Require that the master key be at least as long as the derived key.
* Otherwise, the derived key cannot possibly contain as much entropy as
* that required by the encryption mode it will be used for. For v1
* policies it's also required for the KDF to work at all.
*/
if (mk->mk_secret.size < ci->ci_mode->keysize) {
fscrypt_warn(NULL,
"key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
master_key_spec_type(&mk_spec),
master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
mk->mk_secret.size, ci->ci_mode->keysize);
err = -ENOKEY;
goto out_release_key;
}
switch (ci->ci_policy.version) {
case FSCRYPT_POLICY_V1:
err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
break;
case FSCRYPT_POLICY_V2:
err = fscrypt_setup_v2_file_key(ci, mk);
break;
default:
WARN_ON(1);
err = -EINVAL;
break;
}
if (err)
goto out_release_key;
*master_key_ret = key;
return 0;
out_release_key:
up_read(&mk->mk_secret_sem);
key_put(key);
return err;
}
static void put_crypt_info(struct fscrypt_info *ci)
{
struct key *key;
if (!ci)
return;
if (ci->ci_direct_key) {
fscrypt_put_direct_key(ci->ci_direct_key);
} else if ((ci->ci_ctfm != NULL || ci->ci_essiv_tfm != NULL) &&
!fscrypt_is_direct_key_policy(&ci->ci_policy)) {
crypto_free_skcipher(ci->ci_ctfm);
crypto_free_cipher(ci->ci_essiv_tfm);
}
key = ci->ci_master_key;
if (key) {
struct fscrypt_master_key *mk = key->payload.data[0];
/*
* Remove this inode from the list of inodes that were unlocked
* with the master key.
*
* In addition, if we're removing the last inode from a key that
* already had its secret removed, invalidate the key so that it
* gets removed from ->s_master_keys.
*/
spin_lock(&mk->mk_decrypted_inodes_lock);
list_del(&ci->ci_master_key_link);
spin_unlock(&mk->mk_decrypted_inodes_lock);
if (refcount_dec_and_test(&mk->mk_refcount))
key_invalidate(key);
key_put(key);
}
kmem_cache_free(fscrypt_info_cachep, ci);
}
int fscrypt_get_encryption_info(struct inode *inode)
{
struct fscrypt_info *crypt_info;
union fscrypt_context ctx;
struct fscrypt_mode *mode;
struct key *master_key = NULL;
int res;
if (fscrypt_has_encryption_key(inode))
return 0;
res = fscrypt_initialize(inode->i_sb->s_cop->flags);
if (res)
return res;
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
if (res < 0) {
if (!fscrypt_dummy_context_enabled(inode) ||
IS_ENCRYPTED(inode)) {
fscrypt_warn(inode,
"Error %d getting encryption context",
res);
return res;
}
/* Fake up a context for an unencrypted directory */
memset(&ctx, 0, sizeof(ctx));
ctx.version = FSCRYPT_CONTEXT_V1;
ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
memset(ctx.v1.master_key_descriptor, 0x42,
FSCRYPT_KEY_DESCRIPTOR_SIZE);
res = sizeof(ctx.v1);
}
crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_inode = inode;
res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
if (res) {
fscrypt_warn(inode,
"Unrecognized or corrupt encryption context");
goto out;
}
switch (ctx.version) {
case FSCRYPT_CONTEXT_V1:
memcpy(crypt_info->ci_nonce, ctx.v1.nonce,
FS_KEY_DERIVATION_NONCE_SIZE);
break;
case FSCRYPT_CONTEXT_V2:
memcpy(crypt_info->ci_nonce, ctx.v2.nonce,
FS_KEY_DERIVATION_NONCE_SIZE);
break;
default:
WARN_ON(1);
res = -EINVAL;
goto out;
}
if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
res = -EINVAL;
goto out;
}
mode = select_encryption_mode(&crypt_info->ci_policy, inode);
if (IS_ERR(mode)) {
res = PTR_ERR(mode);
goto out;
}
WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
crypt_info->ci_mode = mode;
res = setup_file_encryption_key(crypt_info, &master_key);
if (res)
goto out;
if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
if (master_key) {
struct fscrypt_master_key *mk =
master_key->payload.data[0];
refcount_inc(&mk->mk_refcount);
crypt_info->ci_master_key = key_get(master_key);
spin_lock(&mk->mk_decrypted_inodes_lock);
list_add(&crypt_info->ci_master_key_link,
&mk->mk_decrypted_inodes);
spin_unlock(&mk->mk_decrypted_inodes_lock);
}
crypt_info = NULL;
}
res = 0;
out:
if (master_key) {
struct fscrypt_master_key *mk = master_key->payload.data[0];
up_read(&mk->mk_secret_sem);
key_put(master_key);
}
if (res == -ENOKEY)
res = 0;
put_crypt_info(crypt_info);
return res;
}
EXPORT_SYMBOL(fscrypt_get_encryption_info);
/**
* fscrypt_put_encryption_info - free most of an inode's fscrypt data
*
* Free the inode's fscrypt_info. Filesystems must call this when the inode is
* being evicted. An RCU grace period need not have elapsed yet.
*/
void fscrypt_put_encryption_info(struct inode *inode)
{
put_crypt_info(inode->i_crypt_info);
inode->i_crypt_info = NULL;
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);
/**
* fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
*
* Free the inode's cached decrypted symlink target, if any. Filesystems must
* call this after an RCU grace period, just before they free the inode.
*/
void fscrypt_free_inode(struct inode *inode)
{
if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
kfree(inode->i_link);
inode->i_link = NULL;
}
}
EXPORT_SYMBOL(fscrypt_free_inode);
/**
* fscrypt_drop_inode - check whether the inode's master key has been removed
*
* Filesystems supporting fscrypt must call this from their ->drop_inode()
* method so that encrypted inodes are evicted as soon as they're no longer in
* use and their master key has been removed.
*
* Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
*/
int fscrypt_drop_inode(struct inode *inode)
{
const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
const struct fscrypt_master_key *mk;
/*
* If ci is NULL, then the inode doesn't have an encryption key set up
* so it's irrelevant. If ci_master_key is NULL, then the master key
* was provided via the legacy mechanism of the process-subscribed
* keyrings, so we don't know whether it's been removed or not.
*/
if (!ci || !ci->ci_master_key)
return 0;
mk = ci->ci_master_key->payload.data[0];
/*
* With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
* protected by the key were cleaned by sync_filesystem(). But if
* userspace is still using the files, inodes can be dirtied between
* then and now. We mustn't lose any writes, so skip dirty inodes here.
*/
if (inode->i_state & I_DIRTY_ALL)
return 0;
/*
* Note: since we aren't holding ->mk_secret_sem, the result here can
* immediately become outdated. But there's no correctness problem with
* unnecessarily evicting. Nor is there a correctness problem with not
* evicting while iput() is racing with the key being removed, since
* then the thread removing the key will either evict the inode itself
* or will correctly detect that it wasn't evicted due to the race.
*/
return !is_master_key_secret_present(&mk->mk_secret);
}
EXPORT_SYMBOL_GPL(fscrypt_drop_inode);